主被动微波遥感南极冰盖冻融探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极冰盖对全球热量平衡起着重要作用,控制着大气与地表的热量、水汽和能量交换,直接影响着全球大气环流和气候的变化。冰盖消融将引起冰雪表面湿度的变化,进而改变冰流的运动、加速边缘冰架的崩塌。因此,探测南极冰盖冻融的分布对于研究全球的气候变化至关重要。
     微波遥感具有全天候、穿透性强以及对地物介电特性敏感等优势,是对地观测中十分重要的前沿领域。其中,微波辐射计的亮度温度和微波散射计的后向散射系数对冰盖液态水含量的变化非常敏感,随着融化的开始和结束,液态水含量的增大和减小,亮度温度和后向散射系数均发生剧烈变化。论文根据冰雪微波的这一特性,针对微波辐射计和微波散射计冰盖冻融探测算法中存在的问题进行研究,同时开展主被动协同的冰盖冻融的研究,具体的内容如下:
     (1)分析了微波辐射计现有的XPGR算法和简单物理模型算法在冰盖冻融探测中存在的问题,针对这些问题,提出了改进的辐射计简单物理模型算法、XPGR结合小波变换算法和辐射计简单物理模型结合小波变换算法。这些算法解决了原算法的实用性和可操作性差的问题,实现了南极地区冰盖冻融的自动化监测。并在此基础上利用南极自动气象站数据进行了地面验证。地面验证结果表明,这些算法对南极冰盖冻融探测是有效的。
     (2)微波散射计简单物理模冰盖冻融探测算法确定干湿雪分类阈值时需实测数据,为提高其实用性和可操作性及使用范围,根据干湿雪信号的特征提出了基于广义高斯模型的自动阈值分割的改进的散射计简单物理模型冰盖冻融探测方法。另外,微波散射计的后向散射系数在冰盖融化和冻结时均有剧烈的变化幅度,而小波变换能灵活地进行边缘提取,基于以上两点,提出了小波边缘检测的散射计南极冰盖冻融探测算法;此外,冰盖处于融化状态的情况下后向散射系数易受外界条件的干扰,为了去除这些干扰对小波边缘检测的冰盖冻融探测的影响,提出了数学形态学结合小波边缘检测的南极冰盖冻融算法,这些算法均能自动化探测南极冰盖冻融,为冰盖冻融提供了方法学的支持和补充。
     (3)在将主被动微波结合进行冰盖冻融探测的研究方面,一些学者已做了一定的工作,但所有做法基本上都是分别进行数据处理,得到各自的冻融分布图,然后对结果进行综合分析,在方法学上没有将主动微波和被动微波有机结合起来。本文基于微波辐射计的可靠性和微波散射计的灵敏性和高空间分辨率,提出了利用小波变换将两者协同起来提高冰盖冻融探测精度的协同算法一,即利用微波散射计灵敏度高能较早地探测到冰盖的表面融化和冻结和微波辐射计可靠性高能准确地得到融化区域。即利用微波辐射计确定融化区域,通过微波散射计确定融化开始和结束时间,充分利用两者的优势从而有效提高融化开始、结束和持续时间的探测精度。协同算法二利用微波辐射计可靠性高,受粗糙度等外界因素影响较小,微波散射计空间分辨率高但受外界因素影响较大。基于微波辐射计和微波散射计的简单融化物理模型,提出了利用微波辐射计的可靠性来修正微波散射计的后向散射系数的主被动协同的冰盖冻融探测方法。实验结果表面这两种协同算法在一定程度上提高了南极冰盖冻融的探测精度。
     (4)分别从空间和时间上对南极冰盖的冻融结果进行了分析,从空间分布来看,南极冰盖的融化区域主要分布在南极边缘的各个冰架区,融化强度受地物覆盖类型、地理位置和海拔等因素的影响;从时间分布上来看,南极冰盖的融化面积年际变化较大,1991年的融化面积最大为1518750km2,1999年融化面积最小为565000km2,且融化面积的年际变化具有周期性;南极冰盖的融化具有很强的季节性,融化一般集中在11月至次年2月,在1月达到融化顶峰,3-8月份融化面积非常小。图49幅,表11个,参考文献138篇
Antarctic ice-sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influences the global atmospheric circulation and climate change. Ice-sheet melt will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice-sheet melt is essential for global climate change research.
     Microwave remote sensing is an all-weather technology, which has strong penetration capability and it is sensitive to dielectric properties. All these advantages make it an important frontier of earth observing. Furthermore, microwave brightness temperature and microwave backscatter coefficient are so sensitive to the water content variation that, with the onset and end of snowmelt, brightness temperature and backscatter coefficient experience dramatic variation. On the basis of snow microwave characteristics, I provide a review on the principle of detecting snowmelt with passive microwave remote sensing data and active microwave remote sensing data, and then introduced some passive microwave algorithms and active microwave algorithms for Antarctic ice-sheet melt monitoring and for long-time series melting result derivation, at the same time, the synergy of microwave radiometer and scatterometer was researched for ice-sheet melt monitoring, and the specific contents are as follows:
     (1) The problems of the current XPGR algorithm and the simple physical model algorithm for the ice-sheet melt detection of microwave radiometer are analyzed, in order to solve the problems, the improved radiometer simple physical model, XPGR combined with wavelet transform algorithm and radiometer simple physical model combined with wavelet transform algorithm are proposed to improves the computational efficiency, usability and operability of detecting the ice-sheet melt detection. The algorithms do not rely on the actual melt information and can automatically select many samples. The ground verification is done based on the automatic weather station data. The results show that the methods can be effectively used for the detection of Antarctic ice-sheet melt.
     (2) On the basis of the simple snowmelt physical model for microwave scatterometer, a new automatic threshold segmentation algorithm of Antarctic ice-sheet freeze-thaw detection was proposed, which did not depend on the field observations. That was the histogram for the data of the physical model by the use of generalized Gaussian model to automatically get Antarctic melt distribution. The algorithm improves the computational efficiency, usability and operability of the freeze-thaw detection because the algorithm does not rely on the actual melt information and can automatically select more samples. In addition, in according to the characteristic of backscattering coefficient having dramatic changes with the event of melt or freeze and the characteristic of wavelet transform edge extraction, wavelet edge detection for Antarctic ice-sheet freeze-thaw detection algorithm is proposed. Moreover, the backscattering coefficient is not stable in the melt state, and the mathematical morphology can filer the signal with the edge preserved. So the mathematical morphology combined with wavelet transform algorithm was proposed, and these algorithms can automatically detect the Antarctic ice-sheet melt, which provide methodological support and supplement for the global ice-sheet freeze-thaw detection.
     (3) Passive and active microwave measurements have been used in various studies to detect melt based on their sensitivity to liquid water present in snow. The scatterometer is more sensitive to surface melt than passive microwave observations. The radiometer is more reliable than active microwave. In order to effectively carry on the ice-sheet freeze-thaw detection, the active and passive microwave sensors are efficiently combined based on the sensitivity and the high spatial resolution of the scatterometer and the reliability of the radiometer, two new Antarctic freeze-thaw synergistic detection methods were proposed. One was based on the high sensitivity of the scatterometer and the high reliability of the radiometer by the use of edge detection model to automatically extract the edge information to get the distribution of Antarctic melt onset date, melt duration and melt end date. The other was based on the high spatial resolution of the scatterometer and the reliability of the radiometer through the physical models of the active and passive microwave data sets. Both new algorithms make use of the advantages of active and passive microwave sensors. The results show that the algorithms improve the detection accuracy of melt onset date, melt duration, melt end date and melt distribution.
     (4) The spatial distribution of melt areas shows that the majority of melt areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location. The temporal distribution of melt areas shows that the Antarctic ice sheet melt varies with years with some rule. The melt areas in1991are1518750km2,and its areas are largest. The melt areas in1999are565000km2,and its areas are smallest. In addition, the Antarctic ice sheet melt varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March.
引文
[1]叶笃正,符淙斌,董文杰.全球变化科学进展与未来趋势[J].地球科学进展.2002,17(4):467-469.
    [2]陆龙骅,卞林根,程彦杰.中国南极气象考察与全球变化研究[J].地学前缘.2002,9(2):255-261.
    [3]秦大河,任贾文,效存德.揭示气候变化的南极冰盖研究新进展[J].地理学报.1995,50(2):178-182.
    [4]秦大河,任贾文.南极冰川学[M].北京:科学出版社;2001.
    [5]Long D G, Drinkwater M R. Cryosphere Applications of NSCAT Aata [J]. IEEE Transaction on Geoscience and Remote Sensing.1999,37 (3):1671-1684.
    [6]Long D G,Drinkwater M R. Azimuth Variation in Microwave Scatterometer and Radiometer Data over Antarctica [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38 (4):1857-1870.
    [7]Mote T L, Anderson M R, Kuivinen K C, et al. Passive Microwave-derived Spatial and Temporal Variations of Summer Melt on the Greenland and Ice-sheet [C].1992 International Symposium on Remote Sensing of Snow and Ice.1993, 17:233-238.
    [8]Zwally H J, Fiegles S. Extent and Duration of Antarctic Surface Melting [J]. Journal of Glaciology.1994,40 (136):463-476.
    [9]Steffen K, Abdalati W, Stroeve J. Climate Sensitivity Studies of the Greenland Ice Sheet Using Satellite AVHRR, SMMR, SSM/I and in Situ Data [J]. Meteorology and Atmospheric Physics.1993,51 (3-4):239-258.
    [10]Abdalati W, Steffen K. Passive Microwave-derived Snow Melt Regions on the Greenland Ice Sheet [J]. Geophysical Research Letters.1995,22 (7):787-790.
    [11]Abdalati W, Steffen K. Snowmelt on the Greenland Ice Sheet as Derived from Passive Microwave Satellite Data [J]. Journal of Climate,1997,10:165-175.
    [12]Anderson M R. Determination of a Melt-onset Date for Arctic Sea-ice Regions Using Passive-microwave Data [J]. Annals of Glaciology.1997,25:382-387.
    [13]Joshi M, Merry C J, Jezek K C, et al. An Edge Detection Technique to Estimate Melt Duration, Season and Melt Extent on the Greenland Ice Sheet Using Passive Microwave Data [J]. Geophysical Research Letters.2001,28 (18):3497-3500.
    [14]Liu H, Wang L, Jezek K. Wavelet-transform Based Edge Detection Approach to Derivation of Snowmelt Onset, End and Duration from Satellite Passive Microwave Measurements [J]. International Journal of Remote Sensing.2005,26 (21):4639-4660.
    [15]Liu H, Wang L, Jezek K. Spatiotemporal Variations of Snowmelt in Antarctica Derived from Satellite Scanning Multichannel Microwave Radiometer and Special Sensor Microwave Imager Data (1978-2004) [J]. Journal of Geophysical Research.2006,11(1):1-20.
    [16]Ashcraft I S, Long D G Comparison of Methods for Melt Detection over Greenland Using Active and Passive Microwave Measurements [J]. International Journal of Remote Sensing.2006,27 (12):2469-2488.
    [17]Picard G, Fily M., Surface Melting Observation in Antarctic by Microwave Radiometers:Correcting 26-year Time Series from Changes in Acquisition Hours [J].Remote Sensing of Environment.2006,104 (3):325-336.
    [18]Nghiem S V, Steffen K, Kwok R, et al. Detection of Snowmelt Regions on the Greenland Ice Sheet Using Diurnal Backscatter Change [J]. Journal of Glaciology. 2001,47(159):539-547.
    [19]Bartsch A, Kidd R A, Wagner W, et al. Temporal and Spatial Variability of the Beginning and End of Daily Spring Freeze/Thaw Cycles Derived from Scatterometer Data [J]. Remote Sensing of Environment.2007,106 (3) 360-374.
    [20]Wismann V. Monitoring of Seasonal Snowmelt on Greenland with ERS Scatterometer Data [J]. IEEE Transactions on Geoscience and Remote Sensing. 2000,38(4):1821-1826.
    [21]Kimball J S, Mcdonald K C, Frolking S, et al. Radar Remote Sensing of the Spring Thaw Transition Across a Boreal Landscape [J]. Remote Sensing of Environment.2004,89 (2):163-175.
    [22]Wang L, Derksen C, Brown R. Detection of Pan-Arctic Terrestrial Snowmelt from QuikSCAT,2000-2005 [J]. Remote Sensing of Environment.2008,112 (10): 3794-3805.
    [23]Wang L, Sharp M, Rivard B, et al. Melt Season Duration and Ice Layer Formation on the Greenland Ice Sheet,2000-2004 [J]. Journal of Geophysical Research-earth Surface.2007,112 (F4):1-15.
    [24]Kimball J S, Mcdonald K C, Keyser A R, et al. Application of the NASA Scatterometer (NSCAT) for Determining the Daily Frozen and Nonfrozen Landscape of Alaska [J]. Remote Sensing of Environment.2001,75 (1):113-126.
    [25]Brown R, Derksen C, Wang L. Assessment of Spring Snow Cover Duration Variability over Northern Canada from Satellite Dataset [J]. Remote Sensing of Environment.2007,111 (2-3):367-381.
    [26]Kunz L B, Long D G Melt Detection in Antarctic Ice Shelves Using Spaceborne Scatterometers and Radiometers [J]. IEEE Transactions on Geoscience and Remote Sensing.2006,44 (9):2461-2469.
    [27]Aschraft I S., Long D. G Comparison of Methods for Melt Detection over Greenland Using Active and Passive Microwave Measurements [J].International Journal of Remote Sensing,2006,27 (12):2469-2488.
    [28]Rott H, Sturm K. Active and Passive Microwave Signatures of Antarctic Firn by Means of Field Measurements and Satellite Data [J]. Ann. Glaciol.1993,17: 337-343.
    [29]颜其德.南极——全球气候变暖的“寒暑表”[J].自然杂志.2008(5):259-261.
    [30]孙立广.地球与极地科学[M].合肥:中国科学技术大学出版社;2003.
    [31]Doake J, Duncan I. Amber Metrics for the Testing & Maintenance of Object-oriented Designs [J]. Second Euromicro Conference on Software Maintenance and Reengineering, Proceedings.1998:205-208.
    [32]王星东,李新武,熊章强等.基于改进的交叉极化比率算法的南极冻融探测,吉林大学学报(地球科学版)[J],2013,43(1):237-343.
    [33]赵英时.遥感应用分析原理与方法[M].北京:科学出版社;2003.
    [34]程晓.基于星载微波遥感数据的南极冰盖信息提取与变化监测研究[C].北京:中国科学院遥感应用研究所,2004.
    [35]叶玉芳.基于TIMESAT算法的南极冰盖冻融探测研究[C].北京: 北京师范大学,2011.
    [36]程晓,张艳梅.基于SAAS与NSCAT后向散射差异的南极冰盖变化监测[J].极地研究.2004,16(2):106-113.
    [37]崔祥斌.基于冰雷达的南极冰盖冰厚和冰下地形探测及其演化研究[C].浙江:浙江大学,2010.
    [38]韩念龙.利用AMSR-E数据反演裸露地表土壤水分[C].吉林:吉林大学,2008.
    [39]龙继恩.微波遥感技术的应用现状综述[J].科技资讯.2006(12):9-10.
    [40]Drinkwater M. LIMEX' 87 Ice Surface Characteristics:Implications for C-band SAR Backscatter Signatures [J]. IEEE Transactions on Geoscience and Remote Sensing,1989,27:501-513
    [41]Drinkwater M R, Long D G, Early D S. Enhanced Resolution ERS-1 Scatterometer Imaging of Southern Ocean Sea Ice [J].Eos Journal,1993,17(4): 307-322.
    [42]Drinkwater M R, Lin C C. Introduction to the Special Section on Emerging Scatterometer Applications [J]. IEEE Transactions on Geoscience and Remote Sensing,2000a,38(4):1763-1764.
    [43]Drinkwater M R, Liu X. Seasonal to Interannual Variability in Antarctic Sea-ice Surface Melt [J]. IEEE Transactions on Geoscience and Remote Sensing,2000b, 38(4):1827-1842.
    [44]Drinkwater M R, Long D G, Bingham A W. Greenland Snow Accumulation Estimates from Satellite Radar Scatterometer Data [J]. J Geophys. Res., PARC A Special Issue,2001,106 (D24):33935-33950.
    [45]Bingham A W, Drinkwater M R. Recent Change in the Properties of the Antarctic Ice Sheet[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(4):1810-1820.
    [46]Long D G, Hardin P J, Whiting P T. Resolution Enhancement of Spaceborne Scatterometer Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1993,32(3):700-715
    [47]Long D G, Drinkwater M R. Cryosphere Applications of NSCAT Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1671-1684
    [48]Long D G, Drinkwater M R. Azimuth Variation in Microwave Scatterometer and Radiometer Data over Antaretica[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1857-1870
    [49]Long D G, Drinkwater M R, Holt B, et.al. Global Ice and Land Climate Studies Using Scatterometer Image Data[C].Eos Trans, AGU,2001,82 (43) October 23, 2001.
    [50]Remund Q, Long D G. Sea-ice Extent Mapping Using Ku-band Seatterometer Data[J].Geophys. Res.,1999,104(C4):11515-11527.
    [51]Remund Q P, Long D G, Drinkwater M R. An Iterative Approach to Multisensor Sea Ice Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(4):1843-1856.
    [52]Sheng Y, Laurence C S, Karen E F, et al.A High Temporal-resolution Dataset of ERS Scatterometer Radar Backscatter for Research in Arctic and Sub-Arctic Regions[J].Polar Record,2002,38 (205):115-120.
    [53]车涛,李新.被动微波遥感估算雪水当量研究进展与展望[J].地球科学进展,2004(2):204-210.
    [54]董庆,郭华东,李震.利用专题微波辐射成像仪(SSM/I)检测东南极陆面亮度温度变化[J].海洋通报,2004(2):8-12.
    [55]陈修治,陈水森,李丹,等.被动微波遥感反演地表温度研究进展[J].地球科学进展,2010(8):827-835.
    [56]毛克彪,覃志豪,李满春,等.AMSR被动微波数据介绍及主要应用研究领域分析[J].遥感信息,2005(3):63-65.
    [57]Allison I. Climatology of the East Antarctic Ice Sheet (100 E to 140 E) Derived from Automatic Weather Stations [J]. Journal of Geophysical Research.1998,27: 515-520.
    [58]Allison I, Wendler G, Radok U. Climatology of the East Antarctic Ice Sheet (100°E to 140°E) Derived From Automatic Weather Stations [J]. Journal of Geophysical Research,1993,98 (D5):8815-8823.
    [59]Broeke MR V d B, Carleen R, Dirk VS, et al. Seasonal Cycles of Antarctic Surface Energy Balance from Automatic Weather Stations [J]. Annals of Glaciology,2005,41 (1):131-139.
    [60]Broeke MR V d B, Reijmer CH, Wal R S W V d. A Study of the Surface Mass Balance in Dronning Maud Land, Antarctica, Using Automatic Weather Stations [J]. Journal of Glaciology,2004,50 (171):565-582.
    [61]Renfrew I A, Anderson PS. The Surface Climatology of an Ordinary Katabatic Wind Regime in Coats Land, Antarctica [J]. Tellus Series A:Dynamic Meteorology and Oceanography,2002,54 (5):463-484.
    [62]Stearns C R, Wendler G. Research Results from Antarctic Automatic Weather Stations[J]. Reviews of Geophysics.1988,26 (1):45-61.
    [63]Liu H, Jezek K C. A Complete High-resolution Coastline of Antarctica Extracted from Orthorectified Radarsat SAR Imagery [J]. Phototgrammetric Engineering & Remote Sensing.2004,70 (5):605-616.
    [64]Scambos T A, Haran T M, Fahnestock M A, et al. MODIS-based Mosaic of Antarctica (MOA) Data Sets:Continent-wide Surface Morphology and Snow Grain Size [J]. Remote Sensing of Environment.2007,111:242-257.
    [65]Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing. Volume III [M]. Londan:Artech House,1986
    [66]Fung A K. Microwave Scattering and Emission Models and Their Applications[M]. Norwood, MA:Artech House,1994.
    [67]Matzler C. Microwave Permittivity of Dry Snow [J]. IEEE Transactions on Geoscience and Remote Sensing.1996,34 (2):317-325.
    [68]Matzler C. Microwave Permittivity of Dry Snow [J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34 (2):317-325.
    [69]Kendra J R, Ulaby F T, Sarabandi K. Snow Probe for in Situ Determination of Wetness and Density [J]. IEEE Transactions on Geoscience and Remote Sensing. 1994,32(6):1152-1159.
    [70]Matzler C, Strozzi T, Weise T. Microwave Snowpack Studies Made in the Austrian Alps during the SIR-C/X-SAR Experiment [J]. International Journal of Remote Sensing.1997,18 (12):2505-2530.
    [71]Denoth A. Snow Dielectric Measurements [J]. Advances in Space Research.1989, 9(1):233-243.
    [72]Matzler C. Applications of the Interaction of Microwaves with the Natural Snow Cover [J]. Remote Sensing Reviews.1987,2:1-28.
    [73]Ulaby F T, Moore R K,冯健超著,微波遥感(第一卷)微波遥感基础和辐射测量学[M].科学出版社,北京,1987a
    [74]Ulaby F T, Moore R K,冯健超著,微波遥感(第二卷)雷达遥感和面目标的散射、辐射理论[M].科学出版社,北京,1987b
    [75]Shi J. and J. Dozier,Estimation of Snow Water Equivalence Using SIR-C/ X-SAR. Part I:Inferring Snow Density and Subsurface Properties [J]. IEEE Transactions on Geoscience and Remote Sensing,2000a,38 (6):2465-2474.
    [76]Shi J, Dozier J. Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part II:Inferring SHOW Depth and Particle Size [J]. IEEE Transactions on Geoscience and Remote Sensing,2000b,38 (6):2475-2488
    [77]Elachi C. Spaceborne Imaging Radar Research in the 1990s-an Overview [J]. Johns Hopkins APL Technical Digest.1987,8 (1):60-64.
    [78]舒宁.微波遥感原理[M].武汉:武汉大学出版社,2003.
    [79]Hallikainen M, Ulaby FT, Abdelrazik M. Dielectric Properties of Snow in the 3 to 37 GHz Range [J]. Antennas and Propagation, IEEE Transaction on.1986,34 (11):1329-1340.
    [80]Stiles W H, Ulaby F T. Dielectric Properties of Snow [R]. Kansas:University of Kansas Center for Research,1980.
    [81]Abdalati and Steffen. Passive Microwave-derived Snow Melt Regions on the Greenland Ice Sheet [J].Geophysical Research Letters,1995,22 (7):787-790.
    [82]Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing [M]. Massachusetts:Addison-Wesly Pbulishing Company,1982.
    [83]Abdalatia W, Steffena K, Ottob C, et al. Comparison of Brightness Temperatures from SSMI Instruments on the DMSP F8 and FII Satellites for Antarctica Greenland Ice Sheet [J]. International Journal of Remote Sensing.1995,16 (7): 1223-1229.
    [84]Gough S. A Low Temperature Dielectric Cell and the Permittivity of Hexagonal Ice to 2 K [J]. Can J Chem.1972,50:3046-3051.
    [85]Ramage J M, Isacks B L. Interannual Variations of Snowmelt and Refreeze Timing in Southeast Alaskan Iceshields Using SSM/I Diurnal Amplitude Variations [J]. Journal of Glaciology,2003,49 (164):102-116.
    [86]Takala M, Pulliainen J, Huttunen M, et al. Estimation of the Beginning of Snow Melt Period Using SSM/I Data [C].23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003),21-25.
    [87]Takala M, Pulliainen J, Metsamaki S J, et al. Detection of Snowmelt Using Spaceborne Microwave Radiometer Data in Eurasia From 1979 to 2007 [J]. IEEE Transactions on Geoscience and Remote Sensing.2009,47 (9):2996-3007.
    [88]Torinesi O, Fily M, Genthon C. Interannual Variability and Trend of the Antarctic Summer Melting Period from 20 years of Spaceborne Microwave Data [J].Journal of Climate,2003,16 (7):1047-1060.
    [89]Tedesco M, Abdalati W, Zwally H J. Persistent Surface Snowmelt over Antarctica (1987-2006) from 19.35 GHz Brightness Temperatures [J]. Geophysical Research Letters.2007,34 (18):1-6.
    [90]Tedesco M. Assessment and Development of Snowmelt Retrieval Algorithms over Antarctica from K-band Space Borne Brightness Temperature (1979-2008) [J]. Remote Sensing of Environment.2009,113:979-997.
    [91]Matzler C, Wiesmann A. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-grained Snow [J]. Remote Sensing of Environment.1999,70 (3):307-316.
    [92]Takala M, Pulliainen J, Huttunen M, et al. Detecting the Onset of Snow-melt Using SSM/I Data and the Self-organizing Map [J]. International Journal of Remote Sensing.2008,29 (3):755-766.
    [93]Nghiem S V, Steffen K, Neumann G, et al. Mapping of Ice Layer Extent and Snow Accumulation in the Percolation Zone of the Greenland Ice Sheet [J]. Journal of Geophysical Research.2005.110 (F2):1-13.
    [94]王星东,熊章强,李新武等.基于改进的小波变换的南极冰盖冻融探测,电子学报[J],2013,41(2):402-406.
    [95]Mallat S. A Wavelet Tour of Signal Processing:Second Edition [M]. London: Academic Press,1999.
    [96]Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets [J]. IEEE Transactions on Information Theory,1992,38 (2):617-643.
    [97]Mallat S, Zhong S. Characterization of Signals from Multiscale Edges [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14 (7): 710-732.
    [98]梁雷.基于小波的随时间变化图像的边缘检测[M].北京:北京交通大学,2010.
    [99]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1999.
    [100]Kittler J, Illingworth J. Minimum Error Thresholding [J]. Pattern Recognition, 1986,19:41-47.
    [101]Sharifi K, Leon-Garcia A. Estimation of Shape Parameter for Generalized Gaussian Distributions in Subband Decomposition of Video [J]. IEEE Transaction on Circuit and Systems for Video Technology,1995,5 (1):52-56.
    [102]Bazi Y, Bruzzone L, Melgani F. An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images [J]. IEEE Transactions on Geoscience and Remote Sensing,2005, 43 (4):874-887.
    [103]Wang L, Sharp M J, Rivard B, et al. Melt Season Duration on Canadian Arctic Ice Caps,2000-2004 [J]. Geophysical Research Letters,2005,32 (19): 1-5.
    [104]Bartsch A, Wagner W, Kidd R. Environmental Change in Siberia:Earth Observation, Field Studies and Modelling [C]. Advances in Global Change Research ed H Balzter (Dordrecht:Springer) 2010.
    [105]Nghiem S V, Steffen K, Neumann G, et al. Mapping of Ice Layer Extent and Snow Accumulation in the Percolation Zone of the Greenland Ice Sheet [J]. Journal of Geophysical. Research-earth Surface.2005,110 (F2):1-13.
    [106]Wang L, Derksen C, Brown R. Detection of Pan-Arctic Terrestrial Snowmelt from QuikSCAT,2000-2005 [J]. Remote Sensing of Environment,2008,112 (10): 3794-3805.
    [107]Wang L, Sharp M, Rivard B, et al. Melt Season Duration and Ice Layer Formation on the Greenland Ice Sheet,2000-2004 [J]. Journal of Geophysical Research-earth Surface,2007,112 (F4):1-15.
    [108]Sharp M, Wang L. A five-year record of summer melt on Eurasian Arctic ice caps [J].Journal of Climate,2009,22 (1):33-45.
    [109]唐常青.吕宏伯黄铮等数学形态方法及其应用[M].北京:北京科学出版社,1990.
    [110]Ke L J S J, Haralics R M. Morphology Edge Detection [J]. IEEE Transaction on Robodtics Automatic,1987,21 (3):140-156.
    [111]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [112]王伟,毛一之,李冬梅.数学形态学在变压器局部放电中的应用研究[J].电工电气,2010,(11):28-30.
    [113]黄永辉,吴季,董晓龙.综合孔径微波辐射计顺轨方向亮度温度反演算法的研究[J].电子学报.2000,28(12):108-111.
    [114]连可,王厚军,龙兵.一种基于小波变换模极大值的估计Lipschitz指数新方法[J].电子学报.2008,36(1):106-110.
    [115]刘朝山,张维强,邱迎锋,等.一种改善小波变换模极大值重构信号的整体变分方法[J].电子学报,2004,32(10):1713-1715.
    [116]Fettweis X, van Ypersele J.-P., Galle'e H., et al. The 1979-2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm [J].. Geophysical Research Letters,2007,34 (5):1-5.
    [117]Steffen K, Nghiem S V, Huff R, et al. The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations [J]. Geophysical Research Letters,2004,31 (20):1-5.
    [118]Oza S R, Singh R K K, Vyas N K, et al. Study of Inter-annual Variations in Surface Melting over Amery Ice Shelf, East Antarctica, Using Space-borne Scatterometer Data [J]. Journal of Earth System Science,2011,120 (2):329-336.
    [119]Hicks B R, Long D G. Inferring Greenland Melt and Refreeze Severity from SeaWinds Scatterometer Data [J]. International Journal of Remote Sensing,2011, 32 (23):8053-8080.
    [120]Rotschky G, Schuler T V, Haarpainintner J, et al. Spatio-temporal Variability of Snowmelt across Svalbard during the Period 2000-08 Derived from QuikSCAT/SeaWinds Scatterometry [J]. Polar Research,2011,30:1-15.
    [121]Early D S, LONG D G.Image Reconstruction and Enhanced Resolution Imaging from Irregular Samples [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39 (2):291-302.
    [122]程晓,鄂栋臣,邵芸,等.星载微波散射计技术及其在极地的应用[J].极地研究,2003,15(2):151-159.
    [123]Wang L. Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave observations [J]. Remote Sensing Letters,2012,3 (4):305-313.
    [124]乔平林,张继贤,王翠华.应用AMSR-E微波遥感数据进行土壤湿度反演[J].中国矿业大学学报,2007,36(2):262-265.
    [125]王坚,高井祥,曹德欣,等.动态变形信号二进小波提取模型研究[J].中国矿业大学学报,2007,36(1):116-120.
    [126]Ashcraft I S, and Long D G, Observation and Characterization of Radar Backscatter Over Greenland [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43 (2):225-237.
    [127]Ashcraft I S, Long D G. Differentiation between Melt and Freeze Stages of the Melt Cycle Using SSM/I Channel Ratios [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43 (6):1317-1323.
    [128]David S E, David G L. Image Reconstruction and Enhanced Resolution Imaging from Irregular Samples [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39 (2):291-302.
    [129]Forster R R, Long D G, Jezek K C,,et al. The Onset of Arctic Sea-ice Snowmelt as Detected with Passive-and Active-microwave Remote Sensing [J]. Ann. Glaciol.,2001,33:85-93.
    [130]Frolking S, Milliman T, McDonald K, et al. Evaluation of the SeaWinds Scatterometer for Regional Monitoring of Vegetation Phenology [J]. Journal of Geophysical Research,2006,111 (D17):1-14.
    [131]Koskinen J T, Pulliainen J T, Hallikainen M T. The Use of ERS-1 SAR Data in Snow Melt Monitoring [J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35 (3):601-610.
    [132]Koskinen J T, Pulliainen J T, Luojus K P, et al. Monitoring of Snow-Cover Properties During the Spring Melting Period in Forested Areas [J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48 (1):50-58.
    [133]Liu H., Wang L., Jezek K C. Automated Delineation of Dry and Melt Snow Zones in Antarctica Using Active and Passive Microwave Observations From Space [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44 (8): 2152-2163.
    [134]Luckman A. Melt Extent and Pattern in Greenland and the Antarctic Peninsular from ENVISAT ASAR Global Monitoring Mode [C] 2007, Proc. 'Envisat Symposium 2007', Montreux, Switzerland 23-27 April.
    [135]Mallat S, Zhong S. Characterization of Signals from Multiscale Edges [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14 (7): 710-732.
    [136]Nghiem S V, Steffen R H, Neumann G.Anomalous Snow Accumulation over the Southeast Region of the Greenland Ice Sheet during 2002-2003 Snow Season [C].2005, the 8th Conference on Polar Meteorology and Oceanography, Am. Meteorol. Soc, San Diego, Calif.
    [137]Rawlins M., McDonald K., Frolking S., et al. Remote Sensing of Pan-Arctic Snowpack Thaw Using the SeaWinds Scatterometer [J]. Journal of Hydrology, 2005,312:294-311.
    [138]Tedesco M., Snowmelt Detection over the Greenland Ice Sheet from SSM/I Brightness Temperature Daily Variations [J]. Geophysical Research Letters,2007, 34 (2):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700