高纯铜真空净化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,铜的应用开发前景日益广阔。在传统的铜及铜合金材料体系的基础上,高性能铜材的开发研究已成为了现今铜材研究的主要方向。高纯铜(纯度在5N-7N)以其优异的导电、导热性、良好的延展性而广泛应用于半导体键合丝、高保真音响线缆、溅射靶材等制造领域。
     传统高纯铜的制备方法主要有电解法、区域熔炼、离子交换及真空精炼等,其中应用最为广泛的是电解法。然而电解法能耗较高、生产工艺复杂、质量不稳定。区域熔炼需要反复区熔,能耗高且难以去除固液平衡分配系数相差较小的杂质元素。阴离子交换法工艺复杂,质量不稳定且不利于环保。最新的国内外研究发现,高真空电子束可有效去除P、Ag、As、Se、Te等饱和蒸汽压高于铜的杂质元素,结合定向凝固技术可有效去除剩下的绝大部分杂质,从而获得高纯铜材。该技术工艺简单,不涉及多种复杂的化学反应,生产效率较高且利于环保。
     本论文以制备大尺寸高纯铜铸锭为目的,采用真空感应熔炼及电子束精炼结合定向凝固技术对4N电解铜进行除杂净化。成功制备F 67mm,长度大于90mm,纯度达到5N高纯铜铸锭。研究发现:真空熔炼可以有效去除铜中饱和蒸气压高的杂质;拉速为1mm/min的定向凝固过程中,由于铜基体对一些杂质元素具有较强的吸附作用,ko=0.72~1.3的杂质元素没有出现明显的偏聚效应。在真空度为30-90Pa、感应熔炼温度为1573K时保持精炼时间30min后总杂质含量由11ppmw降低至5.06ppmw,主要气体O,H元素的含量降低69.47%,H含量低于1ppmw。
     电子束池熔精炼能够有效去除大部分饱和蒸气压较高的杂质元素,其中Na, Mg, Al, P, Zn, Ga, Pd, Ag, In, W, U的去除率都达到60%以上。真空感应熔炼一次定向凝固铸锭经过两次池熔精炼后,铜中主要杂质元素总量由11ppmw降低至3.1ppmw,二次电子束池熔的除气及除杂效果没有一次池熔明显。
     电子束滴熔直接定向凝固实验中,杂质元素含量较原材料降低了28.2%。滴熔时纯铜液滴由于局部过热,反应速率较快,纯化材料和坩埚之间的反应及元素扩散成为了本实验的限制性因素。通过对比电子束池熔及滴熔精炼工艺,总结得到合理的提纯工艺路线是:真空感应熔炼定向凝固-电子束滴熔直接定向凝固。
With social development, application of copper has broad prospects. High-purity copper (5N-7N purity) because of its excellent thermal conductivity, low impurity content, good ductility can be widely used in semiconductor, bonding wire, sputtering targets and other industry fields.
     Traditional methods to produce high purity copper conclude electrolysis, zone melting, ion exchange and vacuum refining. And electrolysis is the most widely used method but with some defects, such as high energy consumption, complex process and instable quality. Zone melting need repeated heating and it is difficult to remove the element which the value of ko is near 1. Anion exchange is complex, quality inconsistent and not environmentally friendly. The latest study have found that P, Ag, As, Se, Te which vapor pressure is higher than that of copper's can be effectively removed by electron beam(EB) melting and most other impurities can be removed by directional solidification technique.
     In this paper, all the efforts are devoted to producing large-sized high purity copper.4N purity cathode copper was used as the start material, and F 67mm, lengths greater than 90mm, 5N high purity copper ingots have been prepared by vacuum melting and directional solidification.
     Impurities with high vapor pressure can be effectively removed by vacuum melting. Because of the strong affinity of Cu for some of the impurities, the segregation effect does occur when the ko value is in the range from 0.72 to 1.3. Vacuum 30~90Pa, induction melting temperature of 1573K, after 30min refining, the content of impurities decreased from 11ppmw to 5.06ppmw, and the main gas elements(O, H) decreased 69.47%, the content of hydrogen is lower than 1 ppmw.
     Impurities can be removed effective by EB pool melting, and the removal efficiency of Na, Mg, Al, P, Zn, Ga, Pd, Ag,In, W, U is up to 60% separately. The content of main impurities decreased from 1 lppmw to 3.1ppmw after vacuum induction melting directional solidification and two times of EB pool refining; the removal effeciency of gas and other impurities in the secondary EB pool melting was not significant.
     In the EB drip melting and directional solidification experiment, the content of impurities was 28.2% lower than that of the raw materials. EB drip melting experiments show that reaction between crucible and molten copper was the limiting factor. Using more high purity graphite crucible will be able to minimize melt contamination. Comparing the results of EB pool melting with EB drip melting, a reasonable purification process is the vacuum induction melting and directional solidification-electron beam drip melting and directional solidification.
引文
[1]史夫良.中国铜消费影响力[J].中国金属通报,2010,36:14-16.
    [2]Kato M. The production of ultrahigh-purity copper for advanced application[J]. Journal of the Minerals Metals & Materials Society,1995,12:44-46.
    [3]刘林海,谈定生.超高纯铜的制备方法和应用[J].上海有色金属,2004,(02):42-46.
    [4]Tanabe N, Kurosaka A, Suzuki K et al. Fatigue of high purity copper wire[J]. Journal De Physique Iv,1995,5(C7):389-396.
    [5]Y. Zhu K M, M. Isshiki. Influence of Small Amounts of Impurities on Copper Oxidation at 600-1050℃[J]. Oxidation of Metals,2003,59:575-590.
    [6]白木,周洁.影响音响线材品质的三大因素[J].电线电缆,2005,5:23-26.
    [7]范新会,严文.高保真单晶金属线材的研究进展及其应用前景[J].兵器材料科学与工程,2000,23(1):62-65.
    [9]白明辉.超高纯铜的生产及其高技术应用[J].稀有金属快报,1996,(7):7-8.
    [10]禹泽海,汪春平.高纯铜溅射靶材的发展及现状[J].山西冶金,2007,(05):4-6.
    [11]Janine K. Kardokus O O, Chites Wu et al. Copper sputtering target assembly and method of making same USA,6113716[P].2000-09-05
    [12]I. M. Neklyudov V I S, V. N. Voevodin, S. V. Shevchenko et al. Corrosion of Copper Microalloyed with Yttrium[J]. material science,2003,39(5):740-744.
    [13]杨长贺,高钦.有色金属净化[M].大连:大连理工大学出版社,1989.
    [14]卢宝仁.电解铜中的氢对铜线坯拉丝影响的实践[J].云南冶金,2009,38(4):38-41.
    [15]卓震宇,倪红军,孙德宝.铜净化技术的研究与应用[J].铸造,2002,51(2):72-75.
    [16]钟为佳.铜加工技术实用手册[M].北京:冶金工业出版社,2007.
    [17]国翔.高纯金属的物理精制法[J].有色金属与稀土应用,2003,2:1-5.
    [18]国翔.高纯金属的化学精制方法[J].有色金属与稀土应用,2003,2:6-10.
    [19]重金属冶金学委会.铜冶金[M].长沙:中南大学出版社,2004.
    [20]梁永宣,陈胜利,郭学益.铜电解液中As、Sb、Bi杂志净化研究进展[J].中国有色冶金,2009,8(4):69-73.
    [21]Panda B, Das S C. Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid[J]. Hydrometallurgy,2001,59(1):55-67.
    [22]Juhasz I, Hotea V, Pop E et al. Experimental results concerning the electrolyte purification process from the copper electrolytic refinement [J]. Metalurgia International, 2008,13(11):13-18.
    [23]黄坚.高纯铜加工方法综述[J].湖南有色金属,1996,12(06):36-39.
    [24]曹国琛.电解铜生产[M].北京:冶金工业出版社,1960.
    [25]#12
    [26]Miyakoshi Kazuichi K C. production of high-purity copper:Japan, JP4365888[P]. 1992-11-17
    [27]Kimura Etsuji Y K, Ito Sugio. Production of high-purity copper:JP6173063[P].1994-8-21
    [28]Ogata T K Y. Production of high-purity copper:Japan, JP1152291[P].1989-6-14
    [29]Pfann W G. Principles of zone melting[J]. Trans Aime,1952,194:747-753.
    [30]山田义人.带熔融精制铜の残留电气抵抗[J].日本金属学会志,1964,28:149-155.
    [31]Bruning H, Lehericy, J, Lucke, K. Production of ultra high purity copper by nitrate electrolysis and floating zone melting:General procedure and electrolytical purification [J]. Annales De Chimie-Science Des Materiaux,1985,10(2):121-133.
    [32]Zhu Y F, Mimura K, Ishikawa Y et al. Effect of floating zone refining under reduced hydrogen pressure on copper purification[J]. Materials Transactions,2002,43(11): 2802-2807.
    [33]武冠男,张军,刘林.太阳能级多晶硅定向凝固技术的研究[J].铸造技术,2008,29(5):673-677.
    [34]Soda H M A, Wang Z, et al. Pilot-scale casting of single-crystal copper wires by the Ohno continuous casting process[J]. Journal of material science,1995,30(5)::438-448.
    [35]Ogata T, Kato, Masanori, Kawasumi, Yoshio, et al. Copper wires used for transmitting sounds or images:USA, US4792369[P].1988-11-20
    [36]Kekesi T, Isshiki M. Ultra high purification of copper chloride solutions by anion exchange[J]. Hydrometallurgy,1997,45(3):345-361.
    [37]江钟,章文槐.铜熔体的精炼净化技术[J].江西化工,2010,1:11-15.
    [38]李诗卓,王姜.硼在纯铜熔炼中的脱氧作用[J].科学通报,1995,40(15):1426-1428.
    [39]李安国,饶先发,廖春发.真空冶金现状及应用前景[J].技术与装备,2009,7:32-34.
    [40]韩至成.电磁冶金技术及装备[M].北京:冶金工业出版社,2008.
    [41]Jo H. H J H. Apparatus for manufacturing high purity copper efficiently by performing a vacuum melting and degassing process and a horizontal multipass zone melting process using a plurality of zone melting coils en bloc:Korea, KR751536-B1[P].2007,8,23
    [42]M Uchikoshi N Y, M Isshiki. Metal purification method and metal refinement method: USA, US6391081[P].2002-5-21
    [43]Lalev G M, Lim J W, Munirathnam N R et al. Purification of Cu by hydrogen plasma-arc zone melting and characterization of trace impurities by secondary ion mass spectrometry[J]. Materials Characterization,2009,60(1):60-64.
    [44]Lalev G M, Lim J W, Munirathnam N R et al. Impurity Behavior in Cu Refined by Ar Plasma-Arc Zone Melting[J]. Metals and Materials International,2009,15(5):753-757.
    [45]Lalev G M, Lim J W, Munirathnam N R et al. Concentration Behavior of Non-Metallic Impurities in Cu Rods Refined by Argon and Hydrogen Plasma-Arc Zone Melting [J]. Materials Transactions,2009,50(3):618-621.
    [46]Vutova K V, V, Koleva, E, Georgieva, E, Mladenov, G, Mollov, D, Kardjiev, M. Investigation of electron beam melting and refining of titanium and tantalum scrap[J]. Journal of Materials Processing Technology,210(8):1089-1094.
    [47]Pires J C S 0 J B, A. F. B, Mei, P. R. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology,2005,169(1): 16-20.
    [48]Choi, Good-Sun, Lim J-W M, N. R, Kim, Il-Ho, Kim, Joon-Soo. Preparation of 5N grade tantalum by electron beam melting[J]. Journal of Alloys and Compounds,2009,469(1-2): 298-303.
    [49]Glebovsky V G S, N. S, Stinov, E. D, Gnesin, B. A. Electron-beam floating zone growing of high-purity cobalt crystals[J]. Materials Letters,1998,36(5-6):308-314.
    [50]Hensberg A C E. Electron Beam Melting and Refining ot Metals and Alloys[J]. ISIJ international,1992,32(5):673-681.
    [51]Archibald W F, Tucson, Ariz. Electron beam refinment of metals, particularly copper: USA, US4518418[P].1983-6-10
    [52]Vassileva V, Mladenov G, Vutova K et al. Oxygen removal during electron beam drip melting and refining[J]. vacuum,2005,77(4):429-436.
    [53]Vassileva V, Vutova K, Mladenov G. An investigation of the influence of heat transfer on crystallisation processes during electron beam melting and casting of metals[J]. vacuum, 2001,62(2-3):197-201.
    [54]Koleva E, Vutova K, Mladenov G. The role of ingot-crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting[J]. vacuum,2001, 62(2-3):189-196.
    [55]Koleva E, Mladenov, G. Signal formation analysis of the electron beam current distribution measurements[J]. vacuum,2005,77(4):457-462.
    [56]陈琦,陈亚军,王自东.真空熔化氩气保护连续定向凝固设备的研究[J].铸造设备研究,2004,(02):6-8.
    [57]陈亚军,田军花,陈琦等.真空熔炼、氩气保护连续定向凝固技术[J].北京科技大学学报,2004,(05):482-484.
    [58]刘雪峰,马胜军,谢建新等.连续柱状晶组织纯铜板材的制备[J].材料工程,2007,(09):30-33.
    [59]张鸿,谢建新,王自东等.连续定向凝固铜棒及其冷加工后的组织和力学性能[J].机械工程材料,2004,(02):31-33.
    [60]袁宝龙,王自东,吴春京等.大直径单晶铜棒材的连续定向凝固制备[J].北京科技大学学报,2010,32(10):1297-1301.
    [61]陈卫华.真空熔炼氩气保护单晶连铸设备的研制及单晶铜制备[D].兰州:兰州理工大学,2006.
    [62]卓震宇.电解铜熔体净化[D].上海:上海交通大学,2002.
    [63]Shi J, Luo. C, Wang HS et al. Preparation of High Purity Copper by Vertical Zone Refining [J]. Rare Metal Materials and Engineer,2010, (39):418-421.
    [64]李永军,武,闫中强.一种制备超纯铜的方法:China,200810097398.X[P].2008-10-8
    [65]梁赟.金川集团电子束炉炼铜技术首获成功[J].资源再生,2009,(9):4-5.
    [66]陈义.我国集成电路制造用超高纯金属-合金靶材项目通过验收[J].功能材料,2009,6(3):39.
    [67]Kimberye高纯金属的纯度分析方法[EB].2007.http://kimberye.bokee.com/viewdiary.15246304.html.
    [68]刘灿辉.高纯材料中痕量元素分析的发展趋势[J].四川有色金属,2002,(3):17-19.
    [69]Weigert C V M. Application of the glow discharge mass spectrometry (GDMS) for the multi-element trace and ultra trace analysis of sputtering target [J]. Fresenius journal of analytical chemistry,1994, (350):303-309.
    [70]苏彦庆,郭景杰,刘贵仲.有色合金真空熔炼过程熔体质量控制[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [71]戴永年.有色金属材料的真空冶金[M].北京:冶金工业出版社,2003.
    [72]日本金属学会.金属デ一タプツク[M].东京都:丸善株式会社,1993.
    [73]沈韶峰.单晶铜丝的发展前景[J].上海有色金属,2011,32(1):20-24.
    [74]W. Kurz D F. Fundamentals of Solidification[M]. Switzerland:Trans Tech Publications, 1986.
    [75]R Trivedi S L, P Mazumder et al. Microstructure development in the directionally solidified Al-4.0 wt% Cu alloy system[J]. Science and Technology of Advanced Materials 2001,2(1):309-320.
    [76]邓康任,雷作胜,李伟轩,钱俏鹂.电磁脱氧-电磁连铸法生产高性能无氧铜[J].稀有金属,2006,(02):241-245.
    [77]梁立达,程骥,方大成.铜液真空处理的研究[J].特种铸造及有色合金,1985,5(2):12-16.
    [78]傅恒志,国景杰,刘林等.先进材料定向凝固[M].北京:科学出版社,2008.
    [79]Marcel Z. Refining of the copper and investment casting[J]. Journal of Materials Processing Technology,1995, (53):499-507.
    [80]Mladenov G V, V, Vutova, K, Nikolov, T. Investigations of refining processes during electron beam melting[J]. vacuum,1996,47(6-8):825-828.
    [81]Spim jr J A B M J, Garcia A. Numerical modeling and optimization of zone refining[J]. Journal of Alloys and Compounds,2000, (298):299-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700