ZnO基薄膜晶体管的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO基薄膜晶体管因其在平板显示器领域的广泛应用前景而吸引了越来越多的关注和研究。由于ZnO中存在O空位、Zn填隙等缺陷,因此常规制备的未掺杂ZnO趋向于具有较大的载流子浓度,这使得制备的ZnO-TFT关态电流较大,易为耗尽型晶体管。因此ZnO基TFT的研制中需要解决的问题之一就是控制ZnO有源层的载流子浓度。针对这一问题,本论文主要制备了ZnO基TFT,并通过优化薄膜的沉积条件,提高ZnO基TFT的电学性能。主要研究工作如下:
     1、利用射频磁控溅射在石英衬底上沉积了ZnO薄膜,研究了ZnO薄膜厚度与薄膜质量的关系。以SiO2/p-Si为衬底制作了ZnO-TFT,研究了ZnO薄膜厚度,退火温度对器件性能的影响,并探讨了不同的沟道宽长比对器件开态电流和迁移率的影响。实验结果表明,ZnO厚度为40nm,退火温度为950℃时,器件性能最好,阈值电压为-2.4V,迁移率为27.5cm2/V s,开关比为7×103,关态电流为8.33×10-7A。发现随着沟道宽长比的增加,器件的开态电流增加,迁移率减小。
     2、利用射频磁控溅射在石英衬底上沉积ZnO:Ga (GZO)薄膜,研究了衬底温度和氧气分量对GZO薄膜性能的影响。在此基础上,以SiO2/p-Si为衬底制备了GZO-TFT,研究了衬底温度,氧氩比,退火温度和GZO薄膜厚度对TFT电学性能的影响,探索了GZO-TFT随时间的稳定性。实验结果表明,当衬底温度为500℃,氧气分量为1SCCM,退火温度为800℃,GZO厚度为35nm时,器件性能最好,阈值电压为14.7V,迁移率为10.13cm2/V s,开关比为1.07×106,关态电流为1.34×10-9A。未采取任何保护措施的GZO-TFT,在8个月后电学性能变化很小,但在12个月后,电学性能发生了严重退化,退化主要与空气中的水汽有关。
     3、利用rf-MBE在石英衬底和SiO2/p-Si衬底上生长了MgZnO薄膜,研究了衬底温度、Mg源温度和MgO缓冲层厚度对MgZnO薄膜性能的影响,并在此基础上制备了MgZnO-TFT,研究了MgO缓冲层厚度对MgZnO-TFT电学性能的影响。实验结果表明,加入4nm厚的MgO缓冲层的MgZnO-TFT的电学性能最好,其阈值电压为28.6V,迁移率为1.85cm2/Vs,开关比大于106,关态电流小于10-10A。
ZnO-based thin film transistors (TFTs) have attracted much attention due to the wide range of application in driving flat panel displays. However, ZnO films tend to display high carrier concentration in the as-prepared state due to the existence of Vo and Zni, even in nominally undoped films, leading large off-current in ZnO-based TFTs and making they operate in depletion mode. Thus, one of the main problems in ZnO-based TFTs is the control of the carrier concentration in the active layers. In this doctoral dissertation, ZnO-based TFTs were fabricated and the electrical properties of the TFTs were improved by optimize the depotion condition. The details are as follows:
     The ZnO thin films were deposited on quartz and SiO2/p-Si substrates by radio frequency magnetron sputtering and ZnO-TFTs were fabricated on SiO2/p-Si substrates. The effect of ZnO films' thickness on the optical properties of the films and the effect of ZnO films'thickness and annealing temperature on the electrical properties of the TFTs were investigated. The influence of W/L on the mobility of TFTs was also discussed. The results indicated that the transistor with an40nm thick ZnO and annealed at950℃exhibited the best performance, with a threshold voltage of-2.4V, a field effect mobility of27.5cm2/V s, an on/off ratio of7×103, and an off-current of8.33×10-7A. The on current increased and the mobility decreased as the W/L increased.
     The ZnO:Ga (GZO) thin films were deposited on quartz and SiO2/p-Si substrates by radio frequency magnetron sputtering and GZO-TFTs were fabricated on SiO2/p-Si substrates. The effect of substrate temperature and sputtering Oxygen flow on the optical properties of the films and the effect of substrate temperature, sputtering Oxygen flow, annealing temperature and GZO films'thickness on the electrical properties of the TFTs were investigated. The time-dependent instability of the TFT was studied. The results indicated that when the substrate temperate was950℃, Oxygen flow was1SCCM, annealing temperature was800℃, and the GZO films'thickness was35nm, the transistor exhibited the best performance, with a threshold voltage of14.7V, a field effect mobility of10.13cm2/V s, an on/off ratio of1.07×106, and an off-current of1.34×10-9A. The transistor stored in ambient air without any protection showed little difference after8months, but degenerated after12months, the degeneration was main related with the humidity in air.
     The MgZnO thin films were deposited on quartz and SiO2/p-Si substrates by rf-MBE and MgZnO-TFTs were fabricated on SiO2/p-Si substrates. We investigated the effect of substrate temperature, Mg temperature and MgO buffer layers' thickness on the optical properties of the films and the effect of MgO buffer layers' thickness on the electrical properties of the TFTs. The results indicated the MgZnO TFT with4nm MgO buffer layer exhibit the best performance, with a threshold voltage of28.6V, a field effect mobility of1.85cm2/V s, an on/off ratio of above106and an off-current lower than10-10A.
引文
[1]Lilienfeld J. E.. Device for controlling electric current. United States Patent.1900018. 03/07/1933.1-7.
    [2]Weimer P. K... The TFT a new thin-film transistor. Proceedings of the Institute of Radio Engineers 1962,50, (6),1462-1469.
    [3]Shallcross F. V.. Cadmium selenide thin-film transistors. Proceeding of the IEEE 1963,51, (5), 851.
    [4]Weimer P. K.. A p-type tellurium thin-film transistor. Proceedings of the IEEE 1964,52, (5), 608-609.
    [5]Kunig H. E.. Analysis of an InAs thin film transistor. Solid-State Electronics 1968,11, (3), 335-342.
    [6]Koelmans H., Graaff H. C. D.. Drift phenomena in CdSe thin film FET's. Solid-State Electronics 1967,10, (10),997-1000, IN5-IN6,1001-1005.
    [7]Waxman A., Mark G.. Improved stability in Al2O3 CdSe thin-film transistor. Solid-State Electronics 1969,12, (10),751-764.
    [8]Lechner B. J., Marlowe F. J., Nester E. O., Tults J.. Liquid crystal matrix display. Proceedings of the IEEE 1971,59,(11),1566-1579.
    [9]Brody T. P., Asars J. A., Dixon G. D.. A 6×6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Transaction on Electron Devices 1973,20, (11),995-1001.
    [10]LeComber P. G, Spear W. E., Ghaith A.. Amorphous-silicon field-effect device and possible application. Electronics Letters 1979,15, (6),179-181.
    [11]Depp. S. W., Juliana A., Huth B. G. Polysilicon FET devices for large area input/output applications.1980 International IEEE Devices Meeting. New York.1980,703-706.
    [12]Aoki H.. Dynamic characterization of a-Si TFT-LCD pixels. IEEE Transaction on Electron Devices 1996,43, (1),31-39.
    [13]Nanno Y., Ohtsuka A., Ishihara S., Kawaguchi T., Tamura T., Mino Y, Takeda E., Nagate S.. High-resolution 6-inch LCD using a-Si TFT with TaOx/SiNx double insulating layer. Displays 1990, 11,(1),36-40.
    [14]Zhang S. D., Zhu C. X., Sin J. K. O., Li J. N., Mok P. K. T.. Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass. IEEE Transactions on Electron Devices 2000,47, (3),569-575.
    [15]Takahashi Y., Wada T., Masumori T., Kakuda N., Kawada T.. Multimedia projector using 720 × 480 pixel a-Si TFT-LCDs and a high-speed analogue driver LSI. Displays 1992,13, (1),5-10.
    [16]Lim K. M., Sung M. Y.. Low noise digital data drive circuit integrated poly-Si TFT-LCD. Microelectronics Journal 1999,30, (9),905-910.
    [17]Contellec M. L., Maurice F., Richard J., Vinouze B., Richou F..Very simple a-Si:H TFT fabrication process for LCD-TV application. Journal of Non-Crystalline Solids 1987,97-98, (1), 297-300.
    [18]Aoyama T., Ogawa K., Mochizuki Y., Konishi N.. Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration. IEEE Transactions on Electron Devices 1996,43, (5),701-705.
    [19]Sunata T., Miyake K., Yasui M., Murakami Y,. Ugai Y, Tamamura J., Aoki S.. A 640×400 pixel active-matrix LCD using a-Si TFT's IEEE Transactions on Electron Devices 1986,33, (8), 1218-1221.
    [20]Hoffman R. L., Norris B. J., Wager J. F.. ZnO-based transparent thin-film transistors. Applied Physics Letters 82, (5),733-735.
    [21]Hossain F. M., Nishii J., Takagi S., Ohtomo A., Fukumura T., Fujioka H., Ohno H., Koinuma H., Kawasaki M.. Modeling and simulation of polycrystalline ZnO thin-film transistors. Journal of Applied Physics 2003,94, (12),7768-7777.
    [22]Kim J. J., Bak J. Y, Lee J. H., Kim H. S., Jang N. W., Yun Y., Lee W. J.. Characteristics of laser-annealed ZnO thin film transistors. Thin Solid Films 2010,518, (11),3022-3025.
    [23]Liu C. C., Wu M. L., Liu K. C., Hsiao S. H., Chen Y. S., Lin G. R., Huang J. J.. Transparent ZnO Thin-Film (?)Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation. Journal of Display Technology 2009,5, (6),192-197.
    [24]Hossain F. M., Nishii J., Takagi S., Sugihara T., Ohtomo A., Fukumura T., Koinuma H., Ohno H., Kawasaki M.. Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Physica E:Low-dimensional Systems and Nanostructures,2004,21, (2-4),911-915.
    [25]Park S. H. K., Hwang C. S., Jeong H. Y, Chu H. Y, Cho K. I.. Transparent ZnO-TFT arrays fabricated by atomic layer deposition. Electrochemical and Solid-State Letters 2008,11, (1), H10-H14.
    [26]Lee J. H., Ahn C. H., Hwang S., Woo C. H., Park J. S., Cho H. K., Lee J. Y. Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors. Thin Solid Films 2011,519, (20),6801-6805
    [27]Bae H. S., Im S.. ZnO-based thin-film transistors of optimal device performance. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 2004,22, (3), 1191-1195.
    [28]Navamathavan R., Yang E. J., Lim J. H., Hwang D. K., Oh J. Y, Yang J. H., Jang J. H., Park S. J.. Effects of Electrical Bias Stress on the Performance of ZnO-Based TFTs Fabricated by RF Magnetron Sputtering. Journal of the Electrochemical Society 2006,153, (5), G385-G388.
    [29]Grundbacher R., Chikkadi K., Hierold C.. Thin film transistors with a ZnO channel and gate dielectric layers of HfO2 by atomic layer deposition. Journal of Vacuum Science and Technology B 2010,28, (6),1173-1178.
    [30]Dhananjay, Krupanidhi S. B.. Low threshold voltage ZnO thin film transistor with a ZnO.7MgO.3O gate dielectric for transparent electronics. Journal of Applied Physics 2007,101, (12), 123717-1-123717-6.
    [31]王大巍,王刚,李俊峰,刘敬伟.薄膜晶体管液晶显示器件的制造、测试与技术发展.北京:机械工业出版社.2007,140,15-18,201-202.
    [32]Kanicki J., Libsch F. R., Griffith J., Polastre R.. Performance of thin hydrogenated amorphous silicon thin-film transistors. Journal of Applied Physics 1991,69, (4),2339-2345.
    [33]Kim S. S., Berkeley B. H., Park J. H., Kim T.. New era for TFT-LCD size and viewing-angle performance. Journal of the Society for Information Display 2006,14, (2),127-134.
    [34]Kim S. S., You B. H., Cho J. H., Kim D. G, Berkeley B. H., Kim N. D.. An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced super PVA technology. Journal of the Society for Information Display 2009,17, (2),71-78.
    [35]Yoshida Y., Kikuchi Y., Daly S., Sugino M.. Image quality improvements in large-screen LCD-TV. SID Symposium Digest of Technical Papers 2005,36, (1),1852-1855.
    [36]Lan J. H., Kanicki J.. Planarized copper gate hydrogenated amorphous-silicon thin film transistor for AM-LCDs. IEEE Electron Device Letters 1999,20, (3),129-131.
    [37]Lan J. H., Kanicki J.. Buried busline a-Si:H TFT structures for AM-LCD. Proceeding AM-LCD 1998,77-81.
    [38]Song J. H., Ning H. L., Lee W. G, Kim S. Y, Kim S. S.. Views on the low-resistant bus materials and their process architecture for the large-sized post-ultra definition TFT-LCD. Digest of Technical Papers IMID, Seoul,2008,8,9-12.
    [39]Urabe T.. The Outstanding Potential of OLED Displays for TV Applications. Information Display 2008,24, (9),14-17
    [40]Jeong J. K., Chung H. J., Mo Y. G, Kim H. D.. A new era of oxide thin film transistors for large-sized AMOLED displays. Information Display 2008,24, (9),20-23.
    [41]Stewart M., Howell R. S., Pires L., Hatalis M. K.. Polysilicon TFT technology for active matrix OLED displays. IEEE Transactions on Electron Devices 2001,48, (5),845-851.
    [42]Lin Y. C., Shieh H. P. D., Kanicki J.. A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs. IEEE Transactions on Electron Devices 2005,52, (6),1123-1131.
    [43]Gomes H. L., Stallinga P., Dinelli F., Murgia M., Biscarini F., Leeuw D. M. D., Muck T., Geurts J., Molenkamp L. W., Wagner V.. Bias-induced threshold voltages shifts in thin-film organic transistors. Applied Physics Letters 2004,84, (16),3184-3186.
    [44]Olasipo K. R., Hatalis M. K.. Leakage current mechanism in sub-micro polysilicon thin-film transistors. IEEE Transaction on Electron Devices 1996,43, (8),1218-1223.
    [45]Pearton S. J., Norton D. P., Ip K., Heo Y. W., Steiner T.. Recent progress in processing and properties of ZnO. Superlattices and Microstructures 2003,34, (1-2),3-32.
    [46]Kim J. H., Ahn B. D., Lee C. H., Jeon K. A., Kang H. S., Lee S.Y.. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films,2008,516, (7),1529-1532.
    [47]Masuda S., Kitamura K., Okumura Y., Miyatake S., Tabata H., Kawai T.. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Journal of Applied Physics 2003,93, (3),1624-1630.
    [48]Fortunato E., Barquinha P., Pimentel A., Goncalves A., Marques A., Pereira L., Martins R.. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005,487, (1-2), 205-211.
    [49]Hirao T., Furuta M., Furuta H., Matsuda T., Hiramatsu T., Hokari H., Yoshida M., Ishii H., Kakegawa M.. Novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs. Journal of the Society for Information Display 2007,15, (1),17-22.
    [50]Fortunato E. M. C, Barquinha P. M. C., Pimentel A. C. M. B. G., Goncalves A. M. F., Marques A. J. S., Pereira L. M. N., Martins R. F. P.. Fully transparent ZnO thin-film transistor produced at room temperature. Advanced Materials 2005,17, (5),590-594.
    [51]Oh M. S., Han J. I., Lee K., Lee B. H., Sung M. M., Im S.. Coupling top-and bottom-gate ZnO thin film transistors for low voltage, high gain inverter. Electrochemical and Solid-State Letters 2010, 13, (6),H194-H196.
    [52]Fortunato E. M. C., Barquinha P. M. C., Pimentel A. C. M. B. G., Goncalves A. M. F., Marques A. J. S., Martins R. F. P., Pereira M. N.. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters 2004,85, (13) 2541-2543
    [53]Li C., Li Y., Wu Y., Ong B. S.. ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film. Journal of Applied Physics 2007,102, (7),076101-1-076101-3.
    [54]Motaleb I. A., Shetty N., Leedy K., Cortez R.. Investigation of the drain current shift in ZnO thin film transistors. Journal of Applied Physics 2011,109, (1),014503-1-014503-5.
    [55]Carcia P. F., Mclean R. S., Reilly M. H., Jr G. N.. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters 2003,82, (7),1117-1119.
    [56]Furuta M., Kimura M., Hiramatsu T.. Uniformity and bias-temperature instability of bottom-gate zinc oxide thin-film transistors (ZnO TFTs). Journal of the Society for Information Display 2010,18, (10),773-778.
    [57]Yoon S. M., Park S. H. K., Yang S. H., Byun C. W., Hwang C. S.. Effect of Double-Layered Al2O3 Gate Insulator on the Bias Stability of ZnO Thin Film Transistors. Electrochemical and Solid-State Letters 2010,13, (8), H264-H267.
    [58]Navamathavan R., Choi C. K., Yang E. J., Lim J. H., Hwang D. K., Park S. J.. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid-State Electronics 2008,52, (5),813-816.
    [59]Shin P. K., Aya Y., Ikegami T., Ebihara K.. Application of pulsed laser deposited zinc oxide films to thin film transistor device. Thin Solid Films 2008,516, (12),3767-3771.
    [60]Bong H., Lee W. H., Lee D. Y., Kim B. J., Cho J. H., Cho K.. High-mobility low-temperature ZnO transistors with low-voltage operation. Applied Physics Letters 2010,96, (19), 192115-1-192115-3.
    [61]Liu C. C., Chen Y. S., Huang J. J.. High-performance ZnO thin-film transistors fabricated at low temperature on glass substrates. Electronics Letters 2006,42, (14),824-825.
    [62]Chen M. C., Chang T. C., Huang S.Y., Chang K. C., Li H. W., Chen S. C., Lu J., Shi Y.. A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid. Applied Physics Letters 2009,94, (16),162111-1-162111-3.
    [63]Chang S., Song Y. W., Lee S., Lee S. Y., Ju B. K.. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure. Applied Physics Letters 2008,92, (19),192104-1-192104-3.
    [64]Jo J., Choi H., Yun J., Kim H., Seo O., Lee B.. Improvement of on/off ratio in ZnO thin-film transistor by using growth interruptions during metalorganic chemical vapor deposition. Thin Solid Films 2009,517, (23),6337-6340.
    [65]Remashan K., Hwang D. K., Park S. D., Bae J. W., Yeom G. Y., Park S. J., Jang J. H.. Effect of N2O Plasma Treatment on the Performance of ZnO TFTs. Electrochemical and Solid-State Letters 2008,11,(3) H55-H59.
    [66]Redinger D. H.. Lifetime Modeling of ZnO thin-film transistor. IEEE Transactions on Electron Devices 2010,57, (12),3460-3465.
    [67]Bae H. S., Kim J. H., Im S..Mobility enhancement in ZnO-based TFTs by H treatment. Electrochemical and Solid-State Letters 2004,7, (11), G279-G281.
    [68]Tsay C. Y., Fan K. S., Chen S. H., Tsai C. H.. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. Journal of Alloys and Compounds 2010, 495,(1),126-130.
    [69]Lee S. H., Bang J. H., Kim W., Uhm H. S., Park J. S.. Effects of additive hydrogen gas on the instability due to air exposure in ZnO-based thin film transistors. Thin Solid Films 2011,520, (5), 1479-1483.
    [70]Kim K. T., Lee K., Oh M. S., Park C. H., Im S.. Surface-induced time-dependent instability of ZnO based thin-film transistors. Thin Solid Films 2009,517, (23),6345-6348.
    [71]Cho K. H., Kang M. G., Oh S. M., Kang C. Y., Lee Y. P., Yoon S. J.. Low voltage ZnO thin-film transistors with Ti-substituted BZN gate insulator for flexible electronics. Thin Solid Films 2010,518, (22),6277-6279.
    [72]Jin B. J., Bae S. H., Lee S. Y., Im S.. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Materials Science and Engineering:B 2000, 71, (1-3),301-305.
    [73]Lim S. J., Kwon S. J., Kim H., Park J. S.. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Applied Physics Letters 2007,91, (18), 183517-1-183517-3.
    [74]Lim S. J., Kim J. M., Kim D., Kwon S., Park J. S., Kim H.. Atomic layer deposition ZnO:N thin film transistor:The effects of N concentration on the device properties. Journal of the Electrochemical Society 2010,157, (2), H214-H218.
    [75]Jang K., Park H., Jung S., Duy N. V., Kim Y, Cho J., Choi H., Kwon T., Lee W., Gong D, Park S., Yi J., Kim D., Kim H.. Optical and electrical properties of 2 wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators. Thin Solid Films 2010,518, (10),2808-2811.
    [76]Ahn C. H., Kong B. H., Kim H., Cho H. K.. Improved electrical stability in the Al doped ZnO thin-film-transistors grown by atomic layer deposition. Journal of the Electrochemical Society 20-11, 158, (2),H170-H173.
    [77]Su B. Y., Chu S. Y., Juang Y. D.. Improved Electrical and Thermal Stability of Solution-Processed Li-Doped ZnO Thin-Film Transistors. IEEE Transactions on Electron Devices 2012,59, (3),700-704.
    [78]Park W. J., Shin H. S., Ahn B. D., Kim G. H., Lee S. M., Kim K. H., Kim H. J.. Investigation on doping dependency of solution-processes Ga-doped ZnO thin film transistor. Applied Physics Letters 2008,93, (8),083508-1-083508-3.
    [79]Verma V. P., Kim D. H., Jeon H., Jeon M., Choi W.. Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum. Thin Solid Films 2008,516, (23),8736-8739.
    [80]Normura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H.. Room-temperature fabricated of transparent flexible thin-film transistor using amorphous oxide semiconductors. Nature 2004,432,488-492.
    [81]Paine D. C., Yaglioglu B., Beiley Z., Lee S.. Amorphous IZO-based transparent thin film transistors. Thin Solid Films 2008,516, (17),5894-5898.
    [82]Yabuta H., Sano M., Abe K., Aiba T., Den T., Kumomi H., Nomura K., Kamiya T., Hosono H.. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Applied Physics Letters 2006,89, (11),112123-1-112123-3.
    [83]Kim M., Jeong J. H., Lee H. J., Ahn T. K., Shin H. S., Park J. S., Jeong J. K., Mo Y. G., Kim H. D.. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Applied Physics Letters 2007,90, (21),212114-1-212114-3.
    [84]Iwasaki T., Itagaki N., Den T., Kumomi H., Nomura K., Kamiya T., Hosona H.. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels:An application to amorphous oxide semiconductors in In-Ga-Zn-O system. Applied Physics Letters 2007,90, (24), 242114-1-242114-3.
    [85]Park J. S., Kim T. W., Stryakhilev D., Lee J. S., An S. G, Pyo Y. S., Lee D. B., Mo Y. G, Jin D. U., Chung H. K.. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Applied Physics Letters 2009,95, (1),013503-1-013503-3.
    [86]Park J., Song I., Kim S., Kim S.,Kim C, Lee J., Lee H., Lee E., Yin H., Kim K., Kwon K. W., Park Y.. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Applied Physics Letters 2008,93, (5),053501-1-053501-3.
    [87]Park J., Kim S., Kim C., Kim S., Song I., Yin H., Kim K. K., Lee S., Hong K., Lee J., Jung J., Lee E., Kwon K. W., Park Y.. High-performance amorphous gallium indium zinc oxide thin-film transistors through° N2O plasma passivation. Applied Physics Letters 2008,93, (5) 053505-1-053505-3.
    [88]Zan H. W., Chen W. T., Yeh C. C, Hsueh H. W., Tsai C. C., Meng H. F.. Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement. Applied Physics Letters 2011,98, (15), 153506-1-153506-3.
    [89]Feng T. C., Baek G, Kanicki J.. Low frequency noise in long channel amorphous In-Ga-Zn-0 thin film transistors. Journal of Applied Physics 2010,108, (7),074518-1-074518-10.
    [90]Kim C. J., Kim S., Lee J. H., Park J. S., Kim S., Park J., Lee E., Lee J., Park Y., Kim J. H., Shin S. T., Chung U. I.. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Applied Physics Letters 2009,95, (25),252103-1-252103-3.
    [91]Kwon D. W., Kim J. H., Chang J. S., Kim S. W., Kim W., Park J. C., Song I., Kim C. J., Jung U. I., Park B. G.. Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor. Applied Physics Letters 2011,98, (6),063502-1-063502-3.
    [92]Maeng W. J., Park J. S., Kim H. S., Kim E. S., Son K. S., Kim T. S., Ryu M., Lee S.. The effect of active-layer thickness and back-channel conductivity on the subthreshold transfer characteristics of Hf-In-Zn-O TFTs. IEEE Electron Device Letters 2011,32, (8),1077-1079.
    [93]Kwon D. W., Kim J. H., Chang J. S., Kim S. W., Kim W., Park J. C., Kim C. J., Park B. G.. Light effect on negative bias-induced instability of HfInZnO amorphous oxide thin-film transistor. IEEE Transactions on Electron Devices 2011,58, (4),1127-1133.
    [94]Chong E., Chun Y. S., Lee S. Y.. Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150℃. Applied Physics Letters 2010,97, (10), 102102-1-102102-3.
    [95]Chong E., Kim S. H., Lee S. Y.. Role of silicon in silicon-indium-zinc-oxide thin-film transistor. Applied Physics Letters 2010,97, (25),252112-1-252112-3.
    [96]Kim D. N., Kim D. L., Kim G. H., Kim S. J., Rim Y. S., Jeong W. H., Kim H. J.. The effect of La in InZnO systems for solution-processed amorphous oxide thin-film transistors. Applied Physics Letters 2010,97, (19),192105-1-192105-3.
    [97]Lee J. H., Kim D. H., Yang D. J., Hong S. Y., Yoon K. S., Hong P. S., Jeong C. O., Park H. S., Kim S. Y., Lim S. K., Kim S. S., Son K. S., Kim T. S., Kwon J. Y., Lee S. Y.. World's Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT. SID Symposium Digest of Technical Papers 2008,39, (1),625-628.
    [98]Jeong J. K., Jeong J. H., Choi J. H., Im J. S., Kim S. H., Yang H. W., Kang K. N., Kim K. S., Ahn T. K., Chung H.-J., Chung H. K..12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array. SID Symposium Digest of Technical Papers 2008,39, (1), 1-4.
    [99]Yao Q. J., Li D. J.. Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer. Journal of Non-Crystalline Solids 2005,351, (40-42),3191-3194.
    [100]Zhang X. A., Zhang J. W., Zhang W. F., Wang D., Bi Z., Bian X. M., Hou X.. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films 2008,516, (10),3305-3308.
    [101]Zhang L., Li J., Zhang X. W., Yu D. B., Lin H. P., Jiang X. Y., Zhang Z. L., Low-voltage-drive and high output current ZnO thin-film transistors with sputtering S1O2 as gate insulator. Current Applied Physics 2010,10, (5),1306-1308.
    [102]Zhang L., Li J., Zhang X. W., Jiang X. Y., Zhang Z. L.. High-performance ZnO thin film transistors with sputtering SiO2/Ta2O5/SiO2 multilayer gate dielectric. Thin Solid Films 2010,518, (21),6130-6133.
    [103]Xiao Z., Xu J. P., Lai P. T., Yao L., Feng J., Deng L. F.. Electrical characteristics of Al-doped ZnO-channel thin-film transistor with high-κ HfON/SiO2 stack gate dielectric. IEEE International Conference of Electron Device and Solid-State Circuits.2010,1-4.
    [104]Zhang L., Zhang H., Bai Y., Ma J. W., Cao J., Jiang X. Y., Zhang Z. L.. Enhanced performances of ZnO-TFT by improving surface properties of channel layer. Solid State Communication 2008,146, (9-10),387-390.
    [105]Zhou F., Lin H. P., Zhang L., Li J., Zhang X. W., Yu D. B., Jiang X. Y, Zhang Z. L.. Top-gate amorphous IGZO thin-film transistors with a SiO buffer layer inserted between active channel layer and gate insulator. Current Applied Physics 2012,12, (1),228-232.
    [106]Zhang H. Z., Cao H. T., Chen A. H., Liang L. Y, Liu Z. M., Wan Q.. Enhancement of electrical performance in In2O3 thin-film transistors by improving the densification and surface morphology of channel layers. Solid-State Electronics 2010,54, (4),479-483.
    [107]Chen A. H., Cao H. T., Zhang H. Z., Liang L. Y., Liu Z. M., Yu Z., Wan Q.. Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectronic Engineering 2010,87, (10),2019-2023.
    [108]Hu Y., Lu A. X., Wang L. P., Yu H. C., Wan Q.. Low-voltage ZnO thin-film transistors operating at 2.0 V gated with mesoporous SiO2 dielectric processed at room-temperature. Physica E: Low-dimensional Systems and Nanostructures 2009,42, (2),154-157.
    [109]Li G F., Zhou J., Huang Y. W., Yang M., Feng J. H., Zhang Q.. Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature. Vaccum 2010, 85,(1),22-25.
    [110]Kagan C. R., Andry P.廖燕平,王军.薄膜晶体管(TFT)及其在平板显示中的应用.北京:电子工业出版社,2008,31-33.
    [111]袁广才Pentancene基有机薄膜晶体管性能改善机制的研究[博士学位论文],北京:北京交通大学,2009,6-9.
    [112]陈星弼,张庆中.晶体管原理与设计(第二版).北京:电子工业出版社,2008,294-310.
    [1]Hirao T., Furuta M., Hiramatsu T., Matsuda T., Li C. Y., Furuta H., Hokari H., Yoshida M., Ishii H., Kakegawa M., Bottom-gate zinc oxide thin-film transistors (ZnO TFTs) for AM-LCDs. IEEE Transactions on Electron Devices 2008,55, (11),3136-3142.
    [2]Park S. H. K., Hwang C. S., Ryu M., Yang S., Byun C., Shin J., Lee J. I., Lee K., Oh M. S., and Im S., Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Advanced Materials 2009,21, (6),678-682.
    [3]Lim K. M., Kang H. C. and Sung M. Y, A study on the poly-Si TFT and novel pixel structure for low flicker. Microelectronics Journal 2000,31, (8),641-646.
    [4]Aoyama T., Ogawa K., Mochizuki Y. and Konishi N.. Inverse staggered polycrystalline and amorphous silicon double structure thin film transistors. Applied Physics Letters 1995,66, (22), 3007-3009.
    [5]朱兴文.ZnO薄膜制备及其光、电性能研究[博士学位论文],上海:上海大学,2006,1-13.
    [6]Yi M. D., Xie L. H., Liu Y. Y., Dai Y. F. and Huang J. Y., Electrical Characteristics of High-Performance ZnO Field-Effect Transistors Prepared by Ultrasonic Spray Pyrolysis Technique. Chinese Physics Letters 2011,28, (1),017302-1-017302-3.
    [7]梅增霞.ZnO单晶薄膜的极性控制生长及相关问题研究[博士学位论文],北京:中国科学院研究生院,2005,1-4.
    [8]Liu F. J., Zhang R., Hu Z. F., Sun J., Huang H. Q., Li Z. J., Zhao J. W., Yin P. G, Guo L., Zhang X. Q., Wang Y S.. Structural and Optical Properties of Nonpolar (11-20) ZnO Films Grown by Plasma-Assisted Molecular-Beam Epitaxy. IEEE Transactions on Plasma Science 2011,39, (2), 700-703.
    [9]Zhang X. A., Zhang J. W., Zhang W. F., Wang D., Bi Z., Bian X. M., Hou X.. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films 2008,516, (10),3305-3308.
    [10]Navamathavan R., Choi C. K., Yang E. J., Lim J. H., Hwang D. K., Park S. J.. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid-State Electronics 2008,52, (5),813-816.
    [11]Barquinha P., Fortunato E., Goncalves A., Pimentel A., Marques A., Pereira L., Martins R.. A Study on the Electrical Properties of ZnO Based Transparent TFTs. Materials Science Forum 2006, 514-516,68-72.
    [12]Kagan C. R., Andry P..廖燕平,王军.薄膜晶体管(TFT)及其在平板显示中的应用.北京:电子工业出版社,2008,31-33.
    [13]Cross R. B. M., and Souza M. M. D.. Investigating the stability of zinc oxide thin film transistors. Applied Physics Letters 2006,89, (26),263513-1-263513-3.
    [14]Navamathavan R., Choi C. K., Park S. J.. Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering. Journal of Alloys and Compounds 2009,475, (1-2),889-892.
    [15]Barquinha P., Pimentel A., Marques A., Pereira L., Martins R., Fortunato E.. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. Journal of Non-Crystalline Solids,2006,352, (9-20),1749-1752.
    [16]Kagan C. R., Andry P..廖燕平,王军.薄膜晶体管(TFT)及其在平板显示中的应用.北京:电子工业出版社,2008,69,87-91.
    [17]Chung J. H., Lee J. Y., Kim H. S., Jang N. W., Kim J. H.. Effect of thickness of ZnO active layer on ZnO-TFTs characteristics. Thin Solid Films 2008,516, (16),5597-5601.
    [18]刘玉荣,任力飞,杨任花,韩静,姚若河,温智超,徐海红,徐佳雄.退火温度对ZnO薄膜晶体管电特性的影响.华南理工大学学报(自然科学版),2011,9,103-107.
    [19]张新安,张景文,张伟风,侯洵.退火温度对ZnO薄膜晶体管电学性能的影响.液晶与显示,2009,24,(4),557-561.
    [20]Fortunato E. M. C., Barquinha P. M. C., Pimentel A. C. M. B. G., Goncalves A. M. F., Marques A. J. S., Martins R. F. P., Pereira M. N.. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters 2004,85, (13) 2541-2543
    [21]Fortunato E., Barquinha P., Pimentel A., Goncalves A., Marques A., Pereira L., Martins R.. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005,487, (1-2), 205-211.
    [22]Martin S., Chiang C. S., Nahm J. Y., Li T., Kanicki J., Ugai Y.. Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical Performances. Japanese Journal of Applied Physics, Part 1,2001,40, (2A),530-537.
    [1]Park W. J., Shin H. S., Ahn B. D., Kim G. H., Lee S. M., Kim K. H., Kim H. J.. Investigation on doping dependency of solution-processes Ga-doped ZnO thin film transistor. Applied Physics Letters 2008,93, (8),083508-1-083508-3.
    [2]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.浙江:浙江大学出版社,2009,55-65.
    [3]Kato H., Sano M., Miyamoto K., Yao T.. Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. Journal of Crystal Growth 2002, 237-239, (1),538-543.
    [4]Wang S. F., Li X. F., Jianhua Zhang J. H.. Effects of substrate temperature on the properties of heavy Ga-doped ZnO transparent conductive film by RF magnetron sputtering. Journal of Physics: Conference Series 2009,188, (1),012017.
    [5]Park S. H., Park J. B., Song P. K.. Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes. Current Applied Physics 2010,10, (3), S488-S490.
    [6]Lee B. T., Kim T.H., Jeong S. H.. Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering. Journal of Physics D:Applied Physics 2006,39, (5), 957-961.
    [7]Kim T. H., Jeong S. H., Kim I. S., Sang Sub Kim S. S., Lee B. T.. Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films. Semiconductor Science and Technology 2005,20, (9), L43-L46.
    [8]Verma V. P., Kim D. H., Jeon H., Jeon M., Choi W.. Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum. Thin Solid Films 2008,516, (23),8736-8739.
    [9]Liu F. J., Zhang R., Hu Z. F., Sun J., Huang H. Q., Li Z. J., Zhao J. W., Yin P. G., Guo L., Zhang X. Q., Wang Y. S.. Structural and Optical Properties of Nonpolar (11-20) ZnO Films Grown by Plasma-Assisted Molecular-Beam Epitaxy. IEEE Transactions on Plasma Science 2011,39, (2), 700-703.
    [10]Hoffman R. L., Norris B. J., Wager J. F.. ZnO-based Transparent Thin-Film Transistors. Applied Physics Letters 2003,82, (5),733-735.
    [11]Pierret R. F..黄如,王漪,王金廷,金海岩.半导体器件基础.北京:电子工业出版社,2010,482-484.
    [12]Fortunato E., Barquinha P., Pimentel A., Gonc.alves A., Marques A., Pereira L., Martins R.. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005,487, (1-2), 205-211.
    [13]Shin P. K., Aya Y., Ikegami T., Ebihara K.. Application of pulsed laser deposited zinc oxide films to thin film transistor device. Thin Solid Films 2008,516, (12),3767-3771.
    [14]Carcia P. F., Mclean R. S., Reilly M. H., Nunes G.. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters 2003,82, (7),1117-1119.
    [15]陈星弼,张庆中.晶体管原理与设计(第二版).北京:电子工业出版社,2008,303-307.
    [16]Zhang L., Li J., Zhang X. W., Yu D. B., Lin H. P., Jiang X. Y., Zhang Z. L.. Low-voltage-drive and high output current ZnO thin-film transistors with sputtering SiO2 as gate insulator. Current Applied Physics 2010,10, (5),1306-1308.
    [17]Lee S. Y., Chang S., Lee J. S.. Role of high-k gate insulators for oxide thin film transistors. Thin Solid Films 2010,518, (12),3030-3032.
    [18]Park J. S., Jeong J. K., Chung H. J., Mo Y. G., Kim H. D.. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Applied Physics Letters 2008,92, (7),072104-1-072104-3.
    [19]Shimizu Y, Shimabukuro M., Arai H., Seiyama T.. Humidity-Sensitive Characteristics of La3+-Doped and Undoped SrSnO3. Journal of The Electrochemical Society 1989,136, (4), 1206-1210.
    [20]Kim K. T., Lee K., Oh M. S., Park C. H., Im S.. Surface-induced time-dependent instability of ZnO based thin-film transistors. Thin Solid Films 2009,517, (23),6345-6348.
    [21]Barquinha P., Fortunato E., Goncalves A., Pimentel A., Marques A.,Pereira L., Martins R.. Influence of time, light and temperature on the electrical properties of zinc oxide TFTs. Superlattices and Microstructures 2006,39, (1-4),319-327.
    [I]Oba F., Nishitani S. R., Isotani S., Adachi H., Tanaka I.. Energetics of native defects in ZnO. Journal of Applied Physics 2001,90, (2),824-828.
    [2]Kohan A. F., Morgan D., Walle C. G. V. D.. First-principles study of native point defects in ZnO. Physical Review B 2000,61, (22),15019-15027.
    [3]Umezawa N., Sato M., Shiraishi K.. Reduction in charged defects associated with oxygen vacancies in hafnia by magnesium incorporation:First-principles study. Applied Physics Letters 2008,93, (22),223104-1-223104-3.
    [4]Ku C. J., Duan Z. Q., Reyes P. I., Lu Y. C., Xu Y., Hsueh C. L., Garfunkel E.. Effects of Mg on the electrical characteristics and thermal stability of MgxZn1-xO thin film transistors. Applied Physics Letters 2011,98, (12),123511-1-123511-3.
    [5]Ghosh R., Basak D.. The effect of growth ambient on the structural and optical properties of MgxZn1-xO thin films. Applied Surface Science 2009,255, (16),7238-7242.
    [6]Shan F. K., Kim B. I., Liu G. X., Sohn J. Y, Lee W. J., Shin B. C., Yu Y. S.. Blueshift of near band edge emission in Mg doped ZnO thin films and aging. Journal of Applied Physics 2004,95, (9), 4772-4776.
    [7]Sharma A. K., Narayan J., Muth J. F., Teng C. W., Jin C., Kvit A., Kolbas R. M., Holland O. W.. Optical and structural properties of epitaxial MgxZn1-xO alloys. Applied Physics Letter 1999,75, (21),3327-3329.
    [8]Vashaei Z., Minegishi T., Suzuki H., Hanada T., Cho M. W., Yao T., Setiawan A.. Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire. Journal of Applied Physics 2005,98, (5),054911-1-054911-4.
    [9]Choopun S., Vispute R. D., Yang W., Sharma R. P., Venkatesan T., Shen H.. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films. Applied Physics Letters 2002, 80,(9),1529-1531.
    [10]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.浙江:浙江大学出版社,2009,129-134.
    [11]Ohtomo A., Takagi S., Tamura K., Makino T., Segawa Y, Koinuma H., Kawasaki M.. Photo-Irresposive Thin-Film Transistor with MgxZn1-xO Channel. Japanese Journal of Applied Physics 2006,45, Part 2 (24-28), L694-L696.
    [12]Tsay C. Y., Wang M. C, Chiang S. C.. Characterization of Zn1-xMgxO films prepared by the sol-gel process and their application for thin film transistors. Journal of Electronic Materials 2009, 38, (9),1962-1968.
    [13]Liu C. Y., Xu H. Y., Wang L., Li X. H., Liu Y C.. Pulsed laser deposition of high Mg-content MgZnO films:Effects of substrate temperature and oxygen pressure. Journal of Applied Physics 2009,106, (7),073518-1-073518-4.
    [14]Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y., Yoshida Y, Yasuda T., Segawa Y. MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy. Applied Physics Letters 1998, 72, (19),2466-2468.
    [15]Liu W., Yao B., Li Y., Li B., Zheng C., Zhang B., Shan C., Zhang Z., Zhang J., Shen D.. Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient. Applied Surface Science 2009,255, (13-14),6745-6749.
    [16]Moon J. Y., Kim J. H., Kim H., Lee H. S., Kim Y. Y, Cho H. K., Kim H. K.. Effect of a ZnO buffer layer on the characteristics of MgZnO thin films grown on Si (100) substrates by radio-frequency magnetron sputtering. Thin Solid Films 2009,517, (14),3931-3934.
    [17]Fujita M., Sasajima M., Deesirapipat Y, Horikoshi Y. Molecular beam epitaxial growth of hexagonal ZnMgO films on Si(1 1 1) substrates using thin MgO buffer layer. Journal of Crystal Growth 2005,278, (1-4),293-298.
    [18]Kim D. C., Kong B. H., Ahn C. H., Cho H. K.. Characteristics improvement of metalorganic chemical vapor deposition grown MgZnO films by MgO buffer layers. Thin Solid Films 2009,518, (4),1185-1189.
    [19]Lee H. Y, Wang M. Y, Chang K. J., Lin W. J.. Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering. IEEE Photonics Technology Lerrers 2008,20, (24),2108-2110.
    [20]Jung Y. S., Kononenko O., Kim J. S., Choi W. K.. Two-dimensional growth of ZnO epitaxial films on c-A12O3 (0 0 0 1) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth 2005,274, (3-4), 418-424.
    [21]Chung J. H., Lee J. Y, Kim H. S., Jang N. W., Kim J. H.. Effect of thickness of ZnO active layer on ZnO-TFT's characteristics. Thin Solid Films 2008,516, (16),5597-5601.
    [22]Lee S. Y., Chang S., Lee J. S.. Role of high-k gate insulators for oxide thin film transistors. Thin Solid Films 2010,518, (11),3030-3032.
    [23]Kim S. I., Kim C. J., Park J. C., Song I., Kim S. W., Yin H. X., Lee E., Lee J. C., Park Y. High performance oxide thin film transistors with double active layers. Electron Devices Meeting 2008, 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700