基于热电转换的铝电解槽侧壁余热发电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铝电解工业是能耗大户,2008年,我国电解铝总耗电量占全国电能消耗总量的5%左右,而且约一半的电能以余热方式直接散失。有效地利用铝电解余热是实现铝冶金工业节能的一个重要措施。温差发电技术利用半导体热电材料的热电效应,能够直接将热能转换为电能,具有结构简单、体积小、可靠性高、环保无污染等优点。在工业余热回收发电方面,由于传统的发电方式无法回收这部分能源,采用温差发电技术可有效地将工业余热转换为电能。
     本文将温差发电技术应用到铝电解槽侧壁的余热回收发电,根据铝电解槽侧壁散热孔的结构特点,设计并制作了温差发电装置,通过回收低品位电解散热达到减少余热排放的目的。本论文完成的主要研究工作和创新点如下:
     (1)建立了单个温差发电器的热电模型。该模型首次考虑了接触效应对温差发电器性能的影响,得出了温差发电器的电压、电流、输出功率和匹配负载的相关表达式。结果表明:接触电阻对输出功率的影响相当于增大了发电器的电源内阻;接触热阻是通过降低半导体热电偶对两端的温差来降低输出功率的;与通常的电路不同,温差发电器最大输出功率时的匹配负载并不等于发电器的总内阻。
     (2)通过理论分析和实验测试,研究了温差发电器串联连接和并联连接的性能。建立了温差发电器串联连接解析的模型和温差发电器并联的解析模型,得到了串联回路和并联回路的电压、电流、输出功率的近似表达式,并通过实验验证了这两个模型。研究表明:只有当回路中所有的热电模块具有相同的内在参数,且忽略接触热阻的影响时,温差发电器串联或并联回路与一般的直流电源具有相同的串联或并联性能。
     (3)通过理论分析和实验测试,研究了磁场对温差发电器输出性能的影响。从理论上说明磁场对温差发电器的输出性能影响很小;通过实验证明,磁电效应和热磁效应对碲化铋材料制成的温差发电器的开路性能、输出功率的影响可以忽略不计。
     (4)建立了温差发电器实验平台,该平台可以测试各种复杂工况下热电模块的性能。并利用实验平台,筛选出最适合在铝电解槽侧壁散热孔环境下工作的热电模块。
     (5)对铝电解槽侧壁余热温差发电技术进行了论证,设计并加工制作了余热发电装置,建立了余热发电系统,并在铝电解槽现场进行性能测试。结果表明:余热温差发电装置的温差能达到100℃,由18个发电装置组成的余热发电系统的输出功率为290W。
     本文的研究为铝电解余热利用提供了一个新的思路和方法,这种方法还可以推广到其他形式的工业余热回收应用中,具有较强的理论意义和实际应用价值。图78幅,表18个,参考文献190篇
Abstract:The aluminum reduction industry is a large energy consumer. In2008, the total consumption of electrolytic aluminum is about5%of the all country current consumption, and about half of the energy dissipites from the cell to the surroundings and becomes waste heat. As a result, the effective utilization of the aluminum electrolysis waste heat is an important measure to energy saving in the aluminum metallurgical industry. Thermoelectric generation is a technology for directly converting thermal energy into electric energy by thermoelectric effect, it has no moving parts, and it is compact, quiet, highly reliable and environment friendly. In the field of industrial waste heat recovery, low temperature waste heat can not be recycled effectively by conventional methods, while thermoelectric generation can convert the low temperature waste heat into electric energy directly.
     In this paper, thermoelectric generation technology was applied to the waste heat recovery from aluminum reduction cell's sidewalls. According to the structural characteristics of aluminum reduction cell's shell, thermoelectric generators were designed and manufactured. The purpose of energy saving was achieved through the recovery of low-grade waste heat. The main contributions of this dissertation are summarized as follows:
     (1) Based on the actual physical structure and application, a numerical model of signal thermoelectric generator was established. The influence of contact effects was considered, and approximate expressions of output power, current and matched load were deduced by the model. The results indicate that the existence of contact electric resistance is just like the increase of the thermoelectric module's internal resistance, which leads to the deceases of output power. The thermal contact resistance reduces the output power by reducing the temperature difference between the two sides of the thermocouples. The matched load of thermoelectric generator is not equal to the internal resistance unlike most circuit.
     (2) The performances of parallel thermoelectric generator and series thermoelectric generator were studied by theoretical analysis and experimental test. The analytical model of parallel thermoelectric generators and series thermoelectric generators were developed by theoretical analysis and calculation, and the two analytical models were verified by experimental test. The results indicate that only when all of the thermoelectric modules in the series or parallel thermoelectric generators have the same inherent parameters, and the influence of contact thermal resistance is ignored, the series or parallel properties of the thermoelectric generators are the same as that of common DC power.
     (3) The influence of the magnetic field on the output performance of thermoelectric generator was studied. It was theoretically explained that the influence of magnetic field on the output performance of thermoelectric generator is very little. To the thermoelectric generator made of bismuth telluride, it is proved by experiment test that the influence of magnetoelectric effect and thermomagnetic effects on the open circuit performance and output power of the thermoelectric generator is negligible.
     (4) An experimental platform was built, which can be used to test the performance of thermoelectric module in various complex cases. A thermoelectric module was selected, which is very suitable for working in the cooling holes of aluminum reduction cell.
     (5) The thermoelectric generators were designed and manufactured. A waste heat generating system was built, and the system was tested on the spot of aluminum reduction cell. The result shows that the temperature difference of thermoelectric generator can reach100℃, output power of the waste heat generating system made up of18thermoelectric generators is290W.
     The research of this dissertation provides a new idea and method of energy saving in aluminum electrolysis, the method can also be extended to the application of other industrial waste heat recovery, and it is of good significance both in theory and practice.
引文
[1]黄涌波.基于铝电解槽热平衡分析的氟化铝添加量控制策略研究[D].长沙:中南大学,2008:1-10.
    [2]吕定雄,干益人,毛继红,等.我国开发大容量预焙铝电解槽技术进展及今后努力方向[J].有色设备,2000(6):6-9,45.
    [3]张日旭.重化工业产能过剩的困境摆脱:解析电解铝行业[J].产业经济,2012(11):61-67.
    [4]单淑秀.我国电解铝工业的现状及发展方向[J].轻金属,2011(8):3-8.
    [5]姜学海.我国铝工业发展前景的思考[J].轻金属,2007(11):1-4.
    [6]武娟妮,万红艳,陈伟强,等.中国原生铝工业的能耗与温室气体排放核算[J].清华大学学报(自然科学版),2010,50(3):407-410.
    [7]关慧勤,陈祺.我国电解铝工业能源状况及消耗分析[J].嘉兴学院学报,2008,20(5):30-34.
    [8]熊维平.中国铝工业60年回顾与展望[J].中国有色金属,2009(20):32-35.
    [9]孙磊.从“十二五”新规看中国电解铝发展[J].中国有色金属,2012(6):25-26.
    [10]杨文杰,史志荣,焦庆国.铝电解节能技术现状与思考[J].轻金属,2012(5):26-30.
    [11]陈通,时章明,姜信杰,等.浅谈淘汰落后产能政策在电解铝行业中的实施[J].能源与环境,2012(1):26-27.
    [12]田应甫.大型预焙铝电解槽生产实践[M].长沙:中南工业大学出版社,1997:4-21.
    [13]秦剑.电热法生产铸造用共晶铝硅合金的能耗分析[J].有色矿冶,2009,25(5):36-38,41.
    [14]邱竹贤.预焙槽炼铝[M].第3版.北京:冶金工业出版社,2005:12-18.
    [15]田应甫.大型预焙铝电解槽生产实践[M].长沙:中南工业大学出版社,1997:160-162.
    [16]朱玉江.铝电解工艺能耗分析及节能技术探讨[J].新疆有色金属,2001(2):17-19,26.
    [17]万沐,王印夫,刘军山,等.铝电解槽热散热量及其分布规律[J].轻金属,2006(6):31-35.
    [18]王俊青,张延利,陈辉.浅谈我国大中型铝电解槽热损失分布特点[J].轻金属,2007(12):22-24.
    [19]王洪.铝电解槽节能现状及潜力[J].轻金属,1994,31(7):4-11.
    [20]王元.160kA预焙铝电解槽节能途径探讨[J].青海科技,2005(3):59-60.
    [21]王志奇,周乃君,罗亮,等.铝电解槽低温烟气余热发电系统热力分析[J].轻金属,2010(8):74-77.
    [22]周乃君,柯文,王志奇.铝电解槽低温烟气余热发电技术探讨[J].轻金属,2009(1):60-64.
    [23]崔大光.铝电解槽槽壳侧部散热计算方法的研究[J].甘肃冶金,2006,28(1):21-23,51.
    [24]Gou X L, Xiao H, Yang S W. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy,2010, 87(10):3131-3136.
    [25]Niu X, Yu J L, Wang S Z. Experimental study on low-temperature waste heat thermoelectric generator[J]. Journal of Power Sources,2009,188(2):621-626.
    [26]Hsu C T, Huang G Y, Hsu S C, et al. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power genrators[J]. Applied Energy, 2011(88):1291-1297.
    [27]Ohta H, Sugiura K, Koumoto K. Recent progress in oxide thermoelctric materials:p-Tyep Ca3Co4O4 and n-Type SrTiO3[J]. Inorganic Chemistry,2008(47):8429-8436.
    [28]Tritt M T, Harald B, Chen L D. Thermoelectrics:Direct solar thermal energy conversion[J]. MRS Bulletin,2008,33(4):366-368.
    [29]Sofrata H. A thermo-electric refrigeratro powered by photo-voltaic solar collectors[J]. Applied Energy,1984,18(2):137-142.
    [30]任大海,卢凯,戴震宇,等.基于微机电系统技术的微型热电致冷器研究进展[J].机械工程学报,2010,46(4):114-120.
    [31]Nelson R E. A brief histroy of thermophotovoltaic development[J]. Semiconductor Science and Technology,2005,18(5):141-143.
    [32]Shastry B S. Thermopower in correlated systems[J]. New Materials for Thermoelectric Applications:the,2013(1):25-29.
    [33]Goupil C, Seifert W, Zabrocki K, et al. Thermodynamics of thermoelectric phenomena and applications[J]. Entropy,2011,13(8):1481-1517.
    [34]Onsager L. Reciprocal relations in irreversible processes[J]. Physical Review,1931(37): 405-406.
    [35]Rayleigh L. On the thermodynamic efficiency of the thermopile[J]. Philosophical Magazine Series 5,1885(20):361-363.
    [36]Altenkirch E. Uber den nutzeffekt der thermosaulen[J]. Physikalische Zeitschrift,1909(10): 560-580.
    [37]Altenkirch E. Elektrothermische kalteerzeugung und reversible elektrische heizung[J]. Physikalische Zeitschrift,1911(12):920-924.
    [38]Telkes M. The eEfficiency of thermoelectric generators[J]. Journal of Applied Physics, 1947(18):1116-1127.
    [39]Telkes M. Power output of thermoelectric generators[J]. Journal of Applied Physics, 1954(25):1058-1059.
    [40]Telkes M. Solar thermoelectric generators[J]. Journal of Applied Physics,1954(25): 765-777.
    [41]Ioffe A F. The revival of thermoelectricity[J]. Scientific American,1958(199):31-37.
    [42]Ioffe A F. Heat transfer in semiconductors[J]. Canadian Journal of Physics,1956(34): 1342-1355.
    [43]Ioffe A F. Physical problems of thermoelectricity[J]. Reports on Progress in Physics, 1959(22):167-172.
    [44]Domenicali C A. Irreversible thermodynamics of thermoelectriceffects in inhomogeneous[J]. Physcial Review,1953(92):877-881.
    [45]Fieschi R, Groot S D, Mazur P, et al. Thermodynamical theory of galvanomagnetic and thermomagnetic phenomena[J]. Physica,1954(20):245-258.
    [46]Groot S D, Kampen N V. On the derivation of reciprocal relations between irreversible processes[J]. Physica,1954(21):39-47.
    [47]Bernard W, Callen H B. Irreversible thermodynamics of nonlinear processes and noise in driven systems[J]. Reviews of Modern Physics,1959(31):1517-1521.
    [48]Sherman B, Rheikes R, Ure R W. Calculation of efficiency of thermoelectric devices[J]. Journal of Applied Physics,1960(31):1-16.
    [49]Clingman W D. Entropy production and optimum device design[J]. Advanced Energy Conversion,1961(1):61-79.
    [50]Littman H. A clarification of the theoretical upper bound on the thermoelectric "figure of merit" derived from irreversible thermodynamics[J]. Journal of Applied Physics,1962(33): 2655-2656.
    [51]Borrego J M. Zener's maximum efficiency derived from irreversible thermodynamics[J]. Proceedings of the IEEE,1964,52(1):95-99.
    [52]Osterle J F. A unified treatment of the thermodynamics of steady-state energy conversion[J]. Applied Scientific Research, Section a,1964(43):22-24.
    [53]Rowe D M. CRC handbook of thermoelectrics[M]. BOCA Raton, Fl, USA:CRC Press, 1995.
    [54]Riffat S, MA X. Thermoelectrics:A review of present and potential applications[J]. Applied Thermal Engineering,2003(23):913-935.
    [55]Parrott J E. Thermodynamic theory of yransport processes in semiconductors[J]. IEEE Trans Electron Devices,1996(43):809-826.
    [56]GOU Xiao-long, XIAO Heng, YANG Su-wen. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy,2010,87(10):3131-3136.
    [57]Niu X, Yu J L, Wang S Z. Experimetal study on low-temperature waste heat thermoelectric generator[J]. Jorunal of Power Soruces,2009,188(2):621-626.
    [58]张同俊,彭江英,杨君友,等.热电功能材料及其在发电和制冷方面的应用前景[J].材料导报,2002(5):11-15.
    [59]况学成,郝思奇.热电材料及其研究现状[J].中国陶瓷工业,2008,15(5):27-32.
    [60]Seo J, Cho D, Park K, et al. Fabrication and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds by ingot extrusion[J]. Materials Research Bulletin,2000, 35(13):2157-2163.
    [61]马秋花,孙亚光.Bi-Te基热电材料的研究进展Bi-Te基热电材料的研究进展[J].稀有金属快报,2007(6):7-10.
    [62]Poudel B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science (New York, N.Y.),2008,320(5876): 634-638.
    [63]Harman T C, Spears D L, Manfra M J. High thermoelectric figures of merit in PbTe quantum wells[J]. Journal of Electronic Materials,1996,25(7):1121-1127.
    [64]Orihashi M, Noda Y, Kaibe H T, et al. Evaluation of thermoelectric properties of impurity-doped PbTe[J]. Material Transaction-JIM,1998,39(6):672-678.
    [65]Slack G A, Hussain M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators[J]. Journal of Applied Physics,1991,70(5): 2694-2718.
    [66]Bhandari C M, Rowe D M. Silicon-germanium alloys as high-temperature thermoelectric materials[J]. Contemporary Physics,1980,21(3):219-242.
    [67]姜洪义,王华文,任卫.SiGe热电材料的发展与展望[J].材料导报,2007(21):119-121.
    [68]Dilley R N, Bauer D E, Maple B M, et al. Thermoelectric and optical properties of the filled skutterudite YbTe4Sbl2[J]. Physical Review B,2000,61(7):4608-4614.
    [69]李翔,周园,任秀峰,等.新型热电材料的研究进展[J].电源技术,2012,36(1):142-145.
    [70]胡安徽,杨君友,鲍思前,等.Skutterudite热电材料的最新研究进展[J].材料导报,2007,21(1):37-39,45.
    [71]Sales B C, Mandrus D, Chakoumakos B C, et al. Filled skutterudite antimonides:Electron crystals andphonon glasses[J]. Physical Review B,1997,56(23):11508-15081.
    [72]Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides:A new Class of thermoelectirc materials[J]. Science,1996,272(5266):1325-1328.
    [73]Uher C, Rowe D M. Skutterudite-based thermoelectrics[M]. BOCA Raton, Fl, USA:CRC Press,2005.
    [74]Terasaki I, Sasago Y, Uchinokura K. Large thermoelctric power in NaCo2O4 singler crystals[J]. Physical Review B,1997(56):11268-12685.
    [75]毛顺杰,栾伟玲,黄琥,等.氧化物热电材料的研究现状与应用[J].硅酸盐通报,2005 (3):59-63.
    [76]Koumoto K, Seo W S, Ozawa S. Huge thermopower of porous Y2O3 [J]. Applied Physics Letters,1977,71(11):1475-1476.
    [77]Yasukawa M, Murayama N. High Temperature Thermoelectric Properties of Phe Oxide Material:Bal-xSrxPbo3 (x=0-0.6)[J]. Journal of Materials Science Letter,1977(6): 1731-1734.
    [78]李玲玲,张丽鹏,于先进.热电材料的研究进展[J].山东陶瓷,2007,30(2):19-22.
    [79]樊东晓.P型硅化物热电材料的制备及掺杂[D].杭州:浙江大学,2011:1-22.
    [80]李洪涛,朱志秀,吴益文,等.热电材料的应用和研究进展叨.材料导报,2012(15):57-61.
    [81]薇翠.新型热电材料half-Heusler合金和Zint了相的制备和性能优化[D].杭州:浙江大学,2011:13-18.
    [82]Huang X Y, Xu Z, Chen L D. New thermoelectric materials with half-Heusler structure[J]. Journal of Inorganic Materials,2004,19(1):25-30.
    [83]崔萍,李歆,张楠,等.前苏联和俄罗斯同位素温差发电器发展状况[J].电源技术,2004,28(12):803-806.
    [84]张建中,王泽深,任保国,等.同位素电池在探月及深空探测工程中应用的战略研究[J].中国电子科学研究院学报,2007,2(3):319-323.
    [85]Gvazzoni G. Military Thermoelectric Generator[C]//Proc of 1 st European Conf on Thermoelectrics. Cardiff,1987:302-311.
    [86]陈皓.美国陆军研究温差发电技术[EB/OL].中国航空新闻网[2013-02-21].http://www.cannews.com.cn/2012/1112/230324.html.
    [87]Nuwayhid R Y, Rowe D M, MEN G. Low cost stove-top thermoelectric generator for regions with unreliable electricity supply[J]. Renewable Energy,2003(28):205-222.
    [88]张腾,张征.温差发电技术及其一些应用[J].能源技术,2009,30(1):35-39.
    [89]栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004,49(11):1011-1019.
    [90]Kyono T, Suzuki R O, Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser[J]. IEEE Transaction on Energy Conversion, 2003(18):330-334.
    [91]顾伟,翁一武,曹广益,等.低温热能发电的研究现状和发展趋势[J].热能动力工程,2007,22(2):115-119.
    [92]Uemura K I. History of thermoelectricity development in Japan[J]. Journal of Thermoelectricity,2002(3):7-16.
    [93]Mastsuura K, Rowe D M, Tsvyoshi A, et al. Large scale thermoelectric generator's of low grade heat[C]//Proceeding of 10th International Conference on The. Cardiff UK,1991: 233-238.
    [94]王佐民.温差发电器应用于火力发电厂的分析[J].节能技术,2004,22(125):38-39.
    [95]Chuang Y, Chan K T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking [J]. Energy Conversion and Mangement,2009(50): 1506-1512.
    [96]Rowe D M. Thermoelectrics:An environmentally-friendly source of electrical power[J]. Renewable Energy,1999(16):1251-1256.
    [97]Ikoma K, Munekiyo M, Furuya K. Thermoelectric module and generator for gasoline engine vehicles[C]//Proceedings ICT 98. Nagoya,1998:464-467.
    [98]Meleta A Y, Yarygin IV, Klepikov V V, et al. Truck co-generation system based on combustion heated themoelectric conversion[C]//Energy Conversion Engineering Conferenece. Honolulu, HI,1997:1092-1096.
    [99]Yodovard P. The potential of waste heat thermoelectric power generation from diesel cycle and gas turbine cogeneration plants[J]. Energy Soruces,2001(23):213-224.
    [100]Liebl I, Negebauer I S, Eder I A, et al. The thermoelectric genreator from BMW is making use of waste heat[J]. MTZ Worldwide,2009,70(4):4-11.
    [101]靳鹏.汽车尾气热电发电技术研究及应用仿真[D].吉林:吉林大学,2011:1-20.
    [102]Kish M, Nemoto H, Hanao T. Micro-thermoelectric modules and their application to wristwatches as an energy sources[C]//Proceedings ICT 99. Baltimore, USA,1999: 301-307.
    [103]Moghaddas H M. Experimental and Theoretical Analysis of a Thermoelectric Generator[C]//The 1st European Conference on Thermoelectrics. London,1988:370-377.
    [104]Maneewan S, Khedari J, Zeghmati B, et al. Investigation on generated power of thermoelectric roof solar collectors[J]. Renewable Energy,2004,29(5):743-752.
    [105]王书鹏,李建新.温差发电技术在低品位热能中的应用研究[J].宁波节能,2009(4)14-17.
    [106]黄学章,徐冰,张韬,等.基于半导体温差发电的数码设备充电装置[J].电源技术,2010(8):835-838.
    [107]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,1989:287-297.
    [108]高敏,张景韶,Rowe M D.温差电转换及其应用[M].北京:兵器工业出版社,1996:2-22.
    [109]AΦ约飞.半导体温差电偶[M].潘金声,译.北京:科学出版社,1958:1-8.
    [110]卡多夫,密勒.温差电材料和器件[M].周梦尘,译.上海:上海科学技术出版社,1964:2-6.
    [111]徐德胜.半导体制冷与应用技术[M].上海:上海交通大学出版社,1992:1-6.
    [112]黄昆,谢希德.半导体物理学[M].北京:科学出版社,1958:163-169.
    [113]杜建毅.一级热电制冷片在考虑汤姆生效应下之实验与数值分析[D].台湾:台湾国 立成功大学,2008:19-20.
    [114]Huang M, Yen R, WANG An-bang. The Influence of the Thomson Effect on the Performance of a Thermoelectric Cooler[J]. International Journal of Heat and Mass Transfer,2005,48(2):413-418.
    [115]李涛.基于热电效应的热回收应用技术研究和设备开发[D].长沙:湖南大学,2009:1-13.
    [116]印晓明.锰酸盐(稀土合金)—锆钛酸铅铁电铁磁多层膜中的磁电效应[D].南京:南京师范大学,2007:2-4.
    [117]Hill N A. Why are there so few magnetic ferroelectrics[J]. Journal of Physical Chemistry B, 2000,104(29):6694-6709.
    [118]张海涛.霍尔效应及应用[J].温州职业技术学院学报,2005,5(4):26-29.
    [119]近角聪信.磁性体收藏(下)[M].黄锡成金龙焕,译.北京:冶金工业出版社,1984:236-259.
    [120]刘爱华.磁阻效应实验的设计[J].实验技术与管理,2006,23(6):21-22,34.
    [121]郑福洁,吴士忠.半导体物理基础[M].南京:江苏科学技术出版社,1983:279-282.
    [122]Rowe D M. Thermoelectrics handbook:Macro to nano[M]. BOCA Raton, Florida:CRC Press,2006.
    [123]Sales B C. Smaller is cooler[J]. Science,2002,295(5558):1248-1249.
    [124]石尧文,乔冠军,金志浩.热电材料研究进展[J].稀有金属材料与工程,2005,34(1):12-15.
    [125]Fleurial J P, Borshchevsky A, Caillat T. High figure of merit in Ce-filled skutterudites[C]//Fifteenth International Conference on Thermoelectr. Pasadena, CA, USA, 1996-03-26,1996:91-95.
    [126]徐亚东,徐桂英,葛昌纯.新型热电材料的研究动态[J].材料导报,2007,21(11):1-3,11.
    [127]吉晓华.纳米结构Bi_2Te_3基热电材料的合成与性能[D].浙江:浙江大学,2005:13-21.
    [128]徐国栋,陈哲,严有为,等.高优值系数热电材料研究[J].材料导报,2010,24(2):60-64.
    [129]邓海龙.传感器与检测技术[M].北京:中国纺织出版社,2008:62-69.
    [130]Liang G W, Zhou J M, Huang X Z. Output characteristics analysis of thermoelectric generator based on accurate numerical model[C]//Power and Energy Engineering Conference (APPEEC). Chengdu,2010:1-4.
    [131]Lampinen M J. Thermodynamic analysis of thermoelectric generator[J]. Journal of Applied Physics,1991,69(8):4318-4323.
    [132]陈金灿,严子浚.半导体温差发电器性能的优化分析[J].半导体学报,1994,15(2): 123-129.
    [133]高远,蒋玉思.单级半导体制冷器设计中常用公式的推导[J].广东有色金属学报,2003,13(2):130-135.
    [134]Nuwayhid R Y, Moukalled F. Evolution of power and entropy in a temperature gap system with electric and thermoelectric influence[J]. Energy Conversion and Management,2003, 44(5):649-667(19.
    [135]Gao M, Rowe D M. A novel principle allowing rapid and accurate measurement of a dimensionless thermoelectric figure of merit[J]. Measurement Science and Technology, 2001,12(8):1261-1262.
    [136]Yu J L, Wang B M. Enhancing the maximum coefficient of performance of thermoelectric cooling modules using internally cascaded thermoelectric couples[J]. International Journal of Refrigeration,2009,32(1):32-39.
    [137]Agrawal D C, Menon V J. The thermoelectric generator as an endoreversible carnot engine[J]. Journal of Physics D:Applied Physics,1997,30(3):357-359.
    [138]李茂德,屈健,李玉东,等.接触效应对小型半导体温差发电器性能的影响[J].半导体学报,2005,26(12):2440-2444.
    [139]Gao M, Rowe D M. Ring sructured thermoelectric module[J]. Semiconductor Science and Technology,2007,22(8):880-883.
    [140]任德鹏,贾阳.温差发电器工作特性的数值研究[J].航天器工程,2008,17(4):56-61.
    [141]张韬,周孑民,黄学章,等.半导体温差发电器匹配负载的热电耦合分析[J].电源技术,2010,34(10):1084-1086.
    [142]胡红军,杨明波,张丁非.ANSYS10.0材料工程有限元分析实例教程[M].北京:电子工业出版社,2008.
    [143]梁高卫,周孑民,黄学章,等.串联连接半导体温差发电器的解析模型[J].江苏大学学报(自然科学版),2011,32(3):314-319.
    [144]张华俊,陈浩,王俊,等.半导体热电堆串、并联发电性能及热电堆复现性研究[J].太阳能学报,2001,22(4):394-397.
    [145]李洪,梅炽,王前普,等.铝电解槽壳散热模型[J].中国有色金属学报,1996,6(4):56-60.
    [146]李新.应用Icepak软件对肋片散热器进行优化设计[J].煤矿机械,2012,33(6):49-50.
    [147]丁科,陈月顺,童智能,等.有限单元法[M].北京:北京大学出版社,2006:1-8.
    [148]胡庆贤.穿孔等离子弧焊接温度场的有限元分析[D].济南:山东大学,2007:14-20.
    [149]赵奎,袁海平.有限元简明教程[M].北京:冶金工业出版社,2009:1-4.
    [150]周昌玉,贺小华.有限元分析的基本方法及工程应用[M].北京:化学工业出版社,2006:1-4.
    [151]谢元峰.基于ANSYS的焊接温度场合应力的数值模拟研究[D].武汉:武汉理工大学,2006:10-28.
    [152]张韬.铝电解槽侧壁散热温差发电装置设计与仿真优化[[)].长沙:中南大学,2010:1-77.
    [153]胡广新.翅片式与微流道式散热器散热特性及应用研究[D].成都:电子科技大学,2010.
    [154]刘慧云,黄仁果,刘念.铝电解槽磁场对人的伤害浅谈[J].北京电力高等专科学校学报,2009(4):169-170,14.
    [156]阮绍勇.320kA预焙阳极铝电解槽磁场分布研究[J].有色金属设计,2010,37(2):17-20,35.
    [157]梁高卫,周孑民,黄学章,等.半导体温差发电器的性能测试[C]∥高等学校工程热物理第十五届全国学术会议.天津,2009:1-4.
    [158]刘鹤,李增耀,胡子君,等.气凝胶单元体模型结构参数与等效热导率研究[J].工程热物理学报,2012,33(6):1039-1042.
    [159]Akimov Y K. Fields of application of aerogels (review)[J]. Instrument and Experimental Techniques,2003,46(3):287-299.
    [160]徐冰.铝电解槽壁余热温差发电的实验研究[D].长沙:中南大学,2010:1-85.
    [161]Jr F K, Lasky R. Die attach in lead frame packages[J]. Advance Packaging,2004(4): 33-35.
    [162]胡红军,杨明波,张丁非.ANSYS10.0材料工程有限元分析实例教程[M].北京:电子工业出版社,2008:116-119.
    [163]何允平.铝电解三十年的技术进展[J].轻金属,1984(10):14-16.
    [164]罗罗泰姆,克望德,邱竹贤.霍尔-爱鲁法在最近五十年内的重要进展[J].轻金属,1995(11):23-28,62.
    [165]冯乃祥,孙阳,刘刚.铝电解槽热场、磁场和流场及其数值计算[M].沈阳:东北大学出版社,2001:76-89.
    [166]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用,2005(4):38-40.
    [167]胡钢,许淳淳,袁俊刚.奥氏体304不锈钢形变诱发马氏体相变与磁记忆效应[J].无损检测,2008,30(4):216-219.
    [168]熊家强,谢刚,唐广波.304不锈钢热变形过程奥氏体动态再结晶及流变应力研究[J].云南冶金,2008,37(5):37-42.
    [169]秦国彤,门薇薇,魏微,等.气凝胶研究进展[J].材料科学与工程学院,2005,23(2):293-296.
    [170]高庆福,张长瑞,冯坚,等.氧化硅气凝胶隔热复合材料研究进展[J].材料科学与工程学院,2009,27(2):302-306,22.
    [171]高秀霞,张伟娜,仁敏,等.硅气凝胶的研究进展[J].长春理工大学学报,2007,3(1):86-91.
    [172]Ameen B K, Rajasekar K, Rajasekharan T. The effect of heat-treatment on the physico-chemical properties of silica aerogel prepared by sub-critical drying technique[J]. Jorunal of Sol-gel Science and Technology,2008,45(1):9-15.
    [173]韩宁,王世萍,谢少英.强迫对流散热器优化设计[J].计算机工程与科学,2001,23(4):66-68.
    [174]Knight R W, Hall J D, Goodling S J, et al. Heat sink optimization with application to microchannels[J]. IEEE Tranactions on Components, Hybrids, and Manuf,1992,15(5): 832-842.
    [175]Knight R W, Goodling J S, Hall D J. Optimal thermal design of forced convection heat sinks-analytical[J]. Journal of Electronic Packaging,1991(113):313-321.
    [176]李玉宝,王建萍,吕召会.矩形肋片散热器几何参数对散热的影响分析[J].电子机械工程,2012,28(2):4-7.
    [177]付桂翠,高泽溪.影响功率器件散热器散热性能的几何因素分析[J].电子器件,2003,26(4):354-356,46.
    [178]Lee S. Optimum design and selection of heat sink[J]. IEEE Transactions on Components, Packaging, and MA,1995,8(4):812-816.
    [179]陈建芳,张双喜.散热器矩形肋片的散热量数值计算与结构优化[J].中国建筑金属结构,2004(4):24-26.
    [180]张海泉,田向宁,姜永成.建立板式换热器传热准则方程方法的对比[J].煤气与热力,2011,31(12):19-22.
    [181]谢德仁.电子设备热设计[M].南京:东南大学出版社,1989:86-97.
    [182]陈晓龙,施庆生,邓晓卫.概率论与数理统计[M].南京:东南大学出版社,2011:97-125.
    [183]陈荣江,孙用明,焦光利.概率论与数理统计[M].北京:中国传媒大学出版社,2008.85-103.
    [184]郭俊钊.太阳能LED路灯充放电控制器的设计[J].电脑与电信,2009(8):67-69.
    [185]姚鹏,万红艳.我国电解铝能源效率测度及空间差异分析[J].工业技术经济,2012(9):72-79.
    [186]王祝堂.中国电解铝能耗逐年下降[J].轻金属,2011(9):60.
    [187]孔明.2011年铝市场回顾及2012年展望[J].有色金属工程,2012(1):14-16.
    [188]陆静超.“十二五”时期我国新能源产业发展对策探析[J].理论探讨,2011(1):95-98.
    [189]吴疆.发展新能源:三思而后行[J].高科技与产业化,2010(1):55-57.
    [190]华凌.创新型热电材料转换效率创世界纪录[N].科技日报.2012-09-21(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700