韭菜迟眼蕈蚊生物学特性及抗寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
韭菜迟眼蕈蚊是葱蒜类蔬菜的重要害虫,幼虫俗称韭蛆,尤喜食韭菜。由于其生活习性特点和缺乏有效的防治药剂,防治难度较大,对韭菜生产造成严重损失,同时因生产中使用高毒农药对食用韭菜的安全性也构成威胁。韭菜迟眼蕈蚊是我国的特有害虫,1990年以前主要进行了简单的生物学特性观察和田间发生规律研究,但试验简单且缺乏系统性,不同研究结果之间存在一定差异;而1990年以后的研究多集中在有效药剂的筛选和防治技术上,但有效的防治方法仍很少。总体上,我国对韭菜迟眼蕈蚊的研究相当匮乏,特别对其基本的生物学特性研究严重不足,这也是造成目前韭蛆防治难的主要原因之一。
     保持适宜的湿度是室内饲养韭菜迟眼蕈蚊的关键,本论文利用培养皿滤纸保湿和琼脂保湿均能获得大量试虫,其中用2.5%琼脂和滤纸两种保湿方法相结合,可明显减少操作时间和病原菌的侵染,提高幼虫存活率。
     在15℃、20℃、25℃、30℃四个温度梯度下研究了韭菜迟眼蕈蚊的生物学特性。韭菜迟眼蕈蚊各虫态的发育历期随温度的升高而缩短,15℃全世代的发育历期最长为72.36天,而30℃仅为21.63天,20℃和25℃分别为27.24天和23.85天;韭菜迟眼蕈蚊卵、幼虫、蛹、卵-蛹的发育起点温度分别为5.85、8.72、3.34、7.8℃,有效积温分别为77.68、267.22、75.72、418.2日·度;韭菜迟眼蕈蚊成虫寿命呈随温度升高而逐渐缩短的趋势,雄虫寿命在15℃下长达7.73天,而在30℃只有4.70天,雌虫寿命在20℃时最长为11.65天,在300℃最短,仅存活4.13天,除30℃外其它温度雌虫寿命均长于雄虫;单雌产卵量在20℃最高,平均为159.86粒,30℃最低为114.73粒,温度过高或过低都不利于其产卵;建立了四个温度下韭菜迟眼蕈蚊实验种群生命表,温度对一龄幼虫和蛹的存活率影响较大,20℃~25℃是韭菜迟眼蕈蚊的最适生长温度,种群趋势指数最高,且具有较高的内禀增长率,各温度下的平均存活率约为60%。
     连续观察同一堆卵发育至成虫羽化,结果显示,在11堆卵中全部发育成雌性个体的占36.3%,全部发育为雄性个体的45.4%,而雌雄个体都有的只占18.2%。室内连续观察了五代雌雄性比情况,各代的雌雄性比分别是1.36、1.31、0.7、0.84、1.39,说明局部的性比失调对整个种群的影响不大。影响雌雄性比失调的因素很多,对不同雌雄配对后代雌雄性比的统计结果表明,雌雄按1:1、2:1、3:1和4:1比例配对后,后代的雌雄比例范围在2.28~4.11之间,雌虫所占比例偏高,这种现象可能对种群的繁衍更为有利。
     韭菜迟眼蕈蚊三龄幼虫的过冷却点及冰点分别为-14.05℃、-11.07℃,四龄幼虫分别为-13.98℃、-9.94℃,三龄与四龄之间无显著性差异。蛹的过冷却点和冰点较高,分别为-11.6℃、-8.08℃,说明幼虫比蛹更耐低温。
     韭菜迟眼蕈蚊幼虫经不同时间低温处理后均得到七条酯酶同工酶带,低温没有导
    
    致酶带的增减,但个别酶带出现活性显著增强的现象,表明低温对酷酶同工酶带具有
    诱导作用。
     韭菜迟眼覃蚊四龄幼虫经不同时间低温处理后,对其体内的海藻糖、糖原和总糖
    含量进行了测定。结果显示,低温处理后幼虫体内海藻糖含量显著增加,且随处理时
    间的延长含量逐渐升高。低温处理后糖原含量下降,1天后又开始上升,但总体上均
    低于20℃对照含量。表明海藻糖是主要抗寒物质,低温下糖原可以转化为海藻糖。
Bradysia odoriphaga Yang et Zhang is one of the most important insect pests on edible alliaceae and its most favor host plant is Chinese leek. The local name of its larvae is root maggot. It is difficult to control the pest because of its life behavior and limited number of insecticides that can be used safely on crops. Therefore, great damages have been caused to leek production. What is more serious that many farmers turn to apply insecticides with high toxicities to mammals, which leads to high level of insecticide residue in commercial leek product. And few consumers would like to risk life to buy leek product up to now. B. odoriphaga is a insect specifically to China. Before 1990, simple biological characteristics and occurrence law were investigated. But no systematically data were obtained, and usually there was significant difference between different results. After 1990, the research work on the insect was focused on selecting effective insecticides and control methods, but still no effective control strategy was formed. In general we know little about the insect, which is one of the main reasons of difficult control, and there is much research work need to be done.
    To keep a feasible humidity is the most crucial factor to rear B. odoriphaga in laboratory successfully. In present study keeping humidity by moistened filter paper or 2.5% agar in Petri dish can both obtain large number of experimental insects. Combing two methods can save labor and decrease the possibility of infection of bacteria obviously, and at the same time increase the survival rate of the larvae.
    The biological characteristics of B. odoriphaga at 15℃, 20℃, 25℃ and 30℃ were investigated. Results showed that the developmental period of different stages was shortened with the increased temperature. The longest development period of the whole generation was found at 15℃, which was 72.36 days. And the shortest was at 30℃, which was 21.63 days. Others at 20℃ and 25℃ were 27.24 days and 23.85 days respectively. The developmental zero of egg, larva, pupa, adult and egg-pupa of B. odoriphaga was 5.85 ℃, 8.27℃, 3.34℃ and 7.8℃. And the effective accumulative temperature was 77.68, 267.22, 75.72 and 48.2 day temperature respectively. The lifespan of B. odoriphaga adult was shortened with the increased temperature too. The longevity of male adult at 15℃ was 7.73 days, however it was only 4.70 days at. The lifespan of female was 11.65 days at 20℃, and shortest was 4.13 days at 30℃. As a whole, the lifespan of female was longer than that of male adult expect the 30℃ condition. The maximum number of eggs laid by per female was 159.86 at 20℃, the least was 114.73 at 30℃. Both over high and over low temperature were not helpful to oviposition. The life tables of B. odoriphaga at 15℃, 20℃, 25℃ and
    
    
    
    30℃ were established. Results indicated that temperature had great effect on the survival rate of the first instar larvae. The most favorable range of development temperature was 20 ℃ to 25℃, during which there was the highest population trend index and higher innate capacity of natural increase. The average survival rate was 60% at the four different temperatures.
    A continuous observation of 11 piles of egg developing from hatching to eclosion was conducted. Results showed that the rate of egg file developing into entire female was 36.3%, the male was 45.4%, and some male and some female was 18.2%. The sexual ratio of five continuous generations was also observed. The ratio of female to male were 1.36, 1.31, 0.84 and 1.39 respectively. These results indicated that the sexual ratio disorder in part of population had no great effect on the whole population.
    The supercooling points and ice points of 3rd instar larvae of B. odoriphaga were -14.05℃ and -11.07℃, and the fourth instar larvae were -13.98℃ and -9.94℃. There was no significant difference between 3rd and 4th instar larvae. But the supercooling point and ice point of pupa is higher than 3rd and 4th instar larvae, which were -11.6℃ and -8.08 ℃ respectively. The
引文
[1]杨集昆,张学敏.韭菜蛆的鉴定迟眼蕈蚊属二新种.北京农业大学学报,1985,11(2):153-156.
    [2]叶家栋.黄脚蕈蝇.农业科学通讯,1958,(6):342.
    [3]潘秀美,夏玉堂.韭菜迟眼蕈蚊发生动态及其防治研究.植物保护,1993,19(2):9-11.
    [4]何振昌主编.中国北方农业害虫原色图鉴.辽宁科技出版社,1997:308.
    [5]印懋馨.韭菜蛆的防治.四川农业科技,1985,(6):28-29.
    [6]腾玲,童贤明.杭州市郊韭菜迟眼蕈蚊(韭蛆)的发生与防治.中国蔬菜,2000,(6):39-40.
    [7]丁锦华,徐雍皋,李希平.植物保护词典.南京:江苏科学技术出版社,1995,648.
    [8]冯惠琴,郑方强.韭蛆发生规律与防治研究.山东农业大学学报,1987,18(1):71-80.
    [9]张学敏,杨集昆,谭琪.食用菌病虫害防治.北京:金盾出版社.1994.
    [10]师迎春,郑建秋,张芸,沈国印.植保技术与推广,2001,21(8):18-19.
    [11]翟旭,仲济学,郭大鸣.韭菜迟眼蕈蚊初报.昆虫知识,1988,(4):212-215.
    [12]夏立.大蒜田韭菜迟眼蕈蚊的发生与防治.河南农业科技,1999,(10):28.
    [13]曹清莲.天津韭蛆发生规律及防治的研究.植物保护,1985,11(5):10-11.
    [14]薛明,袁林,徐曼琳.韭菜迟眼蕈蚊成虫对挥发性物质的嗅觉反应及不同杀虫剂的毒力比较,2002,4(3):50-56.
    [15]张桂芳,崔凤娥.菜田地蛆的种类及其防治.河北农业科技,1989,(6):15-16.
    [16]韩学俭.韭蛆危害习性及防治方法.农家科技,1996,(10):17.
    [17]樊继贵,王金泗,韩宝连.韭菜迟眼蕈蚊的防治技术.蔬菜,2000,(1):20.
    [18]张淑莲,陈志杰.保护地无公害韭菜病虫防治技术.西北园艺,1999,(6):37-38.
    [19]杨怀文,张刚应.异小杆线虫D1对迟眼蕈蚊侵染力的研究.生物防治通报,1990,6(3):110-112.
    [20]张宝恕,王学利,陈晓文,李来友.昆虫病原线虫防治韭菜根蛆的研究.天津农林科技,1994,(2):4-6.
    [21]成学美,董家兴,杨宪法,刘丽凤,赵乃福.应用苏云金杆菌防治韭蛆效果初报.植保技术与推广,1998,18(4):21.
    [22]刘国琦,蒋如璋,张自立.苏云金杆菌以色利亚种cryIVB基因在E.coli中的高表达.中国生物化学与分子生物学报,1999,15(2):215-218.
    [23]谷希树,白义川,胡学雄.无公害韭菜生产基地建设及韭蛆防治技术.面向21世纪的植物保护发展战略论文集,1238.
    [24]罗万春,慕卫,张新.乐斯本防治韭蛆的田间药效试验.植保技术与推广,1998,18(5):42-43.
    
    
    [25]张寿江,王绍敏,董英昌,张四海.48%地蛆灵乳油防治试验.山东农业科学,2000,(2):30-31.
    [26]杨海珍,张全力,李双悦.几种杀虫剂防治韭菜根蛆田间药效试验.农药,1999,38(4):24-25.
    [27]洪文英,黄怡弘,陈兵,董长明.防治韭菜迟眼蕈蚊的药效试验.浙江农业科技,1999,(3):147-148.
    [28]贾海民,党志红,高占林,潘文亮.韭菜迟眼簟蚊室内毒力测定方法.植物保护,2000,26(5):35.
    [29]党志红,贾海民,高占林,潘文亮.韭菜迟眼簟蚊的室内人工饲养技术.昆虫知识,2000,37(5):308.
    [30]韩召军,王荫长,尤子平.陆生昆虫的抗寒性机制.昆虫知识,1989,26(1):34-42.
    [31]景晓红,康乐.昆虫耐寒性研究.生态学报,2002,22(12):2202-2207.
    [32]中国农业百科全书,昆虫卷.北京:农业出版社,1990.
    [33]孙绪艮,郭慧玲,李恕廷,王兴华.桑尺蠖越冬幼虫的耐寒性研究.蚕业科学,2000,26(3):129-133.
    [34]孙福在,邢炜.冰核细菌对光肩星天牛幼虫促冻杀虫的初步研究.林业科学研究,1997,10(1):96-99.
    [35]冯玉香,何维勋.细菌冰核提高印度谷螟过冷却点的研究.昆虫学报,1996,39(1):53-57.
    [36]张敏.冰核真菌成冰生物学特性研究.中国农业科学,1998,31(6):50-55.
    [37]杨丽,孙福在,康耀卫.冰核活性细菌的冰核基因克隆及其在大肠杆菌中的表达.中国农业科学,1993,26(5):88.
    [38]李学荣.昆虫人工诱导滞育及其利用的研究进展.森林病虫通讯,1998,1:35-37.
    [39]黄国洋,王荫长,尤子平.黄地老虎耐寒性机理初探.浙江林学院学报.1990,7(2):140-146.
    [40]景晓红,郝树广,康乐.昆虫对低温的适应——抗冻蛋白研究进展.昆虫学报,2002,45(5);679-683.
    [41]吴孔明,郭予元.新疆棉铃虫的抗寒性研究.植物保护学报,2000,27(1):23-26.
    [42]江幸福,罗礼智,李克斌,赵廷昌,胡毅.甜菜夜蛾抗寒与越冬能力研究.生态学报,2001,21(10):1575-1582.
    [43]徐汝梅.昆虫种群生态学.北京:北京师范大学出版社,1987.
    [44]尚玉昌,蔡晓明.普通生态学(上册).北京:北京大学出版社出版,1992.
    [45]张孝羲.昆虫生态及预测预报(第二版).北京:中国农业出版社,1997.
    [46]丁岩钦.昆虫种群数学生态学原理与应用.北京:科学出版社出版,1980.
    [47]董钧锋,王琛柱,钦俊德.昆虫性比失调因子及其作用机理.昆虫知识,2001,38(3):173-176.
    [48]秦启联,王金耀,徐世新,郭建英.影响中红侧沟茧蜂后代性比的因素.中国生物防治,2001,17(4):155-158.
    [49]南京农学院主编.昆虫生态及预测预报.农业出版社,1985:56-60.
    [50]彭统序.同工酶在昆虫分类和进化研究中的意义.昆虫知识,1986,23(4):178-183.
    [51]李云寿,赵善欢.不同寄主植物对小菜蛾羧酸酯酶活性的影响.山东农业大学学报,1996,27(2):147-151.
    [52]谭维嘉,梁革梅.对酯酶同工酶染色方法的一点改进.植物保护,23(2):38
    
    
    [53] 王学忠,李菊升,王丕玉.微小按蚊种团酯酶同工酶比较研究.实用寄生虫病,2000,1
    [54] 郭晓霞,郑哲民.菜粉蝶不同发育期酯酶同工酶的比较研究.昆虫学报,2002,45(3):401-403.
    [55] 张龙翔等.生化实验方法与技术.北京:人民教育出版社,1981,94-111.
    [56] 阎龙飞,李明启.基础生物化学.北京:农业出版社,1995.
    [57] 高夕全,夏凯,周燮.温度胁迫对稻胚酯酶同工酶、蛋白质和内源脱落酸(ABA)水平的影响.安徽农业技术师范学院学报,1999,13(4):12-16.
    [58] 宋良图,郭书普.酯酶同工酶和过氧化物同工酶与油菜抗寒性的关系.安徽农业科学,1995,23(4):333-335.
    [59] 王孝宣,李树德,东惠茹,高振华,戴善书.低温对番茄苗期和开花期几种同工酶的影响.中国蔬菜,1997(3):1-3.
    [60] 江幸福.甜菜夜蛾越冬、飞行和生殖能力的变异,硕士论文,1999,农科院植保所.
    [61] 冯慧.昆虫生物化学分析法.北京:农业出版社出版,1989.
    [62] 李克斌,罗礼智.粘虫幼虫密度对成虫能源物质含量的影响.昆虫学报,1998,14(3).
    [63] Andorfer C A, Duman J G. Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid beetle denroides Canadensis.J. Insect Physiol., 2000, 46: 365-372.
    [64] Cahill M,Gorman K,Day S et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci(Homoptera:Aleyrodidae). Bull Entomol. Res. 1996, 86: 343-349.
    [65] Chart S L, Miao M, Fletcher G L,et al. The role of CCAAT/en hancer binding protein alpha and a protein that binds to the activator protein lsitein the regulation of liver specific expression of the winter flounder antifreeze protein gene.Eur J Biochem, 1997,247:44-51.
    [66] Davies P L, Roach R H, Hew C L. DNA sequence coding for an antifreeze protein precursor from winter flounder. ProcNatl Acad Sci USA,1982,79:335-339.
    [67] Devries A L, Wohlschlog D E. Freezing resistance in some antartic fishes. Science,1969,163:1073-1075.
    [68] Devries A L. Glyco proteins as biological antifreeze agents in antartie fishes. Science, 1971,172:1152-1155.
    [69] Duman J G, Wu D W, Olsen T M, et al. Thermal-hyseresis proteins. Adv.Low-temp.Biol.. 1993, 2: 131-182.
    [70] Duman J G, Xu L, Neven L G, et al. Hemolymph proteins involved in insect subzero-temperature tolerance ice nuclear and antifreeze proteins. Insects at low temperature.New York: Champman and Hall. 1991, 94-127.
    [71] Goto M, Takahashi K, Suzuki C.Ecological study on the barnyard grass stem borer, Enosima Leucotaeniella(Lepidoptera:Pyralidae) Ⅷ. Seasonal changes of carbohydrate contents in overwintering larvae. App. Entomol. Zoo. 1993, 28(4): 417-421.
    [72] Goto M, Takahashi K, Suzuki C.Ecological study on the barnyard grass stem borer, Enosima Leucotaeniella(Lepidoptera:Pyralidae)Ⅸ.Effect of temperature on carbohydrate contents in diapausing and early post-diapausing larvae. App. Entomol. Zoo. 1993, 28(4): 433-437.
    [73] Graham L A, Liou Y C, Walker V K, et al. Hyperactive antifree protein from beetles. Nature,1997, 388: 727-728.
    [74] Hanson S M, Craig G B Jr. Relationship between cold hardiness and supercooling point in Aedes Albopicrus eggs. J. American. Mosq.Control Assoc.,1995,11:35-38.
    
    
    [75] Hayakawa Y, Chino H, et al. Phosphofhictcking glycorel or trehalcae accumulation in diapausing insects. Insect Biochem.,1982,12(6) :639-642.
    [76] Hayes P H, Scott G K, NgNFL.et al. Cystine rich typeⅡ antifreeze protein precursor is initiated from the third AUG codon of its mRNA. J Biochem. Chem, 1989, 264: 18761-18767.
    [77] Hew C L, Kao M H, So Y P. Presence of crystine-containing antifrees proteins on the spruce budworm, Choristonature fumiferana.Can.J.Zoo., 1983, 61: 2324-2328.
    [78] Horwath K L, Easton C M, Poggoali T J.Tracking the profile of a specific antifeeze protein and its contribution to thermal hysteresis activity in cold hardy insects. Eur.J.Entomo., 1996, 93: 419-433.
    [79] Hsiao K, Cheng C H C, Fernandes I E,et al. An antifreeze glycopeptide gene from the Antarctic codNo to the niacori ice psneglecta encodes a poly protein of high peptide copy number. Proc Natl Acad Sci USA,1990, 87:9265-9269.
    [80] Jiang Y Q, Chen X F, Liu P T. Study on antifreeze gene cDNA of Pseudopleuro nectsyo kohamae and its expression in E.coli. Acta Genetsin, 1990,17:201-202.
    [81] Jin Q X, Chen L J, Zuo Z Y. Comparison of cold tolerance among different anemia strains. Acta Zoologica Sinica, 1999,45(1) :32-39.
    [82] Kelty J D, Lee R E Jr. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J.Insect Physiol. 1999,45:719-726.
    [83] Kristiansen E, Pedersen S, Ramlov H. Antifreeze activity in the cerambycid beetle Rhagium inquisitor. J.Comp.Physiol. (B), 1999, 169: 55-60.
    [84] Leather S R, Walters K F A, Bale J S. The Ecology of Insect Overwintering . Cambridge :Cambridge University Press, 1993.
    [85] Lee R E Jr, Chen C P, Denlinger D L.A rapid cold-hardening process in insects. Science,1987,238:1415-1417.
    [86] Lee R E Jr, Denlinger D L. Insects at low temperature .Chapman and Hall. New York, 1991
    [87] Lee R E Jr. Insect cold hardiness:to freeze or not to freeze .Bioscience. 1989,39:308-313.
    [88] Lee R E. et al. Ice-nucleating active bacteria decrease the cold-hardiness of stored gralo insects L Econ.Entomol. 1992,72:476-478.
    [89] Lee R E. Prindples of insect low temperature tolerance (chapter 2 in "Insect at Low Temperature"edlted by R. E.Lee). 1991,17-46.
    [90] Lindowse. Competitive exclusion of epiphytic bacteria by ice-mutants of Pseudomona ssyringae. Appland Environ Microbiol,1987, 53:2520-2527.
    [91] McDonald J R.Head J Bale J S,et al.Cold tolerance overwintering and extablishment potential of Thrips palmi.Physial Entomol,2000,25:159-166.
    [92] Milonas P G, Savopoulou-Soultani M.Cold hardiness in diapause and non-diapause Larvae of the summer fruit toririx, Adoxophyes orana (Lepidoptera:Tortricidae). Eur. J. Entomol., 1996, 96: 183-187.
    [93] Olsen T M, Duman J G. Maintenance of the super-cooled state in the gut fluid of overwintering pyrochroid beetle larvae. Dendroides Canadensis:role of ice nucleators and antifreeze proteins. J. Comp. Physiol.(B), 1997,167:114-122,
    [94] Olsen T M, Duman J G.. Maintenance of the super-cooled state in the gut fluid of overwintering pyrochroid beetle larvae,Dendroides Canodensis:role of hemolymph ice nucleators and antifreeze proteins. J.Comp. Physiol.1997,167:105-113.
    [95] Phillips S W, Bale J S,Tarchell G M. Overwintering adaptations in the lettuce root aphid
    
    Pemphigus bursarium J.Insect Physiol.2000,46:353-363.
    [96] Scheepmaker J WA , Geels FP, Rutjens A J , Smits P,H,et al. Comparison of the efficacy of entomopathogenic nematodes for the biological of the mushroom pests Lycoriella auripila (Sciaridae) and Megaselia halterata (Phoridae). Biocontrol Science and Technology 8: 277-288, 1998.
    [97] Sjursen H, Somme L. Seasonal changes in tolerance to cold and desiccation in Phauloppiap.(Acari,Oribatida)from fines, Nprway. J. Insect Physiol. 2000, 46: 1387-1396.
    [98] Somme L. Supercooling and winter survival in terrestrial arthropods. Comp.Biochem.Physiol.1982,73(4) :519-543.
    [99] Somme L. The history of cold hardiness research in terrestrial arthropods , Cryoletters, 2000,21:289-296.
    [100] Somme L. The physiology of cold hardiness in terrestrial arthropods , Eur. J.Entomol. 1999,96 :1-10.
    [101] Strong-Gunderson J M, et al. Logestion of ice nucleating active bacteria increases the supercooling point of the lady beetle Hippodarnia convergens L Insect Physiol. 1990, 35:153-157.
    [102] Tsumuki H et al. An ice-nucleating active fungus isolated from the gut of the rice stem borer Chilo suppressalis Walker (Lepidoptera:Pyralidae), Journal of Insect Physiology, 1992,38(2) : 119-125.
    [103] Ydergaard S., Enkegaard A, Brodagaard H,F. The predatory mite Hypoaspis miles temperature dependent life table characteristics on a diet of sciarid ,Bradysia paupera and B.tritici Entomologia Experimentalis et Applicata 85:177-187,1997.
    [104] Yi-Ping Li, Sumiko oguchi, Goto M.Physiology of diapause and cold hardiness in overwintering pupae of the apple leaf miner Phyllonorycter ringoniella in Japan. Physiology Entomology, 2002, 27:92-96.
    [105] Zachariassen K E, Husby J A . Antifreeze effect of thermal hysteresis agents proteins highly supercooled insects. Nature, 1982:285-287.
    [106] Zachariassen K E.Physiology of cold tolerance in insects.Physiol.Rev. 1985, 65:977-832 .
    [107] Zhao Y X.,Kang L. Cold tolerance of the leafminer Liriomyea sativae (Dipt.:Agromyzidae).J. Appl.Entomol.,2000, 124: 185-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700