叠层橡胶支座力学性能和高架桥及高层隔震结构地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会经济发展和城市化进程,各类高层建筑、大跨度空间结构、大跨度桥梁等大规模建设,财富和人口越来越集中。一旦发生地震灾害,其造成的人生和经济损失将会比以往任何时候都要大。大跨度桥梁的结构特点是结构自由度很少。仅依靠结构阻尼和非弹性变形承受强震作用时,结构会发生过大的变形。过大的变形会导致严重损伤甚至倒塌。传统的高层建筑抗震设计主要是基于保证结构本身具有足够的强度、刚度和延性,通过建筑结构构件的强度和塑性变形来抵抗地震作用。由此带来的问题是结构构件的截面尺寸增大、自重增加,结构在地震中受到的地震作用进一步增大。
     隔震技术经过近几十年的发展和应用,实践证明隔震技术是有效减少地震灾害的方法之一,已经不只限于小型桥梁和中低层结构,正在向大跨度桥梁,大高宽比高层建筑上发展和推广。目前,我国隔震技术在大型桥梁和高层建筑的应用实例不多。大跨度桥梁本身固有周期较长,引入隔震设计后,结构的固有周期将延长。长周期结构的隔震效果需要作系统行研究。高层建筑,由于高宽比大,地震中容易产生倾覆弯矩,使得隔震支座进入受拉状态,这一直是阻碍隔震技术在高层建筑应用的原因之一。叠层橡胶隔震支座是隔震体系应用得最多的隔震装置。目前设计和制造叠层橡胶隔震支座时,为保证橡胶支座发生纯剪切变形,都尽量采用强度较大和较厚的内部钢板,以达到内部钢板满足刚性假设的条件。内部钢板在压剪状态下的应力分布和破坏形式、内部钢板的厚度变化对支座的力学性能带来什么样的影响、支座在大变形下,力学性能及破坏形式仍不太明晰。
     本文针对以上问题,围绕着叠层橡胶隔震支座力学性能、大跨度隔震桥梁地震响应和高层隔震建筑支座受拉三个方面中的关键问题展开理论和试验研究。主要研究内容如下:
     (1)基于大量国内外研究文献,归纳和总结了隔震支座力学性能、大跨度隔震桥梁和高层隔震建筑的原理和国内外研究进展,提出目前需要解决的一系列关键问题;
     (2)为研究支座力学性能和内部钢板厚度对支座的力学性能的影响,制作4个具有不同厚度内部钢板的足尺方型天然橡胶叠层橡胶支座进行轴压试验和压剪试验,在此基础上,对最薄内部钢板的叠层橡胶支座进行破坏试验,研究薄钢板叠层橡胶支座的极限破坏形式。通过对轴压试验的数据分析和整理,提出了以S2和面压为参数的叠层橡胶支座竖向刚度经验公式;
     (3)基于超弹性的有限元分析理论,选择适合的橡胶材料模型,由材料基础试验数据拟合模型参数。采用有限元分析方法,建立实体模型,研究试验中的4个足尺方形天然橡胶叠层橡胶支座在纯轴压和压剪状态下内部钢板的应力状态和变形状态,给出了薄钢板支座破坏试验的合理解释;
     (4)阐述了减隔震高架桥设计的原理和方法。研究隔震高架桥体系的桥墩塑性铰和隔震层的计算分析模型。制作了2个相同的1:10缩尺桥墩模型。对其中一个模型进行反复加载拟静力试验,验证了纤维模型模拟桥墩塑性铰骨架曲线的有效性。对另外一个模型输入正弦波和天然地震波进行振动台试验,结合隔震支座压剪试验、桥墩拟静力试验和单墩振动台试验的实验结果,使用SAP2000程序,建立有限元分析模型。通过对隔震体系的整体模型的理论分析结果与试验结果的对比分析验证了计算模型的正确性;
     (5)结合某大型高架桥工程,建立三维分析模型,采用非线性时程分析方法,研究土-结构相互作用对隔震高架桥的地震响应影响,对比研究减隔震高架桥梁与抗震高架桥梁的地震响应和桥墩高差变化时,减隔震高架桥地震响应规律。研究表明不考虑桩-土-结构相互作用,采用墩底固结模型,得到的响应值是保守的;采用减隔震设计,可以有效地降低高架桥地震加速度响应,同时也能降低桥梁速度响应,隔震后主梁位移大于抗震设计的主梁移位;抗震设计的桥梁在大震时桥墩进入塑性,通过墩身的塑性铰耗地震能量,而隔震桥梁通过隔震层耗散地震能量,在大震下,墩身保持弹性状态;对于桥墩大高差高架桥,采用抗震设计的高架桥上部惯性力会集中于高度最小的桥墩上。采用减隔震设计通过选取合适的支座参数可以降低整桥地震响应的同时使惯性力得以均匀分散到各个桥墩上;
     (6)采用弹塑性时程分析法对20层的框架、框-剪结构的抗震和隔震效果进行了对比分析。结果表明,抗震结构上部结构的地震响应加速度远大于隔震结构的;应用隔震技术后,高层建筑在大震时,上部结构仍处在弹性状态,减少大震后对受损建筑的维修工作。隔震后结构的加速度响应显著降低,有利于保持建筑使用功能;
     (7)针对叠层橡胶支座抗拉性能远小于抗压性能制约叠层橡胶支座在大高宽比建筑的推广和应用的问题。本文提出一种新型抗拉装置:利用叠层橡胶支座的抗压能力来承受隔震层的拉力。通过对采用新型抗拉装置结构在大震中的地震响应分析,证明新型抗拉装置可以把拉力转化成压力,提高隔震层的抗拉能力,减少隔震层竖向位移,降低上部结构地震响应。此装置对于隔震技术向大高宽比结构应用和推广有实际应用的意义。
With the economic development and urbanization of mankind, more and more high-rise buildings, large space structures and long-span viaducts are constructed. Wealth and population are increasingly concentrated. It will cause a greater damages and loss once subject to earthquake disaster. Long-span viaduct is a limited freedom structure. Large deformation will be occurred if it just uses the structure damping and nonlinear deformation to resistant severe earthquake. Excessive deformation will lead to serious injury or even collapse. The traditional seismic design is based on the philosophies that the structure must have sufficient strength, stiffness and ductility. The seismic force is resisted by the strength and plastic deformation of the structure members. This will make the section size and weight of the member increase. The enlarged scale causes heavier dead load and stronger earthquake response.
     After decades of development and application, it is proved that the isolation technology is one the most effective method in reducing seismic response and avoids earthquake disaster. At present, the application of seismic isolation in long-span viaduct and high-rise building is limited in China. The nature period of the long-span viaduct is long before isolated. The isolator will lengthen the nature period of viaduct. It is necessary to study the isolation effect on long period structures. With a high aspect ratio, the isolator in isolated high-rise building will come into the tension state because of the overturning moment cause by the earthquake. This is the most reason hinders the isolation technology application in high-rise buildings. The laminated rubber bearing is widely used in isolation design. In order to ensure the bearing undergo pure shear deformation and satisfy the rigid assumption of inner steel plate, the strength and thickness of the inner steel plate is large as much as possible. The effect of the inner steel plate thickness on stress distribution in inner steel plate and failure modes of the laminated rubber bearing is not clear.
     In this dissertation, several critical issues have been theoretical and experimental researched in the field of mechanical properties of laminated rubber bearings, seismic response of long-span viaduct and high-rise buildings. The main contents are as follows:
     (1) State of the art in the field of isolation bearing mechanical properties, isolated long-span viaduct and isolated high-rise buildings is summarized based on a large number of domestic and international research literatures. A series critical problem in isolation design is proposed.
     (2) Vertical compress test and compression-shear test are conducted on four full scale square laminated rubber bearings. The mechanical characteristics and effect of the inner steel plate thickness on bearings are studied. The failure mode of the bearing due to the inner steel plate bulking is discussed based on the test results.
     (3) Based on the rubber material characteristic test data fitting, a suitable rubber material model used in finite element analyze is chosen. And the stress distribution and deformation of the inner steel plate of the laminated rubber bearing subject to vertical compression and compression-shear states are studied using finite element method. The reason of the bearing failure due to insufficient inner steel plate thickness is interpreted based on the finite element analyze results.
     (4) The principle and method of isolated viaduct are introduced and the analyze model of pier plastic hinge and isolator are studied. The correction of fiber model to simulate the plastic hinge in pier is verification base on the model test of low frequency cyclic pseudo static loading on a1:10scale pier model. An analysis model using SAP2000is built based on the bearings compress-shear test and pier model pseudo static loading test. The model is verification through shake table test.
     (5) A full scale three dimension model considering pier nonlinear behaviors is built. The influence of soil structure interaction (SSI) on isolated long-span viaduct and the difference seismic response between resistant earthquake design viaduct and isolation design viaduct are studied using nonlinear dynamic time history analysis. Studies show that the influent of SSI is small. Isolation design without considering SSI is conservative and acceptable. The acceleration and velocity seismic response of the viaduct is significant reduced using isolation design while the displacement response is increased. The pier of isolated design remains elastic in severe earthquake, while the earthquake resistant design pier goes into plastic state. For the different height pier viaduct system, the inertial force caused by the earthquake will concentrate on the lowest pier in earthquake resistant design viaduct, however, the inertial force in isolated viaduct can be distribute on all piers through choose reasonable isolator parameter.
     (6) The earthquake response analysis of three20-story buildings of seismic design frame-shear wall structure, base isolated reinforced concrete frame structure and base isolated frame-shear wall structure is carried out using nonlinear time history analysis method. It is verified that the maximum story drift of the seismic design structures decreases whereas the maximum acceleration response is enlarger. The superstructure of base isolated building remains elastic state. The acceleration response of the isolated building is reduced remarkable. It is advantage to maintain function and keep people comfortable.
     (7) The insufficient of tensile capability of the laminated bearing is the most reason hinders the isolation technology application in high-rise buildings. In order to solve this problem, an innovation tensile-resistant laminated rubber bearing device (TRLRB) is proposed taking advantage of compressive ability to resistant the tensile force. Nonlinear dynamic analysis of an isolated high-rise building under severe earthquake loading is performed in this dissertation on study the effects of the TRLRB. The analysis results show that, the TRLRB is feasible because of the simple in both design and manufacture, and the vertical displacement of the isolation layer is reduced despite the tensile force cause by superstructure using TRLRB. The study also shows that the swing phenomenon of the isolated high-rise building is reduced remarkable and the tensile ability of the isolation layer is improved significantly. It has practical to use TRLRB in isolated high-rise building.
引文
[1]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学.北京:中国建筑工业出版社,2000
    [2]陈海全.应用形状记忆合金的大跨桥梁结构振动控制理论研究与振动台试验.[天津大学博士学位论文].天津:天津大学,2003
    [3]范立础,王志强.桥梁减隔震设计.北京:人民交通出版社,2001,1-2
    [4]樊爱武.滑移隔震结构的滑移位移研究.[华中科技大学博士学位论文].武汉:华中科技大学,2005
    [5]中华人民共和国国家标准.建筑抗震设计规范(GB50011—2001).北京:中国建筑工业出版,2001
    [6]周福霖,杨铮,周云.我国结构减震控制的研究应用与发展.第七届全国地震工程学术会议论文集.北京:地震出版社,2006
    [7]周福霖.工程结构减震控制.北京:地震出版社,1997
    [8]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社.2003
    [9]Kelly J M. Seismic Base Isolation:Review and Bibliography. Soil Dynamics and Earthquake Engineering,1986.5(3):202-216
    [10]Soong T T, Constantinou M C. Passive and Active Structural Vibration Control in Civil Engineering, New York:Springer-Verlag,1994,255-269
    [11]李宏男,李忠献,祁皑,贾影.结构振动与控制.北京:中国建筑工业出版社.2005
    [12]李爱群.工程结构减振控制.北京:机械工业出版社,2007
    [13]Akiyama H. A Prospect for Future Earthquake Resistant Design. Engineering Structures,1998.20(4-6):447-451
    [14]苏经宇,曾德民.我国建筑结构隔震技术的研究和应用.地震工程与工程振动,2001,12(4):94-101
    [15]Skinner R I, Robinson W H, Mcverry G H. An Introduction to Seismic Isolation, New York:John Wiley & Sons,1993.中译本:工程隔震概论,谢礼立等译,北京:地震出版社,1996,12
    [16]Naeim F, Kelly J M. Design of Seismic Isolated Structures. New York:John Wiley & Sons,1999
    [17]Kelly J M, Eidinger J M. Experimental Result of an Earthquake Isolation System Using Natural Rubber Bearings. Report No. UCB/EERC78/03, California, USA,1978
    [18]唐家祥.工程结构基础隔震技术的发展与应用.第二届全国结构减震控制学术会议论文集,武汉,1992,9-40
    [19]Tarics A G. The Implementation of Bass Isolation for the Foot Hill Communities Law and Justice Center. Report to the National Science Foundation and the County of San Bernardino, Reidand Tarios Associates, San Francisco, California,1984
    [20]Li L. Base Isolation Measures in Aseismic Structures. Proceedings US-PRC Bilateral Workshopon Earthquake Engineering, Harbin, China,1982, 137-142
    [21]马万成.加层减震结构的理论分析及振动台试验研究.[广州大学硕士学位论文].广州:广州大学,2006
    [22]苏键.建筑结构隔震设计辅助专家系统研究.[广州大学硕士学位论文].广州:广州大学,2007
    [23]The Society of Rubber Industry. Handbook for Isolated Rubber Bearings. Tokyo: Ricohtosho Corporation,2000
    [24]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究.[北京工业大学博士学位论文].北京:北京工业大学,2004
    [25]王曙光,杜东升,刘伟庆.高层建筑结构隔震设计关键问题.南京工业大学学报(自然科学版),2009,31(1):71-77
    [26]程华群,刘伟庆,王曙光.高层隔震建筑设计中隔震支座受拉问题分析.地震工程与工程振动,2007,27(4):161-166
    [27]祁皑,范宏伟.基础隔震结构高宽比限值研究.建筑结构学报,2004,25(6):52-58
    [28]祁皑,范宏伟.基于结构设计的基础隔震结构高宽比限值的研究.土木工程学报,2007,40(4):13-20
    [29]吴香香,孙丽,李宏男.竖向地震动对隔震结构高宽比限值的影响分析.沈阳工程学院学报(自然科学版),2002,18(2):81-84
    [30]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究.建筑结构学报,2003,24(2):14-19
    [31]李宏男,王苏岩,贾俊辉.采用基础摩擦隔震房屋高宽比限值的研究.地震工程与工程振动,1997,17(3):73-76
    [32]熊仲明,王清敏,丰定图,姚谦峰.多层基础滑移隔震房屋滑动抗倾覆稳定性判定.西安建筑科技大学学报,1998,30(3):288-290
    [33]程华群,刘伟庆,王曙光.高层隔震建筑设计中隔震支座受拉问题分析.地震工程与工程振动,2007,27(4):161-166
    [34]Construction Completed of "Park City Suginami, " the World's Tallest Base-Isolated Super High-Rise Condominium, http://www. Takenaka. co. jp/ takenaka_e/news_e/pr0011/m0011_01. htm
    [35]Hybrid Base Isolation System Used in Super High-Rise Office Building for the First Time in the World, http://www. takenaka. co. jp/takenaka_e/newse/ pr0106/m0106_06.htm
    [36]温留汉·黑沙 周福霖.高架路桥的震害与隔震设计.桥梁,2008,8(1):1-4
    [37]廖顺痒、吴在辉.桥梁橡胶支座.北京:人民交通出版社,1998
    [38]徐凤云.公路桥梁减震支座.中国抗震防灾论文集.北京:地震出版社,1986
    [39]范立础,袁万城.桥梁橡胶支座减隔震性能研究.同济大学学报,1989,17(4):447-455
    [40]Haringx J A. On Highly Compressive Helical Springs and Rubber Rods and Their Applications to Free Mountings, Part Ⅰ, Ⅱ and Ⅲ. Philips Research Report, 1948-1949
    [41]Gent N, Lindly P B. The Compression of Bonded Rubber Block. Proceeding of the Institution Mechanical Engineers 1959,111-117
    [42]Gent N. Elastic Stability of Rubber Compression Spring. Journal of Mechanic Engineering Science 1964, (6):318-326
    [43]Gent N, Meinecke E A. Compression, Bending and Shear of Bonded Rubber Blocks. Polymer Engineering and Science 1970,10(1):48-53
    [44]Lindly P B. Compress Module for Blocks of Soft Elastic Material Bonded to Rigid end Plates. Journal of Strain Analysis 1979, (14):11-16
    [45]Kelly G, Kelly J M. Compression Stiffness of Bonded Square Layers of Nearly Incompressible Material. Engineering Structures,1989, (11):9-15
    [46]Chalhoub M S, Kelly J M. Analysis of Infinite-Strip-Shaped Base Isolator with Elastomeric Bulk Compression. Journal of Engineering Mechanics, ASCE 1991, (117):1791-1805
    [47]Hsiang-Chun Tsai, Chung-Chi Lee. Compressive Stiffness of Elastic Layers Bonded between Rigid Plates. International Journal of Structures,1998,35(23): 3053-3069
    [48]Hsiang-Chun Tsai, Chung-Chi Lee. Tilting Stiffness of Elastic Layers Bonded between Rigid Plates. International Journal of Solids and Structures,1999, (36): 2485-2505
    [49]Hsiang-Chuan Tsai. Flexure Analysis of Circular Elastic Layers Bonded between Rigid Plates. International Journal of Solids and Structures,2003, (40): 2975-2987
    [50]Hsiang-Chun Tsai, Wei-Jen Pai. Simplified Stiffness Formulae for Elastic Layers Bonded between Rigid Plates. Engineering Structures,2003(25):1443-1454
    [51]Hsiang-Chuan Tsai. Compression Stiffness of Infinite-Strip Bearings of Laminated Elastic Material Interleaving with Flexible Reinforcements. International Journal of Solids and Structures,2004(41):6647-6660
    [52]Thomas G. The Design of Laminated Bearings. Proceedings of the Conferenceon NR for Earthquake Protection of Buildings,1982,229-46
    [53]Koh G, Kelly J M. Effects of Axial Load on Elastomeric Isolation Bearings. Report No. UCB/EERC-86/12, Earthquake Engineering Research Center, University of California, Berkeley,1986,12
    [54]Koh C G, Kelly J M. A Simple Mechanical Model for Elastomeric Bearings Used in Base Isolation. International Journal of Mechanic Science,1998,30(12): 933-943
    [55]Koh G, Kelly J M. Application of Fraction Derivatives to Seismic Analysis of Base-Isolated Models. Earthquake Engineering Structure Dynamic,1990,19, 229-241
    [56]Chalhoub M S, Kelly J M. Effect of Bulk Compressibility on the Stiffness of Cylindrical Base Isolation Bearings. International Journal of Solids and Structures,1990, (26):734-760
    [57]Iizuka M. A Simple Mechanical Model for Seismic Rubber Bearings Expressing Large-Deformation Behavior under Combined Loads of Compression and Shear. Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan 1992,721-722
    [58]Iizuka M. Simple Design Formulas for Mechanical Properties of Laminated Low-Damping Rubber Bearings Used in Base Isolation. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan,1993,521-522
    [59]Iizuka M. Practical Design Formulas for Seismic Rubber Bearings, PVP-vol.309. Advances in Vibration Issue, Active and Passive Vibration Mitigation, Damping and Seismic Isolation ASME,1995,63-69
    [60]Iizuka M. A Macroscopic Model for Predicting Large-Deformation Behaviors of Laminated Rubber Bearings. Engineering Structures,2000,22,323-334
    [61]Constantinou M C, Kartoum A, Kelly J M. Analysis of Compress of Hollow Circular Elastomeric Bearings. Engineering Structures,1992, (14):103-111
    [62]Gyeong-Hoi Koo, Jae-Han Lee, Bong Yoo, Yasuki Ohtori. Evaluation of Laminated Rubber Bearings for Seismic Isolation Using Modified Macro-Model with Parameter Equations of Instantaneous Apparent Shear Modulus. Engineering Structures,1999,21,594-602
    [63]Hsiang-Chuan Tsai, Shaw-Jiun Hsueh. Mechanical Properties of Isolation Bearings Identified by a Viscoelastic Model. International Journal of Solids and Structures,2001,38,53-74
    [64]Cheng-Hsiung Chang. Modeling of Laminated Rubber Bearings Using an Analytical Stiffness Matrix. International Journal of Solids and Structures,2002, 39,6055-6078
    [65]Nagarajaiah S, Ferrell K. Stability of Elastomeric Seismic Isolation Bearings. ASCE Journal of Structural Engineering,1999,125,946-954
    [66]Cem Topkaya, Joseph A Yura. Test Method for Determining the Shear Modulus of Elastomeric Bearings. ASCE Journal of Structural Engineering,2002,128(6): 797-805
    [67]Nobuo Masaki, Shigenobu Suzuki. Restoring Force Characteristics of Laminated Rubber Bearings under Various Restraining Conditions. Journal of Pressure Vessel Technology,2004,126(2):141-147
    [68]Kelly J M. Tension Buckling in Multilayer Elastomeric Bearings. ASCE Journal of Engineering Mechanics,2003,129(12):1363-1368
    [69]Buckle G, Kelly J M. Properties of Slender Elastomeric Isolation Bearings during Shake Table Studies of a Large-Scale Model Bridge Deck. Joint Sealing and Bearings Systems for Concrete Structures, Vol.1, American Concrete Institute, Detroit, Mich,1986,247-269
    [70]Roeder W, Stanton J F, Taylor A W. Performance of Elastomeric Bearings. NCHRP Reports 298. Washington DC,1987
    [71]Koh H, Kelly J M. Viscoelastic Stability Model for Elastomeric Bonded Bearings. ASCE Journal of Structural Engineering,1989,115(2):285-302
    [72]Stanton J F, Scroggins G, Roeder C W. Stability of Laminated Elastomeric Bearings. Journal of Engineering Mechanics,1990,116,1351-1371
    [73]Ian Buckle, Satish Nagarajaiah, Keith Ferrell. Stability of Elastomeric Isolation Bearings:Experimental Study. ASCE Journal of Structural Engineering,2002, 28(1):3-11
    [74]Antonio D. Lanzo. On Elastic Beam Models for Stability Analysis of Multilayered Rubber Bearings. International Journal of Solids and Structures,2004,41, 5733-5757
    [75]Simo J C, Kelly J M. Finite Element Analysis of the Stability of Multilayer Elastomeric Bearing. Engineering Structures,1984,6,162-174
    [76]Seky W, Fukahori Y, Iseda Y, Matsunage T. A Large Deformation Finite Element Analysis for Multilayer Elastomeric Bearings. Rubber Chemistry Technology,1987,60,856-869
    [77]Abdur Rahman Bhuiyan, Ehsan Ahmed. Analytical Expression for Evaluating Stress-Deformation Response of Rubber Layers under Combined Action of Compression and Shear. Construction and Building Materials,2007,21, 1860-1868
    [78]Azlan Adnan, Jati Sunaryati. Mechanical characteristics of circular elastomeric hollow rubber bearing. Proceedings of 6th Asia-Pacific structural engineering and construction conference, Kuala Lumpur, Malaysia.2006, B18-B24
    [79]Tyler R G, Robinson W H. High-Strain Tests on Lead-Rubber Bearings for Earthquake Loadings. Bulletin of New Zealand National Society Earthquake Engineering,1984,17,90-105
    [80]Mori, Carr A J, Cooke N, Moss P J. Compression Behavior of Bridge Bearings Used for Seismic Isolation. Engineering Structures,1996,18(5):351-361
    [81]Jangid R S. Optimum Lead-Rubber Isolation Bearing for Near-Fault Motions. Engineering Structures,2007,29,2503-2513
    [82]Hwang J S, Chiou J M. An Equivalent Linear Model of Lead-Rubber Seismic Isolation Bearings. Engineering Structures,1996,18(7):528-536
    [83]Cem Topkaya. Analysis of Specimen Size Effects in Inclined Compression Test on Laminated Elastomeric Bearings. Engineering Structures,2004,26,1071-1080
    [84]Ryan K L, Kelly J M, Chopra A K. Formulation and Implementation of a Lead-Rubber Bearing Model Including Material and Geometric Nonlinearities. 17th Analysis and Computation Specialty Conference. ASCE,2006
    [85]Ryan K L, Kelly J M, Chopra A K. Formulation and Implementation of a Lead-Rubber Bearing Model Including Material and Geometric Nonlinearities. 17th Analysis and Computation Specialty Conference. ASCE,2006
    [86]Takayama M, Tada H, Tanaka R. Finite Element Analysis of Laminated Rubber Bearings Used in Base-Isolation System. Rubber Chemistry Technology,1994, 65,46-62
    [87]Imbimbo M, Luca A D. F. E. Stress Analysis of Rubber Bearings under Axial Loads. Computers and Structures,1998,68,31-39
    [88]Doudoumis N, Gravalas F, Doudoumis N I. Analytical Modeling of Elastomeric Lead-Rubber Bearing with the Use of Finite Element Micro Models.5th GRACM International Congress on Computational Mechanics Limassol,29 June-1 July, 2005
    [89]Papoulia A D P. Aspects of the Non-linear Analysis of Elastomeric Seismic Isolators. Ph. D. Thesis. Department of Civil Engineering. University of California, Berkeley,1992
    [90]Hwang J S, Ku S W. Analytical Modeling of High Damping Rubber Bearing. Journal of Structural Engineering,1997,8,1029-1036
    [91]Hwang J S, Wang C. Seismic Response Prediction of HDR Bearings Using Fractional Derivative Maxwell Model. Engineering Structures.1998,20(9): 849-856
    [92]Hwang J S, Hsu T Y. A Fractional Derivative Model to Include Effect of Ambient Temperature on HDR Bearings. Engineering Structures,2001,23, 484-490
    [93]Ohtori Y. Experimental Study on Mechanical Characteristics of High Damping Rubber Bearings of Various Shapes (Transactions of Architectural Institute of Japan),1997,43B,125-133
    [94]Damian N. Grant, Gregory L. Fenves, Andrew S. Whittaker. Bidirectional Modeling of High-Damping Rubber Bearings. Journal of Earthquake Engineering,2004,8(Special Issue 1):161-185
    [95]Burtscher S L, Dorfmann A. Compression and Shear Tests of Anisotropic High Damping Rubber Bearings Engineering Structures* 2004,26,1979-1991
    [96]Robert Jankowski. Nonlinear Rate Dependent Model of High Damping Rubber Bearing. Bulletin of Earthquake Engineering 1,2003,397-403
    [97]Masato Abe, Junji Yoshida, Yozo Fujino. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. Ⅰ:Experimental Study. Journal of Structural Engineering ASCE,2004,8,1119-1132
    [98]Masato Abe, Junji Yoshida, Yozo Fujino. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. Ⅱ.-Modeling. Journal of Structural Engineering ASCE,2004,8,1133-1144
    [99]Junji Yoshida, Masato Abe, Yozo Fujino, Hiroshi Watanabe. Three-dimenstional finite-element analysis of high damping rubber bearings. Journal of engineering mechanics. ASCE,2004,5,607-620
    [100]Kelly J M. Analysis of Fiber-Reinforced Elastomeric Isolators. Journal of Seismology and Earthquake Engineering,1999,2(1):19-34
    [101]Kelly J M, Takhirov S M. Analytical and Experimental Study of Fiber-Reinforced Elastomeric Isolators. PEER report 2001/11. Berkeley (CA, USA):Pacific Earthquake Engineering Research Center, University of California,2001
    [102]Byung-Young Moon, Gyung-Ju Kang, Beom-Soo, Kang, James M. Kelly. Design and Manufacturing of Fiber Reinforced Elastomeric Isolator for Seismic Isolation. Journal of Materials Processing Technology,2002,30-131(12):145-150
    [103]Beom-Soo Kang, Gyung-Ju Kang, Byung-Young Moon. Hole and Lead Plug Effect on Fiber Reinforced Elastomeric Isolator for Seismic Isolation. Journal of Materials Processing Technology,2003,140,592-597
    [104]Hisang-Chuan Tsai, Kelly J M. Stiffness Analysis of Fiber-Reinforced Elastomeric Isolator. PEER report 2001/05. Berkeley (CA, USA):Pacific Earthquake Engineering Research Center, University of California,2001
    [105]Hsiang-Chuan Tsai, Kelly J M. Buckling Load of Seismic Isolators Affected by Flexibility of Reinforcement. International Journal of Solids and Structures, 2005,42,255-269
    [106]Hsiang-Chuan Tsai. Compression Stiffness of Circular Bearings of Laminated Elastic Material Interleaving with Flexible Reinforcements. International Journal of Solids and Structures,2006,43,3484-3497
    [107]Hsiang-Chuan Tsai. Tilting Analysis of Circular Elastic Layers Interleaving with Flexible Reinforcements. International Journal of Solids and Structures,2007, 44,6318-6329
    [108]Hsiang-Chuan Tsai. Deformation Analysis of Infinite-Strip Bearings of Laminated Elastic Material Interleaving with Tension-Only Reinforcements. International Journal of Solids and Structures,2008,45,2836-2849
    [109]Ghasem Dehghani Ashkezari, Ali Akbar Aghakouchak, Mehrdad Kokabi. Design, Manufacturing and Evaluation of the Performance of Steel Like Fiber Reinforced Elastomeric Seismic Isolators. Journal of Materials Processing Technology,2008,1979,140-150
    [110]Andrea Mordini, Alfred Strauss. An Innovation Earthquake Isolation System using Fiber Reinforce Rubber Bearings. Engineering Structures,2008. Doi:10, 1016/j. engstruct.2008.03.010
    [111]日本建筑学会.隔震结构设计.北京:地震出版社,2005
    [112]Bradley G L, Chang P C, Taylor A W. Determination of the Ultimate Capacity of Electrometric Bearings under Axial Loading, U. S. Department of Commerce, National Institute of Standardsand Technology,1998
    [114]Lindley P W. Natural Rubber Structural Bearings. Joint Sealing and Bearing Systems for Concrete Structures, ACI,1981,1
    [115]中华人民共和国国家标准.橡胶支座(GB20688.3-2006)第3部分:建筑隔震橡胶支座.北京:中国标准出版社,2007
    [116]Masahiko Higashino, Shin Okamoto. Response control and seismic isolation of buildings. London and New York:Taylor & Francis Group,2006
    [117]Bradley G L, Chang P C, Taylor A W. Determination of the Ultimate Capacity of Electrometric Bearings under Axial Loading, U. S. Department of Commerce, National Institute of Standardsand Technology,1998
    [118]Yeoh H. Some forms of the strain energy function for rubber. Rubber Chem. Technol,1993,66,754-772
    [119]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用.北京:清华大学出版社.450-454
    [120]Mooney R. A Theory of Large Elastic Deformation. Applcation of Physics,1940, 11,582-592
    [121]Rivlin R S. Large Elastic Deformation of Isotropic Materials:I. Fundamental Concepts, II. Some Uniqueness Theories for Pure Homogeneous Deformations. Philos Trans Roy Soc Lond Ser A,1948,240,459-508
    [122]Chaylton D J, Yang J.有限元分析所用橡胶弹性特性的表征方法.袁立译.橡胶译从,1996,3,182-244
    [123]Yeoh O H. On the Ogden Strain Energy Function. Rubber Chemistry and Technology,1997,70(2),175-182
    [124]Arruda E, Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the mechanics and physics ofsolids,1993,41(2):389-412
    [125]Kilian H G. Equation of State of Real Networks. Polymer,1981,22,483-492.
    [126]中华人民共和国国家标准.橡胶支座(GB20688.2-2006)第2部分:建筑隔震橡胶支座.北京:中国标准出版社,2007
    [127]柳春光.桥梁结构地震响应与抗震性能分析.北京:中国建筑工业出版社2009
    [128]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004
    [129]Kelly J M. Earthquake-Resistant Design with Rubber (2nd Ed.). London: Springer-Verlag,1996
    [130]S. Nagarajaiah, K. Ferrell. Stability of Elastomeric Seismic Isolation Bearings. ASCE Journal of Structureal Engineering,1999,125,946-954
    [131]Gyeong-Hoi Koo, Jae-Han Lee, Bong Yoo, Yasuki Ohtori. Evaluation of Laminated Rubber Bearings for Seismic Isolation Using Modified Macro-Model with Parameter Equations of Instantaneous Apparent Shear Modulus. Engineering Structures,1999,21,594-602
    [132]Masao Iizuka. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings. Engineering Structures,2000,22,323-334
    [133]Keri L. Ryan, James M. Kelly, Anil K. Chopra. Nonlinear Model for Lead-Rubber Bearings Including Axial-Load Effects. Journal of Engineering Mechanics. ASCE,2005,12,1270-1278
    [134]Keri L. Ryan, James M. Kelly, Anil K. Chopra. Formulation and Implementation of a Lead-Rubber Bearing Model Including Material and Geometric Nonlinearities.17th Analysis and Computation Specialty Conference. ASCE,2006
    [135]Fujita T, Suzuki S, Fujita S. High Damping Rubber Bearings for Seismic Isolation of Buildings (1st Report, Hysteretic Restoring Force Characteristics and Analytical Models), Trans. Japan soc. Mech Eng. C56,65866,1990
    [136]Bouc R. Forced Vibration of Mechanical System with hysteresis. Proceedings of the Fourth Conference on Nonlinear Oscillations. Prague, Czechoslovakia,1967
    [137]Wen Y K. Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division,1976,102(2):249-263
    [138]Wenliuhan Hei Sha, SU Jian, ZHOU Fulin. Effects of Plastic Hinge Model in Dynamic Nonlinear Analysis of Reinforce Concrete Building. Russia:The 12th World Conference on Seismic Isolation,2011
    [139]Takeda T, Sozen M A, Nielsen N N. Reinforced concrete response to simulated earthquakes. Journal of Structural Division, ASCE,1970,12,2257-2573
    [140]Otani S., Cheung V. W. T., Lai, S. S. Reinforced Concrete Columns Subjected to Biaxial Lateral Load Reversals. Proceedings of 7th World Conference on Earthquake Engineering, Istanbul,2007,6,525-532
    [141]WenLiuhan Hei Sha, SU Jian, ZHOU Fulin. Effects of Unloading Stiffness Degeneration of Plastic Hinge Model on Dynamic Characteristics of RC Building. The 11th International Symposium on Structural Engineering,2010, I, 1182-1186
    [142]Robert K. Dowell, FriederSeible, EdwardL. Wilson. Pivot Hysteresis Model for Reinforced Concrete Members. ACI Structural Journal,1998,9,607-617
    [143]北京金土木软件技术有限公司编著.SAP2000中文版使用指南.北京:人民交通出版社,2006
    [144]黄襄云.层间隔震减震结构的理论分析和振动台试验研究.[西安建筑科技大学博士学位论文].西安:西安建筑科技大学,2008
    [145]袁涌,朱昆,熊世树,资道铭.高阻尼橡胶隔震支座的力学性能及隔震效果研究.工程抗震与加固改造,2008,30(3):15-20
    [146]李辉,赖明,白绍良.土-结动力相互作用研究综述(Ⅰ).重庆建筑大学学报,1999,21(4):112-116
    [147]Ray Clough, Joseph Penzien. Dynamics of Structures(second edition). New York: Computers and Structures, Inc,1995
    [148]王克海.桥梁抗震研究.北京:中国铁道出版社,2007
    [149]Xiang H and Zhu L. Triple-Girder Model for Dynamic Analysis of Cable-Stayed Bridges. Proceedings EASEC-4 Seoul, Korea,1993
    [150]王松涛,曹资.现代抗震设计方法.北京:中国建筑工业出版社,1997
    [151]日本道路协会.道路桥示方书(耐震设计编,下部构造编).东京:丸善株式会社出版事部,2002
    [152]苏键,温留汉·黑沙,周福霖.隔震层竖向刚度对高层基础隔震结构的影响.地震工程与工程振动,2010,30(3):166-170
    [154]中国工程建建设标准化协会.叠层橡胶支座隔震设计规程(CECS 126:2001).北京:中国标准出版社,2001
    [155]苏键,温留汉,周福霖.高层隔震建筑性能分析.建筑结构,2009,39(11):40-42
    [156]Creation of "Stepping Vibration Control" a Reverse Concept for Improved Seismic Resistance, http://www. takenaka. co. jp/takenaka_e/news_e/pr0102/ m010206.htm
    [157]祁皑,林云腾.添加钢筋提高隔震结构高宽比限值的研究.地震工程与工程振动,2005,25(1):120-125
    [158]魏锟.一种新型橡胶支座的力学性能研究.[河南大学硕士学位论文].郑州:河南大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700