微纳结构碱金属(Li,K)铌酸盐的制备及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱金属铌酸盐体系中的诸多化合物都具有很好的铁电性能、压电性能、介电性能、声光性能、电光性能、荧光性能、光折变性能以及非线性光学性能等,同时还具有良好的机械性能和化学稳定性等特点,是集诸多优点于一身的多功能光电材料,因此引起了众多学者的广泛兴趣。目前许多碱金属铌酸盐已得到了广泛应用,例如铌酸钾、铌酸锂等材料已被广泛用在许多电光设备、激光器变频和表面声波等器件中。
     随着微纳加工技术的发展,微纳结构材料以其在电学、光学等方面独特优异的性能受到了人们的广泛关注。微纳结构材料在电、光器件方面具有十分巨大的应用前景,例如可以制作生物系统荧光探针、量子点激光器、二极管、纳米传感器,可广泛应用于逻辑集成电路、集成光路、光催化、纳米机械系统等领域。随着现代信息产业技术的迅速发展,对器件的微型化要求越来越高,此时微纳材料的制备加工技术将成为器件微型化的基础、成为现代信息技术发展的重要支柱。虽然大尺寸块体碱金属铌酸盐以其优异的性能已得到了广泛的应用,但微纳结构碱金属铌酸盐的研究工作仍处于起步阶段。因此微纳结构碱金属铌酸盐材料的制备工作及其性能的研究对现代生物医学、新信息技术等高新技术产业的发展都有十分重要的意义。
     本文采用水热法,以KOH和去离子水作为反应原料,可以在多晶A1203衬底上制备得到KNbO3纳米针和微纳结构K3Nb7O19六棱片。同时在没有衬底的条件下制备得到了KNbO3纳米线,以KNbO3纳米线作为反应物分别与Li2CO3、LiNO3发生熔盐反应可以制备得到Li3Nb04、LiNbO3纳米颗粒。以Nb粉和尿素作为反应物采用水热法制备得到NH4Nb3O8纳米线,以NH4Nb3O8纳米线作为反应物与Li2CO3发生熔盐反应可制备得到沿c轴取向生长的菱方结构LiNbO3纳米线。随后对制得微纳结构碱金属铌酸盐的形貌、物相、结构等进行了表征分析,并对微纳结构碱金属铌酸盐的压电性能、荧光特性以及粉末倍频效应进行了进一步的深入研究,本文中微纳结构碱金属铌酸盐材料的制备及其性能研究方面的相关工作为微纳结构碱金属铌酸盐的进一步发展和应用提供了很好的指导意义。
     本文中通过实验还发现以下结果:
     (1)所制备得到KNbO3纳米针、KNbO3纳米线、K3Nb7O19六棱片、Li3Nb04纳米颗粒、LiNbO3纳米颗粒以及LiNbO3纳米线的结晶性很好;
     (2) K3Nb7O19六棱片和LiNbO3纳米线都具有很好的压电响应性能,压电系数的最大值可分别达到80pm/V和100 pm/V左右,都是很好的微纳结构无铅压电材料;
     (3)微纳结构LiNbO3、KNbO3在室温下观察不到明显的荧光现象,Li3NbO4纳米颗粒在室温下具有很好的荧光特性,Li3NbO4纳米颗粒在247nm的氙灯光源的激发下可以激发出376nm荧光,其对应的荧光寿命约为119.6μs, Li3NbO4纳米颗粒可以作为很好的纳米荧光粉材料;
     (4) Li3NbO4纳米颗粒没有明显的粉末倍频(SHG)效应,KNbO3纳米颗粒、KNbO3纳米针、KNbO3纳米线、LiNbO3纳米颗粒以及LiNbO3纳米线都显示出了很好的粉末倍频现象,它们相对于250~300目K103粉末的平均相对倍频转换效率分别为0.95、0.28、0.13、1.2、0.52。
Many compounds in the system of alkali niobate have attracted extensive research interests due to their outstanding ferroelectric, piezoelectric, dielectric, acoustic-optical, electro-optical, fluorescence, photorefractive and nonlinear optical properties, as well as their superior mechanical and chemical stability. This kind of multi-functional optical and electric material has many advantages. At present, alkali niobate materials have been widely used, such as LiNbO3 and KNbO3 which have been widely used in electro-optical devices, frequency converter of laser, and surface acoustic wave devices.
     With the development of micro-/nano fabrication technology, micro-/nano structural materials have drawn increasing attention because of their advanced performance compared to their bulk counterparts. Micro-/nano structural materials have great potential applications in such electric and optical devices as biological imaging probes, quantum dot lasers, diode, and nano sensors. They could also be used in logical integrated circuits, light integrated circuits, photocatalysis, and nanoelectromechanical systems (NEMS). With the rapid development of modern information industry, the demands of miniaturization of the devices have become increasingly high. The preparation process technology of micro-/nano structural materials will become the basis for device miniaturization and the development of modern information technology. Although bulk alkali niobate materials have been widely used due to their excellent properties, the research of micro-/nano structural alkali niobate materials is still in its infancy. Therefore, the synthesis of micro-/nano structured alkali niobate materials and the researches on their properties are very important for the development of modern biomedical research, new modern information technology and other high-tech industries.
     In this thesis, KNbO3 nanoneedles and K3Nb7O19 micro-hexagonal tablets are synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. KNbO3 nanowires are also prepared without any substrate. Li3NbO4 and LiNbO3 nanoparticles are synthesized by using KNbO3 nanowires as starting materials based on the molten salt reaction with Li2CO3 and LiNO3 powders in the KC1 melt. NH4Nb3O8 nanowires are prepared through hydrothermal reaction by using Nb and urea solution as source materials, and rhombic LiNbO3 nanowires along the c-axis were synthesized by using the wire-like g as starting materials based on the molten salt reaction with Li2CO3 powders in the KC1 melt. Subsequently, the obtained micro-/nano structured alkali niobate materials are characterized to analyze their morphologies. phase compositions. and structures. Their piezoelectric properties, fluorescence properties and powder SHG effects are also further studied. The synthesis of micro-/nano structured alkali niobate materials and the related research works on their properties will provide a good guide for the further developments and applications of micro-/nano structured alkali niobate materials.
     In this thesis, the results are presented as follows:
     (1) The as-prepared KNbO3 nanoneedles, KNbO3 nanowires, K3Nb7O19 micro-hexagonal tablets, Li3NbO4 nanoparticles, LiNbO3nanoparticles, and LiNbO3 nanowires are all highly crystallized;
     (2) Piezoresponse force microscopy measurements show strong piezoactivities of the K3Nb7O19 micro-hexagonal tablet and LiNbO3 nanowire. The max d33 value could reach 80pm/V and 100pm/V, respectively.
     (3) At room temperature, there are no obvious luminescence properties of LiNbO3 and KNbO3. Li3NbO4 nanoparticles, however, exhibit excellent luminescence property. The photoluminescence (PL) spectra excited at 247 nm have a strong blue emission band maximum at 376 nm, and it has a long lifetime which is up to 119.6μs. So it could be used as a good kind of nanophosphors.
     (4) Li3NbO4 nanoparticles have no powder SHG effect, while KNbO3 nanoparticles, KNbO3 nanoneedles, KNbO3 nanowires. LiNbO3 nanoparticles, and LiNbO3 nanowires exhibit excellent powder SHG effect. Compared to 250~300 mesh KIO3 powders, their relative powder SHG transfer efficiency are around 0.95,0.28, 0.13,1.2, and 0.52, respectively.
引文
[1]L. Louis, P. Gemeiner, I. Ponomareva, L. Bellaiche, G. Geneste, W. Ma, N. Setter, and B. Dkhil. Low-Symmetry Phases in Ferroelectric Nanowires. Nano Letters,2010,10(4),1177-1183.
    [2]B. T. Matthias, and J. P. Remeika. Dielectric properties of sodium and potassium niobates. Physical Review,1951,82(5),727-729.
    [3]N. F. Foster. The deposition and piezoelectric characteristics of sputtered Lithium Niobate films. Journal of Applied Physics,1969,40(1),420-421.
    [4]Y. Shibata, N. Kuze, K. Kaya, M. Matsui M. Kanai, and T. Kawai. Piezoelectric LiNbO3 and LiTaO3 films for SAW device applications.1996 IEEE Ultrasonics Symposium,1996,1. 247-254.
    [5]K. Yamanouchi, H. Odagawa, T. Kojima, and Y. Cho. New piezoelectric KNbO3 films for SAW device applications.1998 IEEE Ultrasonics Symposium,1998,34(7),203-206.
    [6]V. Y. Topolov. Domain wall displacements and piezoelectric activity of KNbO3 single crystals. Journal of Physics:Condensed Matter,2003,15(3),561-565.
    [7]G. Suyal, E. Colla, R. Gysel, M. Cantoni, and N. Setter. Mater. Piezoelectric response and polarization switching in small anisotropic perovskite particles. Nano Letters,2004,4(7), 1339-1342.
    [8]J. Wang, C. Stampfer, C. Roman, W. H. Ma, N. Setter, and C. Hierold. Piezoresponse force microscopy on doubly clamped KNbO3 nanowires. Applied Physics Letters,2008,93(22). 223101.
    [9]D. Fu, M. Itoh, and S. Koshihara. Dielectric, ferroelectric, and piezoelectric behaviors of AgNbO3-KNbO3 solid solution. Journal of Applied Physics,2009,106(10),104104.
    [10]Q. P. Ding, Y. P. Yuan, X. Xiong, R. P. Li, H. B. Huang, Z. S. Li, T. Yu, Z. Zou, and S.G. Yang. Enhanced photocatalytic water splitting properties of KNbO3 nanowires synthesized through hydrothermal method. Journal of Physical Chemistry C,2008,112(48),18846-18848.
    [11]K. Saito, K. Koga, and A. Kudo. Lithium niobate nanowires for photocatalytic water splitting. Dalton Transaction.2011,40(15),3909-3913.
    [12]F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition. Journal of Applied Physics.1998,84(4).2251-2254.
    [13]M. Abarkan, J. P. Salvestrini, M. Aillerie. and M. D. Fontana. Frequency dispersion of electro-optical properties over a wide range by means of time-response analysis. Applied Optics,2003,42(13),2346-2353.
    [14]F. Abdi, M. D. Fontana, M. aillerie. P. Bourson. Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties. Applied Physics A: Materials Science & Processing,2006,83(3),427-434.
    [15]P. U. Sastry. Linear electro-optical properties of orthorhombic KNbO3 Solid State Communications,2002,122(1-2),41-44.
    [16]C. D. Boyd, Robert C. Miller, K. Nassau, W. L. Bond, and A. Savage. LiNbO3:An efficient phase matchable nonlinear optical material. Applied Physics Letters,1964,5(11).234-236.
    [17]R. C. Miller, G. D. Boyd, and A. Savage. Nonlinear optical interactions in LiNbO3 without double refraction. Applied Physics Letters,1965,6(4),77-79.
    [18]C. Duan, W. N. Mei, J. Liu, and J. R. Hardy. First-principles study on the optical properties of KNbO3. Journal of Physics:Condensed Matter,2001,13(35),8189-8195.
    [19]A. Major. D. Hutchings, N. Langford, A. I. Ferguson, J. S. Aitchison. and P. W. E. Smith. Two-photon absorption properties of crystalline KNbO3 at 430 nm and efficient high pulse energy blue second-harmonic generation. Laser Physics Letters.2009,6(6),450-453.
    [20]Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang. Tunable nanowire nonlinear optical probe. Nature,2007,447(7148),1098-1101.
    [21]R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis. Lithium niobate nanowires synthesis, optical properties, and manipulation. Applied Physics Letters,2009,95(14),143105.
    [22]F. Dutto, C. Raillon, K. Schenk, and A. Radenovic. Nonlinear Optical Response in Single Alkaline Niobate Nanowires. Nano Letters,2011,11(6),2517-2521.
    [23]A. Reisman, and F. Holtzberg. Heterogeneous Equilibria in the Systems Li3O-, Ag2O-Nb2O5 and Oxide-Models. Journal of the American Chemical Society,1958,80(24),6503-6507.
    [24]T. Shishido, H. Suzuki, K. Ukei, T. Hibiya, T. Fukuda. Flux growth and crystal structure determination of trilithium niobate. Journal of Alloys and Compounds,1996,234(2). 256-259.
    [25]P. Afanasiev. Synthesis of microcrystalline LiNbO3 in molten nitrate. Materials Letters,1998, 34(3-6).253-256.
    [26]V. L. McLaren, C. A. Kirk, M. Poisot, M. Castellanos, and A. R. West. Li+ion conductivity in rock salt-structured nickel-doped Li3NbO4. Dalton Transactions,2004, (19),3042-3047.
    [27]D. L. Zhang, Y. R. Zhuang, and P. R. Hua. Simulation of Ti diffussion into LiNbO3 in Li-rich atmosphere. Journal of Applied Physics,2007,101(1),013101.
    [28]D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu. Microwave Dielectric Characterization of a Li3Nb04 Ceramic and Its Chemical Compatibility with Silver. Journal of the American Ceramic Society.,2008,91(12).4115-4117.
    [29]Y. J. Hsiao, T. H. Fang, S. J. Lin, J. M. Shieh, L. W. Ji. Preparation and luminescent characteristic of Li3NbO4 nanophosphor. Journal of Luminescence,2010,130(10),1863-1865.
    [30]D. R. Modeshia, R. I. Walton, M. R. Mitchell, and S. E. Ashbrook. Disordered lithium niobate rock-salt materials prepared by hydrothermal synthesis. Dalton Transactions,2010,39(26), 6031-6036.
    [31]杨春晖,孙亮,冷雪松,徐超,范叶霞,徐玉恒等.光折变非线性光学材料-铌酸锂晶体.北京:科学出版社,2009,11.
    [32]R. S. Weis and T. K. Gaylord. Lithium Niobate:Summary of Physical Properties and Crystal Structure. Applied Physics A:Materials Science & Processing,1985,37(4),191-203.
    [33]曹亮亮.硅基铌酸锂薄膜的PLD生长及其性能的研究[硕士学位论文].杭州,浙江大学,2005.6.
    [34]孔勇发,许京军,张光寅,刘思敏,陆猗.多功能光电材料-铌酸锂晶体.北京:科学出版社,2006,9.
    [35]张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社.1996,5.
    [36]于天燕,余昺鲲,王奇,万尤宝,潘守夔.铌酸钾锂晶体及其宽带二次谐波产生.物理学报,2000,20(1),463-467.
    [37]G. D. Fallon, B. M. Gatehouse, and L. Guddat. Crystal Structures of Some Niobium and Tantalum Oxides IX. K3NbO19:A New Potassium Niobium Oxide Tunnel Structure. Journal of Solid State Chemistry,1986,61(2),181-187.
    [38]E. Irle, R. Blachnik and B. Gather. The phase diagrams of Na2O and K2O with Nb2O5 and the ternary system Nb2O5-Na20-Yb2O3.Thermochimica Acta,1991.179,157-169.
    [39]J. F. Liu. X. L. Li, Y. D. Li. Synthesis and characterization of nanocrystalline niobates. Journal of Crystal Growth,2003,247(3-4),419-424.
    [40]L. Li, J. Deng, J. Chen, X. Sun, R. Yu, G. Liu, and X. Xing. Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis. Chemistry of Materials,2009,21(7),1207-1213.
    [41]L. Li, J. Deng, R. Yu, J. Chen. X. Wang, and X. Xing. Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method. Inorganic Chemistry,2010,49(4), 1397-1403.
    [42]F. Madaro, R. Saeterli, J. R. Tolchard, M. Einarsrud, R. Holmestad, and T. Grande. Molten salt synthesis of K4Nb6O17, K2NbO11 and KNb3O8 crystals with needle-or plate-like morphology. CrystEngComm,2011.13(5),1304-1313.
    [43]沈德忠.铁电晶体KNbO3的研究进展.人工晶体学报、2002,31(3),192-200.
    [44]X. Y. Meng, Z. Z. Wang, Y. Zhu, and C. T. Chen. Mechanism of the electro-optic effect in the perovskite-type ferroelectric KNbO3 and LiNbO3. Journal of Applied Physics,2007,101(10). 103506.
    [45]Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li. Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route. Advanced Functional Materials,2007, 17(6),933-938.
    [46]E. Hosono, S. Fujihara, H.i Imai. I. Honma,1. Masaki. and H. Zhou. One-Step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS nano. 2007,1(4),273-278.
    [47]Y. Li, J. Zhang, X. Zhang, Y. Luo, S. Lu, X. Ren, X. Wang, L. Sun, and C. Yan. Luminescent properties in relation to controllable phase and morphology of LuBO3:vEu3+ nano/microcrystals synthesized by hydrothermal approach. Chemistry of Materials,2009,21(3),468-475.
    [48]E. Fatima, Z. Carlos, and C. Concepcion. Hydrothermal Yb3+-doped NaGd(WO4)2 nano- and micrometer-sized crystals with preserved photoluminescence properties. Chemistry of Materials,2010,22(7),2315-2324
    [49]C. Y. Xu, L. Zhen, R. Yang, and Z. L. Wang. Synthesis of single-crystalline niobate nanorods via ion-exchange based on molten-salt reaction. Journal of the American Chemical Society, 2007,129(50),15444-15445.
    [50]H. Zhou, Y. B. Mao, and S. S. Wong. Probing structure-parameter correlations in the molten salt synthesis of BaZrO3 perovskite submicrometer-sized particles. Chemistry of Materials, 2007,19(22),5238-5249.
    [51]A. Mielewczyk-Gryn, K. Gdula, T. Lendze, B. Kusz, and M. Gazda. Nano- and microcrystals of doped niobates. Crystal Research and Technology,2010,45(12),1225-1228.
    [52]K. F. Hsu, S. Y. Tsay, and B. J. Hwang. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. Journal of Materials Chemistry,2004,14(17),2690-2695.
    [53]Y. Faheem, and M. Shoaib. Sol-Gel Processing and Characterization of Phase-Pure Lead Zirconate Titanate Nano-Powders. Journal of the American Ceramic Society,2006,89(6). 2034-2037.
    [54]B. Butz, H. Stormer, D. Gerthsen, M. Bockmeyer, R. Kruger, E. lvers-Tiffee, and M. Luysberg. Microstructure of Nanocrystalline Yttria-Doped Zirconia Thin Films Obtained by Sol-Gel Processing. Journal of the American Ceramic Society,2008,91(7),2281-2289.
    [55]B. Jia, D. Buso. J. Embden, J. Li, and M. Gu. Highly Non-Linear Quantum Dot Doped Nanocomposites for Functional Three-Dimensional Structures Generated by Two-Photon Polymerization. Advanced Materials,2010,22(22),2463-2467.
    [56]O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro. CVD Growth of Boron Nitride Nanotubes. Chemistry of Materials,2000,12(7),1808-1810.
    [57]M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami. Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon,2006,44(15), 3336-3341.
    [58]C. Liu, P. Wu, T. Sun, L. Dai, Y. Ye, R. Ma, and G. Qin. Synthesis of High Quality n-type CdSe Nanobelts and Their Applications in Nanodevices. Journal of Physical Chemistry C, 2009,113(32),14478-14481.
    [59]I. Pribosic, D. Makovec, and M. Drofenik. Formation of Nanoneedles and Nanoplatelets of KNbO3 Perovskite during Templated Crystallization of the Precursor Gel. Chemistry of Materials,2005,17(11),2953.
    [60]M. Li, H. Schnablegger, and S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature,1999,402(1996),393-395.
    [61]T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science,2000,290(5499),2126-2129.
    [62]H. Cao, Z. Xu, H. Sang, D. Sheng, and C. Tie. Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules. Advanced Materials, 2001,13(2),121-123.
    [63]S. O. Obare, N. R. Jana, and C. J. Murphy. Preparation of Polystyrene-and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes. Nano Letters,2001,1(11).601-603.
    [64]M. Cao, C. Hu, G. Peng, Y. Qi, and E. Wang. Selected-Control Synthesis of PbO2 and Pb3O4 Single-Crystalline Nanorods. Journal of the American Ceramic Society,2003,125(17), 4982-4983.
    [65]梁莉娟,A<,2>FeSbO<,6>(A=Ba. Sr. BaCa)钙钛矿型复合氧化物的水热合成[硕士学位论文].天津,南开大学,2005,5.
    [66]王亮.钙钛矿结构电子信息材料的水热合成研究[硕士学位论文].北京,北京工业大学,2005,5.
    [67]田江晓.水热法制备钛酸锶纳米粉体的研究[硕士学位论文].陕西科技大学,2006,5.
    [68]施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展.无机材料学报,1996,11(2), 193-206.
    [69]范亚红.碱金属铌酸盐系无铅压电陶瓷的性能研[硕士学位论文].天津.天津大学.2006.1.
    [70]王超.碱金属铌酸盐纳米陶瓷的溶胶-凝胶法制备及性能研究[博士学位论文].北京,北京工业大学,2011,4.
    [71]张莉.新型碘酸盐材料的水热合成及结构与性能研究[硕士学位论文].北京,北京工业大学,2006,5.
    [72]P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of Optical Harmonics. Physical Review Letters,1961,7(4),118-119.
    [73]D. A. Kleinman. Nonlinear Dielectric Polarization in Optical Media. Physical Review,1962, 126(6),1977-1979.
    [74]R. C. Miller. Optical second harmonic generation in piezoelectric crystals. Applied Physics Letters,1964,5(1),17-19.
    [75]S. K. Kurtz, and T. T. Perry. A Powder Technique for the Evaluation of Nonlinear Optical Materials. Journal of Applied Physics,1968,39(8).3798-3813.
    [76]余保龙.半导体纳米材料的非线性光学性质.河南大学出版社,1999,6.
    [77]P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser. Second harmonic generating (SHG) nanoprobes for in vivo imaging. PNAS,2010,107(33),14535-14540.
    [78]R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and Demetri Psaltis. Imaging with second-harmonic radiation probes in living tissue. Biomedical Optics Express,2011,2(9),2532-2539.
    [79]张镇西.生物医学光子学新技术及应用.北京:科学出版社,2008,5.
    [80]屈军乐,陈丹妮,杨建军,许改霞,林子扬,刘立新,牛憨笨.二次谐波成像及其在生物医学中的应用.深圳大学学报理工版,2006,23(1),1-9.
    [81]F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish. Nonlinear Optical Processes in Optically Trapped InP Nanowires. Nano Letters,2011,11(10).4149-4153.
    [82]焦岗成.铌酸钾钠基压电陶瓷制备与掺杂改性研究[硕士学位论文].西安,西北工业大学,2007,4.
    [83]于海杰.两类无铅压电陶瓷的压电性能和介电性能研究[硕士学位论文].青岛,山东大学,2007,4.
    [84]吴玲.碱金属铌酸盐无铅压电陶瓷的物性研究[博士学位论文].青岛.山东大学,2008,4..
    [85]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura. Lead-free piezoceramics. Nature,2004,432,84-87.
    [86]S. Xu, Y. Shi, and S. G. Kim. Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology,2006,17(17),4497-4501.
    [87]J. Zhou, Z. L. Wang, A. Grots, X. He. Electric field drives the nonlinear resonance of a piezoelectric nanowire. Solid State Communications,2007,144(3-4),118-123.
    [88]Y. Q. Chen, X. J. Zheng and X. Feng. The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning. Nanotechnology,2010,21(5),055708.
    [89]W. S. Yun, J. J. Urban, Q. Gu, and H. Park. Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy. Nano Letters,2002,2(5), 447-450.
    [90]Z. Wang, J. Hu, and M. F. Yu. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Applied Physics Letters,2006,89(26),263119.
    [91]M. T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, and P. Nanni, Ferroelectric BaTiO3 Nanowires by a Topochemical Solid-State Reaction. Chemistry of Materials,2009,21(21),5058-5065.
    [92]T. Y. Ke, H. A. Chen, H. S. Sheu, J. Wei Y., H. N. Lin, C. Y. Lee, and H. T. Chiu. Sodium Niobate Nanowire and Its Piezoelectricity. Journal of Physical Chemistry C.,2008,112(24), 8827.
    [93]Z. L. Wang. Nanogenerators for Self-powered Devices and Systems. Georgia Institute of Technology, Atlanta, USA.2011,6.
    [94]尤静林.高温拉曼光谱创新技术、光谱计算和在无机化合物微结构研究中的应用.[博士学位论文].上海,上海大学,2006,7.
    [95]邱雁.漫反射光谱的理论与应用研究.[硕士学位论文].上海,同济大学,2007,3.
    [96]刘桂香,鲁毅,金香.一种改进的粉末倍频技术的研究.内蒙古师范大学学报.2009.38(4),407-410.
    [97]潘雪丰,张飞雁,朱腾飞,陶卫东.一种粉末倍频的实验装置研究.光学仪器.2009,31(3),76-79.
    [98]G. Bourhill, K. Mansour, K. J. Perry, L. Khundkar, E. T. Sleva, R. Kern, and J. W. Perry. Powder Second Harmonic Generation Efficiencies of Saccharide Materials. Chemistry of Materials,1993,5(6),802-808.
    [99]R. T. Hart, Jr., K. M. Ok, P. S. Halasyamani, and J. W. Zwanziger. Powder second-harmonic generation study of (K2O)15(Nb2O5)15(TeO2)70 glass ceramic. Applied Physics Letters,2004, 85(6),938-939
    [100]A. Magrez, E. Vasco, J. W. Seo, C. Dieker, N. Setter, and L. Forro. Growth of Single-Crystalline KNbO3 Nanostructures. Journal of Physical Chemistry B,2006,110(1),58-61.
    [101]J. F. Liu, X. L. Li, Y. D. Li. Synthesis and characterization of nanocrystalline niobates. Journal of Crystal Growth,2003,247(3-4),419-424.
    [102]G. K. L. Goh, F. F. Lange, S. M. Haile. C. G. Levi. Hydrothermal synthesis of KNbO3 and NaNbO3 powders. Journal of Materials Research,2003.18(2),338-345.
    [103]Y. W. Zhu, H. Z. Zhang, X. C. Sun. S. Q. Feng. J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters,2003, 83(1),144-146.
    [104]H. Y. Yang, S. P. Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita and H. H. Hng. Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology,2005, 16(8),1300-1303
    [105]K. Yum, S. Na, Y. Xiang, N. Wang, and M. F. Yu. Mechanochemical Delivery and Dynamic Tracking of Fluorescent Quantum Dots in the Cytoplasm and Nucleus of Living Cells. Nano Letters,2009,9(5),2193-2198.
    [106]X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi. A cell nanoinjector based on carbon nanotubes. PNAS,2007,104(20),8218-8222.
    [107]J. Bian, Z. Liang, and L. Wang. Structural Evolution and Microwave Dielectric Properties of Li(3-3x)M4xNb(1-x)O4(M=Mg.Zn; 0≤x≤0.9). Journal of the American Ceramic Society,2011, 94(5),1447-1453.
    [108]A. C. Santulli, H. Zhou, S. Berweger, M. B. Raschke, E. Sutter and S. S. Wong. Synthesis of single-crystalline one-dimensional LiNbO3 nanowires. CrystEngComm,2010,12(10), 2675-2678.
    [109]P. Heitjans, M. Masoud, A. Feldhoff and M. Wilkening. NMR and impedance studies of nanocrystalline and amorphous ion conductors:lithium niobate as a model system. Faraday Discuss,2007,134(0),67-82.
    [110]E. R. Camargo and M. Kakihana. Chemical Synthesis of Lithium Niobate Powders (LiNbO3) Prepared from Water-Soluble DL-Malic Acid Complexes. Chemistry of Materials,2001. 13(5),1905-1909.
    [111]J. Zhan, D. Liu, W. Du, Z. Wang, P. Wang. H. Cheng, B. Huang, M. Jiang. Synthesis and characterization of high crystallinity, well-defined morphology stoichiometric lithium niobate nanocrystalline. Journal of Crystal Growth,2011,318(1),1121-1124.
    [112]D. R. Modeshia, R. I. Walton, M. R. Mitchell and S. E. Ashbrook. Disordered lithium niobate rock-salt materials prepared by hydrothermal synthesis. Dalton Transaction.2010, 39(26),6031-6036.
    [113]M. Wei, Z. Qi, M. Ichihara, H. Zhou. Synthesis of single-crystal niobium pentoxide nanobelts. Acta Materialia,2008,56(11),2488-2494.
    [114]M. Wei, H. Sugihara, I. Honma, M. Ichihara, and H. Zhou. A New Metastable Phase of Crystallized V2O4·0.25H2O Nanowires:Synthesis and Electrochemical Measurements. Advanced Materials,2005,17(24),2964-2969.
    [115]E. Aksel, J. S. Forrester, J. L. Jones, P. A. Thomas, K. Page, and M. R. Suchomel. Monoclinic crystal structure of pol y crystal line Na0.5Bi0.5TiO3. Applied Physics Letters,2011, 98(15),152901.
    [116]Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan. Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films. Applied Physics Letters,2008,92(1),012907.
    [117]G. RLASSE and L. G. J. DE HAART. THE NATURE OF THE LUMINESCENCE OF NIOBATES MNbO3 (M= Li, Na, K). Materials Chemistry Physics,1986,14(5),481-484.
    [118]H. P. He, Z. Z. Ye, S. S. Lin, B. H. Zhao, and J. Y. Huang. Negative Thermal Quenching Behavior and Long Luminescence Lifetime of Surface-State Related Green Emission in ZnO Nanorods. Journal of Physical Chemistry C,2008,112(37),14262-14265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700