Xenorhabdus budapestensis D43菌株杀虫蛋白的分离纯化及致病机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫病原线虫共生菌是一种重要的微生物资源,它能够产生多种具有杀虫、抑菌、抗肿瘤等功能的代谢产物,在农业和医药卫生领域显示出巨大的开发潜力和应用前景。特别是昆虫病原线虫共生菌能够产生多种杀虫蛋白,不仅可以直接作为蛋白质农药,而且能够为转基因抗虫植物和杀虫工程菌株的发展提供更多新颖的基因资源。本研究以从中国东北土壤样品获得的拟双角斯氏线虫中分离的共生菌Xenorhabdusbudapestensis D43为试验材料,对该菌株细胞内的蛋白进行了纯化和筛选,并对筛选到具有杀虫活性的蛋白进行了鉴定、基因克隆、序列生物信息学分析、重组蛋白的表达和纯化,以及致病机理等方面的研究,得出主要研究结果如下:
     1、昆虫病原线虫共生菌X. budapestensis D43菌株细胞内含有大量的蛋白种类,本研究利用制备型凝胶电泳的方法成功纯化到4种,其中一种对大蜡螟幼虫具有血腔注射活性,命名为HIP57。生物测定结果显示,该蛋白对5龄大蜡螟幼虫的LD50为206.81ng/头;当以不低于490ng/头的剂量注射时,试虫体色会在15min之内变黑,48h死亡率为100%。
     2、经过双向电泳分析和质谱鉴定,HIP57的分子量约为60kDa,等电点4~5,与GroEL蛋白具有较高同源性。GroEL虽为分子伴侣,但在本研究中,来自于共生菌X.budapestensis D43菌株的HIP57显示出杀虫功能。克隆获得HIP57基因全长1647bp(GenBank accession no. JN863588),编码548个氨基酸残基(GenBank accession no.AEU10771)。
     3、生物信息学分析结果显示,HIP57蛋白的相对分子量为57379.7Da,理论等电点为4.77,与电泳结果相吻合;该蛋白序列中不含信号肽,属于稳定的水溶性蛋白;同时采用4种不同的预测原理分析了HIP57的二级结构,特别是运用同源模建构建了精确度较高的HIP57蛋白三级结构;通过HIP57蛋白与其他4种同样来源于昆虫病原线虫共生菌的GroEL蛋白进行序列比对发现,该蛋白拥有一些特有的氨基酸残基;根据GroEL蛋白氨基酸序列的同源性,本研究成功构建了43种肠杆菌科细菌的系统发育树,将X. budapestensis D43聚类至致病杆菌属,显示出GroEL蛋白序列具有在细菌分类学和进化学应用的潜在性。
     4、对HIP57、GFP和HIP57-GFP进行了原核表达,同时获得了纯度较高的3种重组蛋白。经western blotting分析,这些重组蛋白与其相应的抗体都能够发生特异性结合。与天然HIP57蛋白引起试虫通体黑化现象和高致死活性相比,HIP57和GFP重组蛋白没有显示出这样的功能;而HIP57-GFP重组蛋白虽不对试虫具有致死活性,但是能够引起试虫体内出现大量的黑色结节。
     5、HIP57蛋白对大蜡螟幼虫致病机理的研究结果包括:其一,HIP57能够引起大蜡螟幼虫强烈的免疫反应,包括PO活力显著升高,血细胞数量显著降低,以及血细胞包囊反应;其二,大蜡螟注射HIP57后,有23种血淋巴蛋白的表达量发生显著变化,其中4种获得成功鉴定,分别为ApoLp-III、Serpin、P27K和GST;其三,捕获2种与HIP57具有潜在结合作用的血淋巴蛋白,分别为芳基贮存蛋白和β-1,3-葡聚糖识别蛋白前体。
     虽然在昆虫病原线虫共生菌复合体侵染寄主昆虫过程中,HIP57是否被分泌的问题本研究未能给出答案,但HIP57显示出非常高的致病性,如果在昆虫病原线虫共生菌复合体致病过程中能够被分泌到寄主血腔中,应为一种重要的致病因子;即便在线虫共生菌致病过程中不能分泌到寄主血腔,HIP57作为一种拥有较高致病性的蛋白,其研究价值和应用潜力仍然十分值得关注。本研究结果不仅为揭示HIP57蛋白的杀虫机理奠定了基础,而且为该蛋白的合理利用提供了理论依据。
The entomopathogenic bacteria, symbiotically associate with different families ofnematodes, has been described to produce a range of metabolites that have insecticidal,antibacterial,anticancer activity, and so on. At present, these bacteria have been regardedas an important microbial resource and have huge development potential and goodapplication prospect. In particular, entomopathogenic bacteria can produce a range ofnovel toxin proteins that could be directly applied as protein insecticides or used in thetransgenic plants and microbes. Xenorhabdus budapestensis D43live in symbiosis withentomopathogenic nematode Steinernema ceratophorum, which was isolated fromnortheast China soils by using the insect bait entrapment method. In this study, we directlypurified new intracellular protein fractions from X. budapestensis D43that were screenedby insect bioassay. Subsequently, new insecticidal protein was studied in various aspectsinclude protein identification, gene cloning, bioinformatic analysis, recombinant proteinexpression and purification, and pathogenetic mechanism. The main results of this studycan be summarized as follows:
     1. In this report, we purified four protein fractions from the intracellular extract of X.budapestensis D43by preparative native PAGE. However, only one protein exhibitedinsecticidal activity against Galleria mellonella larvae by injection that was designatedHIP57. By injection, HIP57caused G. mellonella larval bodies to blacken and die with anLD50of206.81ng/larva. Especially, when we injected no less than490ng of HIP57perlarva, almost all G. mellonella larvae developed blackened body color within15min anddead after forty-eight hours.
     2. HIP57has a molecular weight (MW) of57379.7Da and a theoretical isoelectric point(pI) of4.77. The full-length1647bp sequence of hip57was obtained by sequencing and itssequence has been deposited in GenBank (accession no. JN863588), whereas its deducedamino acid sequence of548amino acids was deposited as AEU10771(GenBank accessionno.). HIP57protein is homologous to GroEL proteins from other bacteria. GroEL has beenaccepted as molecule chaperon, however, our research revealed that HIP57(GroEL)possesses another novel function as an insecticide in X. budapestensis D43.
     3. A bioinformatic analysis suggested that signal peptide is absent in HIP57protein, whichis stable and soluble in water. HIP57secondary structure prediction has been performed byfour different methods. At the same time, we predicted the accurate three-dimensional structure of HIP57with high accuracy by homology modeling. By multiple sequencealignment, we found that HIP57contained several specific amino acid residues, which didnot appear in any of the other four GroEL proteins from the family of mutualistic bacteriaat the same positions. A phylogenetic tree was constructed base on the homologues offorty-three GroEL proteins from the family of Enterobacteriaceae. In the phylogenetic tree,X. budapestensis D43were successfully classified into Xenorhabdus, which indicated thatGroEL have potential application in bacterial taxonomy and evolution.
     4. The recombinant HIP57, GFP and HIP57-GFP proteins were respectively expressed andpurified from transformed E. coli. Western blotting analysis show that these recombinantproteins could bind specifically to antibodies, respectively. Compared with the case ofoccurring melanism involve darkening of the whole body of wax moth larvae injected withnatural HIP57protein, recombinant HIP57protein did not show similar virulence.However, HIP57-GFP recombinant proteins was enable for the formation of black nodulein the haemocoel of larvae, but not lethal.
     5. G. mellonella larvae were injected with HIP57, resulting in extensive immune responsesinclude a significant increase in PO activity, a significant decline in hemocyte populationsand encapsulation response of hemocytes, compared to the controls. Our results illustratepronounced changes in the expression of four genes encoding hemolymph proteins,including ApoLp-III、Serpin、P27K and GST, were observed after HIP57exposure. Weinvestigated the hemolymph proteins that interact with HIP57protein usingco-immunoprecipitation. In vitro two interactions were arylphorin and β-1,3-glucanrecognition protein precursor, which were identified.
     In this research we unsuccessfully answer the problem that is if HIP57was secreted byentomopathogenic nematode-bacteria complex during infection host insect. However,HIP57show high lethal potency in the G. mellonella larva bioassay, thereby hypothesizingthat the bacteria could secret HIP57, which may play an important role inentomopathogenic nematode-bacteria complex infecting host insect. Even if the abovehypothesis is not confirmed, HIP57has research significance and application potency as aresult of excellent pathogenicity and novel insecticide mode. The results of my study forPh.D. degree are of greatly importance to elucidate the pathogenetic mechanism of HIP57,which will be useful for appropriate application of HIP57.
引文
[1] Dutky SR. Insect microbiology. Advances in Applied Microbiology,1959,1,175-200.
    [2] Poinar GO and Thomas GM. Significance of Achromobacter nematophilus Poinar andThomas (Achromobacteraceae: Eubacteriales) in the development of the nematode,DD-136(Neoaplectana sp. Steinernematidae). Parasitology,1966,56(2),385-390.
    [3] Thomas GM and Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic,nematophilic bacteria of the family Enterobacteriaceae. International Journal ofSystematic Bacteriology,1979,29(4),352-360.
    [4] Boemare NE, Akhurst RJ and Mourant RG. DNA relatedness between Xenorhabdusspp.(Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and aproposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov.International Journal of Systematic Bacteriology,1993,43(2),249-255.
    [5] Tailliez P, Laroui C, Ginibre N, et al. Phylogeny of Photorhabdus and Xenorhabdusbased on universally conserved protein-coding sequences and implications for thetaxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P.luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensissubsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensissubsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperatasubsp. thracensis comb. nov. International Journal of Systematic and EvolutionaryMicrobiology,2010,60(8),1921-1937.
    [6] Lee M-M and Stock SP. A multigene approach for assessing evolutionary relationshipsof Xenorhabdus spp.([gamma]-Proteobacteria), the bacterial symbionts ofentomopathogenic Steinernema nematodes. Journal of Invertebrate Pathology,2010,104(2),67-74.
    [7] Gevers D, Cohan FM, Lawrence JG, et al. Opinion: re-evaluating prokaryotic species.Nature Reviews Microbiology,2005,3(9),733-739.
    [8] Tailliez P, Pages S, Ginibre N, et al. New insight into diversity in the genusXenorhabdus, including the description of ten novel species. International Journal ofSystematic and Evolutionary Microbiology,2006,56(12),2805-2818.
    [9] Tailliez P, Pages S, Edgington S, et al. Description of Xenorhabdus magdalenensis sp.nov., the symbiotic bacterium associated with Steinernema australe. InternationalJournal of Systematic and Evolutionary Microbiology,2011, doi:10.1099/ijs.0.034322-0.
    [10] Forst S and Nealson K. Molecular biology of the symbiotic-pathogenic bacteriaXenorhabdus spp. and Photorhabdus spp. Microbiological Reviews,1996,60,21-43.
    [11] Gerrard J, Waterfield N, Vohra R, et al. Human infection with Photorhabdusasymbiotica: an emerging bacterial pathogen. Microbes and Infection,2004,6(2),229-237.
    [12] Weissfeld AS, Halliday RJ, Simmons DE, et al. Photorhabdus asymbiotica, apathogen emerging on two continents that proves that there is no substitute for awell-trained clinical microbiologist. Journal of Clinical Microbiology,2005,43(8),4152-4155.
    [13] Forst S, Dowds B, Boemare N, et al. Xenorhabdus and Photorhabdus spp.: bugs thatkill bugs. Annual Review of Microbiology,1997,51,47-72.
    [14] Vlisidou I, Waterfield N and Wood W. Elucidating the in vivo targets of photorhabdustoxins in real-time using Drosophila embryos. Advances in Experimental Medicineand Biology,2012,710,49-57.
    [15] Bird AF and Akhurst RJ. The nature of the intestinal vesicle in nematodes of thefamily Steinernematidae. International Journal for Parasitology,1983,13(6),599-606.
    [16] Herbert EE and Goodrich-Blair H. Friend and foe: the two faces of Xenorhabdusnematophila. Nature Reviews Microbiology,2007,5(8),634-646.
    [17] Goodrich-Blair H. They've got a ticket to ride: Xenorhabdusnematophila-Steinernema carpocapsae symbiosis. Current Opinion in Microbiology,2007,10(3),225-230.
    [18] Timper P and Kaya HK. Role of the second-stage cuticle of entomogenous nematodesin preventing infection by nematophagous fungi. Journal of Invertebrate Pathology,1989,54(3),314-321.
    [19] Ffrench-Constant R, Waterfield N, Daborn P, et al. Photorhabdus: towards afunctional genomic analysis of a symbiont and pathogen. FEMS MicrobiologyReviews,2003,26(5),433-456.
    [20] Gaugler R. Entomopathogenic nematology. New York: CABI,2002,1-33.
    [21] Wang J and Bedding RA. Population development of Heterorhabditis bacteriophoraand Steinernema carpocapsae in the larvae of Galleria mellonella. Fundamental andApplied Nematology,1996,19(4),363-367.
    [22] Johnigk SA and Ehlers RU. Endotokia matricida in hermaphrodites of Heterorhabditisspp. and the effect of the food supply. Nematology,1999,1(7-8),717-726.
    [23] Ciche TA, Kim KS, Kaufmann-Daszczuk B, et al. Cell invasion and matricide duringPhotorhabdus luminescens transmission by Heterorhabditis bacteriophoranematodes. Applied and Environmental Microbiology,2008,74(8),2275-2287.
    [24] Akhurst RJ. Morphological and functional dimorphism in Xenorhabdus spp., bacteriasymbiotically associated with the insect pathogenic nematodes Neoaplectana andHeterorhabditis. Journal of General Microbiology,1980,121(2),303-309.
    [25] Campos-Herrera R, Tailliez P, Pages S, et al. Characterization of Xenorhabdusisolates from La Rioja (Northern Spain) and virulence with and without theirsymbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Journal ofInvertebrate Pathology,2009,102(2),173-181.
    [26] Sugar DR, Murfin KE, Chaston JM, et al. Phenotypic variation and host interactionsof Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernemajollieti nematodes. Environmental Microbiology,2012,14(4),924-939.
    [27] Boemare NE and Akhurst RJ. Biochemical and physiological characterization ofcolony form variants in Xenorhabdus spp.(Enterobacteriaceae). Journal of GeneralMicrobiology,1988,134(3),751-761.
    [28] Volgyi A, Fodor A, Szentirmai A, et al. Phase variation in Xenorhabdus nematophilus.Applied and Environmental Microbiology,1998,64(4),1188-1193.
    [29] Forst S and Boylan B. Characterization of the pleiotropic phenotype of an ompRstrain of Xenorhabdus nematophila. Antonie Van Leeuwenhoek,2002,81(1-4),43-49.
    [30] Akhurst RJ, Smigielski AJ, Mari J, et al. Restriction analysis of phase variation inXenorhabdus spp.(Enterobacteriaceae), Entomopathogenic bacteria associated withnematodes. Systematic and Applied Microbiology,1992,15(3),469-473.
    [31] Leclerc MC and Boemare NE. Plasmids and phase variation in Xenorhabdus spp.Applied and Environmental Microbiology,1991,57(9),2597-2601.
    [32] Pinyon RA, Hew FH and Thomas CJ. Xenorhabdus bovienii T228phase variation andvirulence are independent of RecA function. Microbiology,2000,146(Pt11),2815-2824.
    [33] Cowles KN, Cowles CE, Richards GR, et al. The global regulator Lrp contributes tomutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdusnematophila. Cellular Microbiology,2007,9(5),1311-1323.
    [34] Masatoshi Nei SK. Molecular evolution and phylogenetics. New York: OxfordUniversity Press,2000,294-296.
    [35] Ehlers RU. Mass production of entomopathogenic nematodes for plant protection.Applied Microbiology and Biotechnology,2001,56(5-6),623-633.
    [36] Dillman AR, Chaston JM, Adams BJ, et al. An entomopathogenic nematode by anyother name. PLoS Pathogens,2012,8(3): e1002527.
    [37] van Frankenhuyzen K. Insecticidal activity of Bacillus thuringiensis crystal proteins.Journal of Invertebrate Pathology,2009,101(1),1-16.
    [38] Kumar S, Chandra A and Pandey KC. Bacillus thuringiensis (Bt) transgenic crop: anenvironment friendly insect-pest management strategy. Journal of EnvironmentalBiology,2008,29(5),641-653.
    [39] Tabashnik BE, Finson N, Johnson MW, et al. Resistance to toxins from Bacillusthuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensissubsp. aizawai in the diamondback moth (Lepidoptera: Plutellidae). Applied andEnvironmental Microbiology,1993,59(5),1332-1335.
    [40] Bravo A and Soberón M. How to cope with insect resistance to Bt toxins? Trends inBiotechnology,2008,26(10),573-579.
    [41] Bowen D, Rocheleau TA, Blackburn M, et al. Insecticidal toxins from the bacteriumPhotorhabdus luminescens. Science,1998,280(5372),2129-2132.
    [42] Bowen DJ and Ensign JC. Purification and characterization of ahigh-molecular-weight insecticidal protein complex produced by theentomopathogenic bacterium Photorhabdus luminescens. Applied and EnvironmentalMicrobiology,1998,64(8),3029-3035.
    [43] Blackburn M, Golubeva E, Bowen D, et al. A novel insecticidal toxin fromPhotorhabdus luminescens, toxin complex a (Tca), and its histopathological effectson the midgut of Manduca sexta. Applied and Environmental Microbiology,1998,64(8),3036-3041.
    [44] Ffrench-Constant R and Waterfield N. An ABC guide to the bacterial toxin complexes.Advances in Applied Microbiology,2005,58,169-183.
    [45] ffrench-Constant RH, Dowling A and Waterfield NR. Insecticidal toxins fromPhotorhabdus bacteria and their potential use in agriculture. Toxicon,2007,49(4),436-451.
    [46] Morgan JA, Sergeant M, Ellis D, et al. Sequence analysis of insecticidal genes fromXenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology,2001,67(5),2062-2069.
    [47] Hurst MRH, Glare TR, Jackson TA, et al. Plasmid-located pathogenicity determinantsof Serratia entomophila, the causal agent of amber disease of grass grub, showsimilarity to the insecticidal toxins of Photorhabdus luminescens. Journal ofBacteriology,2000,182(18),5127-5138.
    [48] Hurst MR, Becher SA, Young SD, et al. Yersinia entomophaga sp. nov., isolated fromthe New Zealand grass grub Costelytra zealandica. International journal ofsystematic and evolutionary microbiology,2011,61(Pt4),844-849.
    [49] Landsberg MJ, Jones SA, Rothnagel R, et al.3D structure of the Yersiniaentomophaga toxin complex and implications for insecticidal activity. Proceedings ofthe National Academy of Sciences of the United States of America,2011,108(51),20544-20549.
    [50] Waterfield NR, Bowen DJ, Fetherston JD, et al. The tc genes of Photorhabdus: agrowing family. Trends in Microbiology,2001,9(4),185-191.
    [51] Lee SC, Stoilova-Mcphie S, Baxter L, et al. Structural characterisation of theinsecticidal toxin XptA1, reveals a1.15MDa tetramer with a cage-like structure.Journal of Molecular Biology,2007,366(5),1558-1568.
    [52] Waterfield N, Hares M, Yang G, et al. Potentiation and cellular phenotypes of theinsecticidal toxin complexes of Photorhabdus bacteria. Cellular Microbiology,2005,7(3),373-382.
    [53] Sergeant M, Jarrett P, Ousley M, et al. Interactions of insecticidal toxin gene productsfrom Xenorhabdus nematophilus PMFI296. Applied and EnvironmentalMicrobiology,2003,69(6),3344-3349.
    [54] Lang AE, Schmidt G, Schlosser A, et al. Photorhabdus luminescens toxinsADP-ribosylate actin and RhoA to force actin clustering. Science,2010,327(5969),1139-1142.
    [55] Lang AE, Schmidt G, Sheets JJ, et al. Targeting of the actin cytoskeleton byinsecticidal toxins from Photorhabdus luminescens. Naunyn-schmiedebergs Archivesof Pharmacology,2011,383(3),227-235.
    [56] Sheets JJ, Hey TD, Fencil KJ, et al. Insecticidal toxin complex proteins fromXenorhabdus nematophilus: structure and pore formation. Journal of BiologicalChemistry,2011,286(26),22742-22749.
    [57] Daborn PJ, Waterfield N, Silva CP, et al. A single Photorhabdus gene, makescaterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects.Proceedings of the National Academy of Sciences,2002,99(16),10742-10747.
    [58] Hofmann F, Busch C, Prepens U, et al. Localization of the glucosyltransferase activityof Clostridium difficile toxin B to the N-terminal part of the holotoxin. Journal ofBiological Chemistry,1997,272(17),11074-11078.
    [59] Schaller A, Kuhn R, Kuhnert P, et al. Characterization of apxIVA, a new RTXdeterminant of Actinobacillus pleuropneumoniae. Microbiology,1999,145(Pt8),2105-2116.
    [60] Bouillet P and Strasser A. BH3-only proteins-evolutionarily conserved proapoptoticBcl-2family members essential for initiating programmed cell death. Journal of CellScience,2002,115(Pt8),1567-1574.
    [61] Dowling AJ, Daborn PJ, Waterfield NR, et al. The insecticidal toxin makescaterpillars floppy (Mcf) promotes apoptosis in mammalian cells. CellularMicrobiology,2004,6(4),345-353.
    [62] Duchaud E, Rusniok C, Frangeul L, et al. The genome sequence of theentomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology,2003,21(11),1307-1313.
    [63] Ahantarig A, Chantawat N, Waterfield NR, et al. PirAB toxin from Photorhabdusasymbiotica as a larvicide against dengue vectors. Applied and EnvironmentalMicrobiology,2009,75(13),4627-4629.
    [64] Waterfield N, George Kamita S, Hammock BD, et al. The Photorhabdus Pir toxinsare similar to a developmentally regulated insect protein but show no juvenilehormone esterase activity. FEMS Microbiology Letters,2005,245(1),47-52.
    [65] Brown SE, Cao AT, Hines ER, et al. A novel secreted protein toxin from the insectpathogenic bacterium Xenorhabdus nematophila. Journal of Biological Chemistry,2004,279(15),14595-14601.
    [66] Brown S, Cao A, Dobson P, et al. Txp40, a ubiquitous insecticidal toxin protein fromXenorhabdus and Photorhabdus bacteria. Applied and Environmental Microbiology,2006,72,1653-1662.
    [67] He HJ, Snyder HA and Forst S. Unique organization and regulation of the mrxfimbrial operon in Xenorhabdus nematophila. Microbiology,2004,150,1439-1446.
    [68] Khandelwal P, Bhatnagar R and Banerjee N. Insecticidal activity associated with a17kDa pilin protein of Xenorhabdus nematophila. Molecular Biology of the Cell,2004,15,312A-312A.
    [69] Khandelwal P, Choudhury D, Birah A, et al. Insecticidal Pilin subunit from the insectpathogen Xenorhabdus nematophila. Journal of Bacteriology,2004,186(19),6465-6476.
    [70] Khandelwal P, Bhatnagar R, Choudhury D, et al. Characterization of a cytotoxic pilinsubunit of Xenorhabdus nematophila. Biochemical and Biophysical ResearchCommunications,2004,314(4),943-949.
    [71] Banerjee J, Singh J, Joshi MC, et al. The cytotoxic fimbrial structural subunit ofXenorhabdus nematophila is a pore-forming toxin. Journal of Bacteriology,2006,188(22),7957-7962.
    [72] Fink AL. Chaperone-mediated protein folding. Physiological Reviews,1999,79(2),425-449.
    [73] Joshi MC, Sharma A, Kant S, et al. An insecticidal GroEL protein with chitin bindingactivity from Xenorhabdus nematophila. Journal of Biological Chemistry,2008,283(42),28287-28296.
    [74] Massaoud MK, Marokhazi J, Fodor A, et al. Proteolytic enzyme production by strainsof the insect pathogen Xenorhabdus and characterization of anearly-log-phase-secreted protease as a potential virulence factor. Applied andEnvironmental Microbiology,2010,76(20),6901-6909.
    [75] Daborn PJ, Waterfield N, Blight MA, et al. Measuring virulence factor expression bythe pathogenic bacterium Photorhabdus luminescens in culture and during insectinfection. Journal of Bacteriology,2001,183(20),5834-5839.
    [76] Bowen DJ, Rocheleau TA, Grutzmacher CK, et al. Genetic and biochemicalcharacterization of PrtA, an RTX-like metalloprotease from Photorhabdus.Microbiology,2003,149(6),1581-1591.
    [77] Felfoldi G, Marokhazi J, Kepiro M, et al. Identification of natural target proteinsindicates functions of a serralysin-type metalloprotease, PrtA, in anti-immunemechanisms. Applied and Environmental Microbiology,2009,75(10),3120-3126.
    [78] Caldas C, Cherqui A, Pereira A, et al. Purification and characterization of anextracellular protease from Xenorhabdus nematophila involved in insectimmunosuppression. Applied and Environmental Microbiology,2002,68(3),1297-1304.
    [79] Ji D, Yi Y, Kang GH, et al. Identification of an antibacterial compound,benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenicbacteria. FEMS Microbiology Letters,2004,239(2),241-248.
    [80] Shrestha S and Kim Y. An entomopathogenic bacterium, Xenorhabdus nematophila,inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipaseA(2). Journal of Invertebrate Pathology,2007,96(1),64-70.
    [81] Chrisitine Jisso Song SS, Sony Shrestha, Yonggyun Kim. Bacterial metabolites of anentomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activityof phenoloxidase of the diamondback moth, Plutella xylostella. Journal ofMicrobiology and Biotechnology,201121((3)),317-322
    [82] Dunphy GB and Webster JM. Lipopolysaccharides of Xenorhabdus nematophilus(Enterobacteriaceae) and their haemocyte toxicity in non-immune Galleriamellonella (Insecta: Lepidoptera) Larvae. Journal of General Microbiology,1988,134(4),1017-1028.
    [83] Clarke DJ and Dowds BCA. Virulence mechanisms of Photorhabdus sp. strain K122toward wax moth larvae. Journal of Invertebrate Pathology,1995,66(2),149-155.
    [84] Dunphy GB and Webster JM. Interaction of Xenorhabdus nematophilus subsp.nematophilus with the haemolymph of Galleria mellonella. Journal of InsectPhysiology,1984,30(11),883-889.
    [85] Hoffmann JA, Reichhart JM and Hetru C. Innate immunity in higher insects. CurrentOpinion in Immunology,1996,8(1),8-13.
    [86] Kanost MR, Jiang H and Yu X-Q. Innate immune responses of a lepidopteran insect,Manduca sexta. Immunological Reviews,2004,198(1),97-105.
    [87] Tzou P, De Gregorio E and Lemaitre B. How Drosophila combats microbial infection:a model to study innate immunity and host–pathogen interactions. Current Opinion inMicrobiology,2002,5(1),102-110.
    [88] Soderhall K and Cerenius L. Role of the prophenoloxidase-activating system ininvertebrate immunity. Current Opinion in Immunology,1998,10(1),23-28.
    [89] Eleftherianos I and Revenis C. Role and importance of phenoloxidase in insecthemostasis. Journal of Innate Immunity,2011,3(1),28-33.
    [90] Cerenius L and S derh ll K. The prophenoloxidase-activating system in invertebrates.Immunological Reviews,2004,198(1),116-126.
    [91] Foukas LC, Katsoulas HL, Paraskevopoulou N, et al. Phagocytosis of Escherichia coliby insect hemocytes requires both activation of the Ras/mitogen-activated proteinkinase signal transduction pathway for attachment and beta3integrin forinternalization. Journal of Biological Chemistry,1998,273(24),14813-14818.
    [92] Ratcliffe NA and Gagen SJ. Studies on the in vivo cellular reactions of insects: anultrastructural analysis of nodule formation in Galleria mellonella. Tissue and Cell,1977,9(1),73-85.
    [93] Lavine MD and Strand MR. Surface characteristics of foreign targets that elicit anencapsulation response by the moth Pseudoplusia includens. Journal of InsectPhysiology,2001,47(9),965-974.
    [94] Bulet P, Hetru C, Dimarcq JL, et al. Antimicrobial peptides in insects; structure andfunction. Developmental and Comparative Immunology,1999,23(4-5),329-344.
    [95] Knappe D, Stegemann C, Nimptsch A, et al. Chemical modifications of shortantimicrobial peptides from insects and vertebrates to fight multi-drug resistantbacteria. Advances in Experimental Medicine and Biology,2009,611,395-396.
    [96] Gillespie JP, Kanost MR and Trenczek T. Biological mediators of insect immunity.Annual Review of Entomology,1997,42,611-643.
    [97] Bettencourt R, Lanz-Mendoza H, Lindquist KR, et al. Cell adhesion properties ofhemolin, an insect immune protein in the Ig superfamily. European Journal ofBiochemistry,1997,250(3),630-637.
    [98] Cornet B, Bonmatin JM, Hetru C, et al. Refined three-dimensional solution structureof insect defensin A. Structure,1995,3(5),435-448.
    [99] Hultmark D. Immune reactions in Drosophila and other insects: a model for innateimmunity. Trends in Genetics,1993,9(5),178-183.
    [100] Landon C, Sodano P, Hetru C, et al. Solution structure of drosomycin, the firstinducible antifungal protein from insects. Protein Science,1997,6(9),1878-1884.
    [101] Lapointe JF, Dunphy GB, Giannoulis P, et al. Cell lines, Md108and Md66, from thehemocytes of Malacosoma disstria (Lepidoptera) display aspects of plasma-freeinnate non-self activities. Journal of Invertebrate Pathology,2011,108(3),180-193.
    [102] Giannoulis P, Brooks CL, Dunphy GB, et al. Interaction of the bacteria Xenorhabdusnematophila (Enterobactericeae) and Bacillus subtilis (Bacillaceae) with thehemocytes of larval Malacosoma disstria (Insecta: Lepidoptera: Lasiocampidae).Journal of Invertebrate Pathology,2007,94(1),20-30.
    [103] Ji DJ and Kim Y. An entomopathogenic bacterium, Xenorhabdus nematophila,inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm,Spodoptera exigua. Journal of Insect Physiology,2004,50(6),489-496.
    [104] Park Y, Herbert EE, Cowles CE, et al. Clonal variation in Xenorhabdus nematophilavirulence and suppression of Manduca sexta immunity. Cellular Microbiology,2007,9(3),645-656.
    [105]杨君,王勤英,宋萍等.嗜线虫致病杆菌血腔毒素Tp40对大蜡螟幼虫体内酶活性和中肠组织的影响.昆虫学报,2008,51(6),43-50.
    [106] Jian H, Reid AP and Hunt DJ. Steinernema ceratophorum n. sp.(Nematoda:Steinernematidae), a new entomopathogenic nematode from north-east China.Systematic Parasitology,1997,37(2),115-125.
    [107]梅增霞,吴青君,张友军等.韭菜迟眼蕈蚊的生物学、生态学及其防治.昆虫知识,2003,40(5),396-398.
    [108]王勤英.嗜线虫致病杆菌杀虫蛋白的分离纯化及杀虫蛋白基因克隆:[博士学位论文].保定:河北农业大学,2004.
    [109]杨秀芬,刘峥,杨怀文等.拟双角斯氏线虫共生细菌的分离与鉴定.微生物学杂志,2007,27(5),14-18.
    [110]唐启义. DPS数据处理系统—实验设计、统计分析及数据挖掘.北京:科学出版社,2010.
    [111] Lindquist S and Craig EA. The heat-shock proteins. Annual Review of Genetics,1988,22(1),631-677.
    [112] Georgopoulos C and Welch WJ. Role of the major heat shock proteins as molecularchaperones. Annual Review of Cell Biology,1993,9(1),601-634.
    [113] Woo PCY, Leung PKL, Wong SSY, et al. groEL encodes a highly antigenic proteinin Burkholderia pseudomallei. Clinical and Diagnostic Laboratory Immunology,2001,8(4),832-836.
    [114] A Graham P. Heat shock proteins as regulators of the immune response. The Lancet,2003,362(9382),469-476.
    [115] Yoshida N, Oeda K, Watanabe E, et al. Protein function: chaperonin turned insecttoxin. Nature,2001,411(6833),44-44.
    [116] Kyte J and Doolittle RF. A simple method for displaying the hydropathic characterof a protein. Journal of Molecular Biology,1982,157(1),105-132.
    [117] Petersen TN, Brunak S, von Heijne G, et al. SignalP4.0: discriminating signalpeptides from transmembrane regions. Nature Methods,2011,8(10),785-786.
    [118] Saitou N and Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees. Molecular Biology and Evolution,1987,4(4),406-425.
    [119] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary geneticsanalysis using maximum likelihood, evolutionary distance, and maximum parsimonymethods. Molecular Biology and Evolution,2011,28(10),2731-2739.
    [120] Felsenstein J. Confidence limits in phylogenies: An apapproach using the bootstrap.Evolution,1985,39(4),783-791.
    [121] Beveridge TJ. Structures of gram-negative cell walls and their derived membranevesicles. Journal of Bacteriology,1999,181(16),4725-4733.
    [122] Zhou L, Srisatjaluk R, Justus DE, et al. On the origin of membrane vesicles ingram-negative bacteria. FEMS Microbiology Letters,1998,163(2),223-228.
    [123] Kolling GL and Matthews KR. Export of virulence genes and Shiga toxin bymembrane vesicles of Escherichia coli O157:H7. Applied and EnvironmentalMicrobiology,1999,65(5),1843-1848.
    [124] Keenan J, Day T, Neal S, et al. A role for the bacterial outer membrane in thepathogenesis of Helicobacter pylori infection. FEMS Microbiology Letters,2000,182(2),259-264.
    [125] Fiocca R, Necchi V, Sommi P, et al. Release of Helicobacter pylori vacuolatingcytotoxin by both a specific secretion pathway and budding of outer membranevesicles. Uptake of released toxin and vesicles by gastric epithelium. Journal ofPathology,1999,188(2),220-226.
    [126] Khandelwal P and Banerjee-Bhatnagar N. Insecticidal activity associated with theouter membrane vesicles of Xenorhabdus nematophilus. Applied and EnvironmentalMicrobiology,2003,69(4),2032-2037.
    [127] Sternberg MJ, Bates PA, Kelley LA, et al. Progress in protein structure prediction:assessment of CASP3. Current Opinion in Structural Biology,1999,9(3),368-373.
    [128] Henderson B. Integrating the cell stress response: a new view of molecularchaperones as immunological and physiological homeostatic regulators. CellBiochemistry and Function,2010,28(1),1-14.
    [129] Segal G and Ron EZ. Regulation and organization of the groE and dnaK operons inEubacteria. FEMS Microbiology Letters,1996,138(1),1-10.
    [130] Beckage STN and Federici B. Parasites and Pathogens of Insects. New York:Academic,1993,1-23.
    [131] Gupta AP, Orenberg SD, Das YT, et al. Lectin-binding receptors, Na+,K+-ATPase,and acetylcholinesterase on immunocyte plasma membrane of Limulus polyphemus.Experimental Cell Research,1991,194(1),83-89.
    [132] Kopácek P, Weise C and G tz P. The prophenoloxidase from the wax moth Galleriamellonella: purification and characterization of the proenzyme. Insect Biochemistryand Molecular Biology,1995,25(10),1081-1091.
    [133] Altincicek B, Linder M, Linder D, et al. Microbial metalloproteinases mediatesensing of invading pathogens and activate innate immune responses in theLepidopteran model host Galleria mellonella. Infection and Immunity,2007,75(1),175-183.
    [134] Mavrouli MD, Tsakas S, Theodorou GL, et al. MAP kinases mediate phagocytosisand melanization via prophenoloxidase activation in medfly hemocytes. Biochimicaet Biophysica Acta,2005,1744(2),145-156.
    [135] Marmaras VJ and Lampropoulou M. Regulators and signalling in insect haemocyteimmunity. Cellular Signalling,2009,21(2),186-195.
    [136] Aderem A and Underhill DM. Mechanisms of phagocytosis in macrophages. AnnualReview of Immunology,1999,17,593-623.
    [137] Fearon DT. Seeking wisdom in innate immunity. Nature,1997,388(6640),323-324.
    [138] Nappi AJ and Vass E. Melanogenesis and the generation of cytotoxic moleculesduring insect cellular immune reactions. Pigment Cell Research,1993,6(3),117-126.
    [139] Nappi AJ and Christensen BM. Melanogenesis and associated cytotoxic reactions:applications to insect innate immunity. Insect Biochemistry and Molecular Biology,2005,35(5),443-459.
    [140] Telfer WH and Kunkel JG. The function and evolution of insect storage hexamers.Annual Review of Entomology,1991,36,205-228.
    [141] Webb BA and Riddiford LM. Synthesis of two storage proteins during larvaldevelopment of the tobacco hornworm, Manduca sexta. Developmental Biology,1988,130(2),671-681.
    [142] Tojo S, Nagata M and Kobayashi M. Storage proteins in the silkworm, Bombyx mori.Insect Biochemistry,1980,10(3),289-303.
    [143] Phipps DJ, Chadwick JS and Aston WP. Gallysin-1, an antibacterial protein isolatedfrom hemolymph of Galleria mellonella. Developmental and ComparativeImmunology,1994,18(1),13-23.
    [144] Beresford PJ, Basinski-Gray JM, Chiu JK, et al. Characterization of hemolytic andcytotoxic Gallysins: a relationship with arylphorins. Developmental and ComparativeImmunology,1997,21(3),253-266.
    [145] Freitak D, Wheat CW, Heckel DG, et al. Immune system responses and fitness costsassociated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biology,2007,5(56), doi:10.1186/1741-7007-5-56.
    [146] Pauchet Y, Freitak D, Heidel-Fischer HM, et al. Immunity or digestion: glucanaseactivity in a glucan-binding protein family from Lepidoptera. Journal of BiologicalChemistry,2009,284(4),2214-2224.
    [147] Fabrick JA, Baker JE and Kanost MR. Innate immunity in a pyralid moth: functionalevaluation of domains from a beta-1,3-glucan recognition protein. Journal ofBiological Chemistry,2004,279(25),26605-26611.
    [148] Pauchet Y, Muck A, Svatos A, et al. Chromatographic and electrophoretic resolutionof proteins and protein complexes from the larval midgut microvilli of Manducasexta. Insect Biochemistry and Molecular Biology,2009,39(7),467-474.
    [149] Vogel H, Altincicek B, Glockner G, et al. A comprehensive transcriptome andimmune-gene repertoire of the lepidopteran model host Galleria mellonella. BMCGenomics,2011,12(308),1471-2164.
    [150] Wang Y and Jiang H. Binding properties of the regulatory domains in Manducasexta hemolymph proteinase-14, an initiation enzyme of the prophenoloxidaseactivation system. Developmental and Comparative Immunology,2010,34(3),316-322.
    [151] Zhao P, Li J, Wang Y, et al. Broad-spectrum antimicrobial activity of the reactivecompounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochemistryand Molecular Biology,2007,37(9),952-959.
    [152] Halwani AE, Niven DF and Dunphy GB. Apolipophorin-III and the interactions oflipoteichoic acids with the immediate immune responses of Galleria mellonella.Journal of Invertebrate Pathology,2000,76(4),233-241.
    [153] Pratt CC and Weers PM. Lipopolysaccharide binding of an exchangeableapolipoprotein, apolipophorin III, from Galleria mellonella. Biological Chemistry,2004,385(11),1113-1119.
    [154] Halwani AE and Dunphy GB. Apolipophorin-III in Galleria mellonella potentiateshemolymph lytic activity. Developmental and Comparative Immunology,1999,23(7-8),563-570.
    [155] Park SY, Kim CH, Jeong WH, et al. Effects of two hemolymph proteins on humoraldefense reactions in the wax moth, Galleria mellonella. Developmental andComparative Immunology,2005,29(1),43-51.
    [156] Mullen L and Goldsworthy G. Changes in lipophorins are related to the activation ofphenoloxidase in the haemolymph of Locusta migratoria in response to injection ofimmunogens. Insect Biochemistry and Molecular Biology,2003,33(7),661-670.
    [157] Samaraweera P and Law JH. Isolation, cloning and deduced amino acid sequence ofa novel glycoprotein from the haemolymph of the hawkmoth Manduca sexta. InsectMolecular Biology,1995,4(1),7-13.
    [158] Tan A, Tanaka H, Sato N, et al. Identification of novel tissue-specific proteins in thesuboesophageal body of the silkworm, Bombyx mori. Journal of Insect Biotechnologyand Sericology,2003,72(1),41-50.
    [159] Ketterman AJ, Saisawang C and Wongsantichon J. Insect glutathione transferases.Drug Metabolism Reviews,2011,43(2),253-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700