动力系统中的混沌行为及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多工程实际和科学研究问题中混沌现象已经成为一个无法避免的存在,因而对混沌的控制显得越来越重要。虽然自九十年代初以来,混沌控制研究得到蓬勃发展并取得了突破性的成果,但对混沌控制方法的研究还处在起步阶段,尚有大量的问题有待解决。本文将分别在扩大系统混沌窗口和抑制系统混沌这两个混沌控制方面进行研究。
     第一部分,本文对梅尔尼科夫理论进行拓展,得到了一种高维梅尔尼科夫方法的随机推广形式,并将这种方法应用于带慢变参数和弱反馈控制的非线性哈密顿系统在谐和和随机激励双重作用下的同宿分叉和混沌运动的分析中,同时利用数值试验进行了验证。数值结果和理论结果吻合得很好,证明本文的推广是有效的。结果表明,适当的随机激励可以使得系统出现混沌运动的参数阈值变化范围更大,从而系统的混沌运动更容易出现。
     第二部分,本文进行了混沌抑制的研究。在离散动力系统的混沌抑制方面,本文利用新的平衡点邻域线性化方法对改进OGY方法进行了修正,提出了新的控制启动条件和控制反馈参数。利用此方法对一类在zy平面上受到可变外部磁场作用的Bloch系统的混沌运动进行了控制,结果表明,方法成功地抑制了系统的混沌运动,说明此方法的改进是合理和有效的。
     在时间连续动力系统方面,基于Krasovskii理论本文提出了一种的新优化控制方法,并利用这一方法对一类具有双奇怪吸引子的Newton-Leipnik(N-L)系统进行了混沌抑制,结果表明一旦控制启动,系统行为能够迅速渐近稳定于目标平衡点。与一类bang-bang控制方法相比,本文的方法具有更好的抑制效果和更灵活的抑制目标选择。
     本文的创新之处体现在三个方面。一是提出了一种高维随机梅尔尼科夫推广方法,这一方法使得我们顺利利用合适的噪声扩大系统混沌窗口成为可能。二是在一新的平衡点邻域线性化方法基础上进行了OGY方法的修正,实例控制表明本文进行的修正不仅能使受控系统具有更理想的输出,同时使得输出有更灵活的可调控性。第三就是在Krasovskii理论的基础上提出了一种新的优化控制方法,这一方法使得我们可以根据实际需要随意改变系统状态,并能够以理想的效果将系统混沌运动控制到目标态上去。
Chaos exists and acts an important role in many engineering application and scientific research. It becomes more and more important to controlling chaos. Although studies on the controlling chaos have made a rapid progress since 1990s, the exploration on the methods of controlling chaos still stay at the early stage and there are many problem to be resolved. In this dissertation, the studies are carried out on two aspects: extending the chaos window and suppressing chaos.
    In the first part, an extended form of the stochastic Melnikov method is presented and applied in analysis on the homoclinic bifurcation and chaotic behavior of a nonlinear Hamiltonian system with weakly feed-back control and with both harmonic and Gaussian white noisy excitations. Numerical simulation is used to test the form and the results agree well with the theory, which proves the rationality of the form. The results reveal that the addition of stochastic excitation can make the parameter threshold value for the rising of the chaotic motions vary in a wider region, and so, the chaotic motions will appear easily in the system.
    In the second part, the chaos suppression is studied. In discrete dynamical systems, a new OGY strategy with new control start condition and feed-back control parameters is proposed. According to the new strategy, the chaotic motions of a Bloch wall, which is located in the zy plane experienced the action of an alternating external magnetic field, are analyzed and controlled. The results show that the chaotic motions of the Bloch wall are suppressed successfully, that is, the new strategy is successful and effective.
    In a time-continuous dynamical system, a new optimal control scheme is proposed base on the Krasovskii theory and is utilized to control the chaos in the Newton-Leipnik system which has double strange attractors. It is found that the N-L system can converge onto a selected fixed point rapidly and perfectly through asymptotic mode. Compared with a bang-bang control method, more effective control and flexible choice on control target are shown with the present scheme.
    
    
    
    The innovation of the present dissertation can be shown on three aspects. One is the stochastic extended form of the high-dimension Melnikov method which make it possible to choose proper noise excitation to extend the chaos window of a dynamical system. The following one is a new OGY strategy proposed by a new linearization method used in the neighborhood of fixed points, which provide a easy and effective way to control chaos in a discrete dynamical system. The last one is a new optimal control method based on Krasovskii theory, which makes it possible to drive and change the state of a system easily and control the chaotic motions of a system effectively.
引文
[01] Moon, Francis C. Chaotic vibratons, an introduction for applied scientists and engineers. John Wiley & Sons, New York, 1987.
    [02] Devaney, Robert L. An introduction to chaotic dynamical systems. Benjamin/Cummings, Menlo Park, California, 1986.
    [03] J. Guckenheimer, P. Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York, 1983.
    [04] Lichtenberg, Allan J., and M. A. Lieberman. Regular and stochastic motion. Springer-Verlag, New York, 1983.
    [05] Lorenz, Edward N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963,20:130-141.
    [06] Stewart Lan. Mathematics: the Lorenz attractor exists. Nature, 2000, 406:948-949.
    [07] C. Grebogi, Edward Ott, and James A, Yorke. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 1987, 238:632-638.
    [08] Bockman, Stuart Fink. Stability and control of discontinuous systems and estimation for chaotic systems. Stanford University, 1989.
    [09] V. I. Osedelec. A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems. Trudy Moskov, Mat. Obshch, 1968, 19:197-231.
    [10] Shaw, Robert. Strange attractors, chaotic behavior, and information flow. Z. Naturforsch, 1981, 36a:80-112.
    [11] J. P. Eckmann, and D. Ruelle. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 1985,57(3) , part 1:617-656.
    [12] J. P. Eckmann, and D. Ruelle. Addendum: Ergodic theory of chaos and strange attractors. Reviews of modern physics, 1985, 57(4) : 617-656.
    [13] Mandelbrot, Benoit B. Fractals: form, chance, and dimension. W. H. Freeman, San Francisco, 1977.
    
    
    [14] M. Henon. A two-dimensional mapping with a strange attractor. Comm. Math. Phys., 1976, 50: 69-77.
    [15] Stengel, Robert F. Stochastic optimal control: theory and application. John Wiley & Sons, New York, 1986.
    [16] Bryson, A. E., Jr., and Y. C. Ho. Applied optimal control. Hemisphere publishing, Washington D. C., 1975.
    [17] D. P. Atherton. Analysis and design of nonlinear feedback systems. IEE Proc., 1981, 128(5), Pt. D:173-180.
    [18] M. Vidyasagar. Nonlinear systems analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
    [19] Gelb, Arthur and Wallace E. Vander Velde. Multiple-input describing functions and nonlinear system design. Mcgraw-Hill, New York, 1968.
    [20] Gelb, Arthur, Joseph F. Kasper, etc. Applied optimal estimation. Tenth printing 1988. M. I. T. Press, Cambridge, Massachusetts, 1974.
    [21] Ljung, Lennart. System identification: theory for the user. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
    [22] 胡岗,萧井华等。混沌控制。上海科技教育出版社,上海,2000。
    [23] 方锦清.非线性系统中混沌的控制与同步及其应用前景(一).物理学进展,1996,16(1):1-74.
    [24] 方锦清.非线性系统中混沌的控制与同步及其应用前景(二).物理学进展,1996,16(2):137-202.
    [25] A. Hubler, Helv. Phys. Acta, 1989, 62: 343.
    [26] 陈立群,刘延柱.混沌的抑制研究进展综述.力学进展,1998,28(3):299-309.
    [27] 陈立群,刘延柱.控制混沌的研究现状与展望.上海交通大学学报,1998,32(1):108-114.
    [28] W. L. Ditto and L. M. Pecora. Scientific American. 1993:62.
    [29] M. I. Ogozofek. IEEE Trans, Circuits Syst. 1993, 40:693.
    [30] L. M. Pecora, T. L. Carroll. Phys Rev Lett, 1990, 64:821.
    
    
    [31] L. M. Pecora, T. L. Carroll. Phys Rev A, 1991, 44:2374.
    [32] E. Ott, Grebogi C, Yorke J A. Phys Rev Lett, 1990, 64:1196.
    [33] E. Ott. Coping with chaos: analysis of chaotic data and the exploitation of chaotic systems. John Wiley and Sons, inc., New York, 1996.
    [34] T. Kapitaniak. Controlling chaos. Academic Press, Harcourt Brace & Company Publisher, London, 1996.
    [35] G. R. Chen and X. N. Dong. From chaos to order. World Scientific, Singapore, 1998.
    [36] H. G. Schuster. Handbook of chaos control. Wiley-VCH Verlag GmbH, Weinheim, 1999.
    [37] T. Shibrot, Ott E. Grebogi C., and Zyorke J. A. Phys. Rev. Lett., 1990, 65:3215.
    [38] K. M. Cuomo and Oppenheim A. V. Phys. Rev. Lett. 1993, 71:65.
    [39] K. S. Halle, Wu C. W., and Chua L. O. Int. J. Bifurcation and chaos, 1993, 3:469.
    [40] Schweizer J. and Hasler M. IEEE ISCAS, 1996, 963:108.
    [41] Xiao J. H., Hu G, etc. Phys. Rev. Lett., 1998, 81:5552.
    [42] Zhang Y, Dai M., etc. Phys. Rev. Lett., 1998, E58:3022.
    [43] Ditto W L, Rauseo S N, Spano M L. Phys Rev Lett, 1990, 65:3211.
    [44] Matsamoto K, Tsuda I. Noise-induced order. J Stat Phys. 1983, 31: 87-106.
    [45] Herzel H, Ebeling W, Schulmeister T. Nonumiform chaotic dynamics and effects of noise in biochemical systems. Z Naturforsch, 1987, 42:136-142.
    [46] Herzel H. Stabilization of chaotic orbits by random noise. Z Angew Math Mech, 1988,68:582-583.
    [47] Fahy S, Hamann D R. Transition from chaotic to nonchaotic behavior in randomly driven systems. Phys Rev Lett, 1992, 69:761-764.
    [48] Rajasekar S, Lalshmanan M. Controlling of chaos in Bonhoeffer-van dol Pol oscillator. Int J Bifur Chaos, 1992, 2:201-204.
    [49] Rajasekar S, Lalshmanan M. Algorithms for controlling chaotic motion: application for BVP oscillator. Phys D, 1993, 67:282-300.
    [50] Herzel H, Ebeling W. The decay of correlations in chaotic maps. Phys Lett A,
    
    1985,111:1-4.
    [51] Herzel H, Pompe B. Effects of noise on a nonuniform chaotic map. Phys Lett A, 1987, 122: 121-125.
    [52] Molgedey L, Schuchart J, Schuster H G. Suppressing chaos in neural networks by noise. Phys Rev Lett, 1992, 69:3917-3919
    [53] Kapitaniak T. Analytical explanation of the phenomena of loss of chaos in noisy systems. Nonlin Vib Probl, 1993,25:173-178.
    [54] Freidlin M I, Wentzell A D. Random perturbations of dynamical systems. Springer, 1984.
    [55] 朱位秋.随机振动.北京:科学出版社,1998.
    [56] Kapitaniak T. Chaos in systems with noise. World Scientific, 1990.
    [57] Woo C H. Temporary order amid chaos. Phys Rev A, 1984,29:2866-2870.
    [58] Wiesenfeld K, McNamare B. Period-doubling systems as small-signal amplifiers. Phys Rev Lett, 1985, 55:13-16.
    [59] Wiesenfeld K, McNamare B. Small-signal amplification in bifurcating dynamical systems. Phys Rev A, 1986, 33:429-642.
    [60] Svensmark B, Samuelsen M R. Influence of perturbations on period-doubling bifurcation. Phys Rev A, 1987, 36:2413-2417.
    [61] Brynat P, Wiesenfeld K. Suppression of period-doubling and nonlinear parametric effect in periodically perturbed systems. Phys Rev A, 1986, 33:2525-2543.
    [62] Sethna J P, Siggla P D. Phys D, 1984, 11:193.
    [63] Svensmark B, Hansen Y B, Pedersen N F. Influence of noise and near-resonant perturbations in Losephson junctions. Phys Rev A, 1987a, 35:1457-1459.
    [64] Svensmark B, Samuelsen M R. Perturbed period-doubling bifurcation I: theory. Phys Rev B, 1990,41:4181-4194.
    [65] Eriksen G F, Hansen J B. Perturbed period-doubling bifurcation II: experiments on Josphson junctions. Phys Rev B, 1990, 41:4189-4194.
    [66] Iracane D, Bamas P. Two-frequency wiggler for bitter control of free-electron-laser dynamics. Phys Rev Lett, 1991, 67:3086-3089.
    
    
    [67] Vohra S T, Fabiny L, Wiesenfeld K. Observation of induced subcritical bifurcation by near-resonant perturbations. Phys Rev Lett, 1994, 72:1333-1336.
    [68] Ding M, Grebogi C, Ott E. Evolution of a attractors in quasiperiodically forced systems: from quasiperiodic to strange nonchaotic to chaotic. Phys Rev A, 1989, 39:2593-2598.
    [69] Alekseev V, Loskutov A Yu. Dokl Akad Nauk SSSR, 1987a, 293:346.
    [70] Alekseev V, Loskutov A Yu. Control of system with a strange attractor through periodic parametric action. Sov Phys Dokl, 1987b, 32:270-271.
    [71] Pettini M. Controlling chaos through parametric excitations. In: Lima R, Streit L. Mendes R V, eds. Dynamics and Stochastic Processes. Springer, 1988:242-250.
    [72] Lima R, Pettini M. Suppression of chaos by resonant parametric perturbations. Phys Rev A. 1991,41:726-733.
    [73] Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perburbations. Phys Rev Lett, 1991, 66:2545-2549.
    [74] Liu Y, Leite J R R. Control of Lorenz chaos. Phys Lett A, 1994, 185:35-37.
    [75] 张辉,吴淇泰.受迫Duffing振子中混沌的控制.陈滨主编:动力学、振动与 控制的研究。北京:北京大学出版社,1994:99-103.
    [76] Shaw S W. The suppression of chaos in periodically forced oscillations. In: Schiehlen W Ed. Nonlinear Dynamics in Engineering Systems. Springer, 1990:289-296.
    [77] Chacon R. Bejarno J D. Routes to suppressing chaos by weak periodic perturbations. Phys Rev Lett, 1993, 71:3103-3106.
    [78] Salerno M. Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave field. Phys Rev B, 1991, 44:2720-2726.
    [79] Loskutov A Yu. Dynamics control of chaotic systems by parametric distichastiza. J Phys A, 1993, 23:4581-4594.
    [80] Loskutov A Yu, Shishmarev A I. Control of dynamical systems behavior by parametric perturbations: an analytic approach. Chaos, 1994,4:391-395.
    [81] Qu Z L, Hu G, Yang G J, Qin G R. Phase effect in taming nonautonomous chaos.
    
    Phys Rev Lett, 1994, 74:1736-1739.
    [82] Fronzoni L, Giocondo M, Pettini M. Experimental evidence of suppression of chaos by resonant parametric perturbations. Phys Rev A, 1991, 43:6483-6487.
    [83] Marali K, Lakshmanan M. Controlling of chaos in the driven Chua's circuit. J Circ Syst Comput, 1993, 3:125-137.
    [84] Asevedo A, Rezende S M. Controlling chaos in spin-wave instabilities. Phys Rev Lett, 1991, 66:1342-1345.
    [85] Ding W X, She H Q, Huang W, Yu C X. Controlling chaos in discharge plasma. Phys Rev Lett, 1944, 72:96-99.
    [86] 李蓉,秦光戎,祝恒江等.控制信号对控制混沌作用的实验研究.中国科学,1995,25:851-857.
    [87] 李蓉,祝恒江,秦光戎.互感耦合控制混沌实验.非线性动力学学报,1995,2:83-91.
    [88] 戈新生,陈立群.用弱周期摄动抑制软弹簧Duffing振子的混沌.非线性动力学学报,1997,4:279-283.
    [89] Kapitaniak T. The loss of chaos in a quasiperiodically forced nonlinear oscillator. Int J Bifur Chaos, 1991, 1:357-363.
    [90] Kivshar Y S, Rodelsperger F, Benner H. Suppression of chaos by nonresonant parametric perturbations. Phys Rev E, 1994, 49:319-324.
    [91] Cai D, Bishop A R, Gronbech-Jensen N, Malomed B A. Stabilizing a breather in the damped nonlinear Schrodinger equation driven by two frequencies. Phys Rev E, 1994, 49:1000-1002.
    [92] Kapitaniak T. Controlling chaotic oscillators without feedback. Chaos, Soliton & Fractals, 1992, 2:519-530.
    [93] 陈立群.关于动力吸混沌器的设计.见:非线性动力学、非线性振动和运动稳定性.北京:中国科学技术出版社,1995:205.
    [94] Kapitaniak T. Kocarev L, Chua L O. Controlling chaos without feedback and control signals. Int J Bifur Chaos, 1993a, 3:459-468.
    [95] Beck C, Roepstoff G. Effect of phase space discretization on the long-time
    
    behavior of dynamical systems. Phys D, 1987, 25:173~180.
    [96] Lorenz E N. Computational chaos: a prelude to computational instability. Phys D, 1987, 25:299-317.
    [97] Grebogi C, Ott E, Yorke J A. Roundoff-induced periodicity and the correlation dimension of chaotic attractors. Phys Rev A, 1988, 33:3688-3692.
    [98] Coless R M, Essex C, Nerenberg M A H. Numerical methods can suppress chaos. Phys Lett A, 1991, 157:27-36.
    [99] Guemez J, Matias M A. Control of chaos in unidimensional maps. Phys Lett A, 1993, 181:29-32.
    [100] Sole R V, de la Prida L. Controlling chaos in discrete neural networks. Phys Lett A, 1995, 199:65-69.
    [101] Guemez J, Gutierrez J M, Iglesias A, Matias M A. Suppression of chaos through changes in the system variables: transient chaos and crises. Phys D, 1994, 79:164-173.
    [102] 陈立群,戈新生.关于抑制混沌的变量比例反馈方法.非线性动力学学报,1996,3:241-245.
    [103] Matias M A, Guemez J. Stabilization of chaos by proportional pulses in the system variables. Phys Rev Lett, 1994, 72:1455-1458.
    [104] 成雁翔,陈式刚,王光瑞.周期脉冲控制Rossler系统.科学通报,1995,40:1748-1750.
    [105] Glass L, Zeng W. Bifurcation in flat-topped maps and the control of cardiac chaos. Int J Bifur Chaos, 1994, 4:1061-1067.
    [106] Blazejcyzk B, Kapitaniak T, Wojewoda J, Brindly J. Controlling chaos in mechanical systems. Appl Mech Rev, 1993, 46:385-393.
    [107] 吴淇泰,张辉.混沌运动的控制.力学进展,1995,25:392-399。
    [108] Lindner J F, Ditto W L. Removal, suppression, and control of chaos by nonlinear design. Appl Mech Rev, 1995, 48:795-807.
    [109] 胡海岩.力学系统的主动控制.力学进展,1996,26:453-463.
    [110] Lyapunov A. Problem general de la stabilite du mouvement. Annals of
    
    mathematical studies, vol.17, Princeton University Press, Princeton, NJ, 1949.
    [111] Parker T. S. and Chua L. O. Chaos: a tutorial for engineers. Proceedings of the IEEE, 1987, 75(8) :982-1008.
    [112] Wolf, Alan, Jack B Swift, Harry L. Swinney and John A. Vastano. Determining Lyapunov exponents from time series. Physica, 1985, 16D:285-317.
    [113] Greene John M. and Jin-Soo Kim. The calculation of Lyapunov spectra. Physica. 1987, 24D:213-225.
    [114] Goldhirsch, Isaac, Pierre-Louis Sulem and Steven A. Orszag. Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica, 1987, 27D: 311-337.
    [115] Guckenheimer, John. Toolkit for nonlinear dynamics. IEEE Transactions on Circuits and Systems, 1983, CAS-30(80) :586-590.
    [116] Devaney R. L. An introduction to chaotic dynamical systems. 2nd edn., Addison-Wesley, New York, 1989.
    [117] Rasband S. N. Chaotic dynamics of nonlinear systems. Wiley, Chichester, 1990.
    [118] Carbonell F., J. C. Jimenez, R. Biscay. A numerical method for the computation of. the Lyapunov exponents of nonlinear ordinary differential equations. Applied Mathematics and Computation, 2002,131:21-37.
    [119] Coddington E. A., N. Levinson. Theory of ordinary differential equations. McGraw-Hill, New York, 1955.
    [120] Barker T., R. Bowles, W. Williams. Development and application of a local linearization algorithm for integration of quaternion rate equations in real-time flight simulation problems. NASA TN-D-7347, 1973.
    [121] Smith J. Mathematical modeling and digital simulations for engineers and scientists. Wiley, New York, 1977.
    [122] Fjeld M., S. Aam. An implementation of estimation techniques to a hydrological model for prediction of runoff to a hydroelectric power station. IEEE Trans. Autom. Control, 1980,AC-25:151-163.
    [123] Ozaki T. A bridge between nonlinear time series models and nonlinear stochastic
    
    dynamical systems: a local linearzation approach. Statistica Sinica, 1992, 2: 113-135.
    [124] Ramos J. I., C. M. Garcia-Lopez. Piecewise-linearized methods for initial-value problems. Appl. Math. Vomput., 1997, 82: 273-302.
    [125] Hochbruck M., V. Lubich. On krylov subspace approximations to the matrix exponential operator. SIAM Numer. Anal., 1997, 34: 1911-1925.
    [126] Hochbruck M., C. Lubich, H. Selhofer. Exponential integrators for large systems of differential equations. SIAM J. Sci. Comp, 1998, 19: 1552-1574.
    [127] MacGregor R. J. Neural and brain modeling. Academic Press, New York, 1987.
    [128] Bower J. M., D. Beeman. The book of GENESIS: exploring realistic neural model with the general neural simulation system. Springer, Berlin, 1995.
    [129] Jimenez J. C., R. Biscay, C. Mora, L. M. Rodriguez. Dynamic properties of the local linearization method for initial-value problems. Appl. Math. Comput., 2002a, 126:63-81.
    [130] Jimenez J. C., R. Biscay. Approximation of continuous time stochastic processes by the local linearization method revisited. Stochast. Anal. Appl., 2002b, 20(1) : 105-121.
    [131] Biscay R., J. C. Jimenz, J. Riera, P. Valdes. Local linearization method for the numerical solution of stochastic differential equations. Ann. Inst. Sata. Math., 1996,48:631-644.
    [132] Sidje R. B. EXPOKIT: software package for computing matrix exponentials. AMC Trans. Math. Software, 1998, 24:130-156.
    [133] Jimenez J. C. A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equatons. Research Memo. No. 772, The Institite of Statistical Mathematics, Tokyo, 2000.
    [134] Dieci L., R. D. Russell, E. S. Van Vleck. On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal., 1997, 34: 402-423.
    [135] Dieci L., E. S. Van Vleck. Computing of a few Lyapunov exponents for
    
    continuous and discrete dynamical systems. Appl. Numer. Math., 1995, 17: 275-291.
    [136] Kevorkian J and Cole JD. Perturbation Methods in Applied Mechanics. New York: Springer-Verlag, 1981.
    [137] Allen JS, Samelson RM and Newberger PA. Chaos in a model of forced quasi-geostrophic flow over topography: An application of Melnikov's method. J Fluid Mech, 1991,226: 511-547
    [138] Thompson JMT, Rainey RCT and Soliman MS. Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Trans of the Royal Soc of LondonA, 1990,332: 149-167.
    [139] Yim SCS and Lin H. Probabilistic analysis of a chaotic dynamical system. Applied Chaos, Kim JH and Stinger J(Eds), New York: Wiley, NY, 1992.
    [140] Frey M and Simiu E. Noise-induced chaos and phase space flux. Physica D, 1993, 63: 321-340.
    [141] Xie WM. Effect of noise on chaotic motion of buckled column under periodic excitation. ASME Nonlinear and Stochastic Dynamics, 1994, AMD-Vol 192/DE-Vol 73:215-225.
    [142] Lin H and Yim SCS. Analysis of a nonlinear systems exhibiting chaotic, noisy chaotic and random behaviors. ASME Journal of Applied Mechanics, 1996, 63:509-516.
    [143] Melnikov, V. K. On the stability of the center for time periodic perturbations. Trans. Moscow Math., 1963, 12:1-57.
    [144] Arnold V. I. Instability of dynamical systems with many degrees of freedom. Sov. Math. Dokl, 1964, 5:581-585.
    [145] Holmes P. J. A nonlinear oscillator with a strange attractor. Phil. Trans. Roy. Soc. A, 1979,292:419-448.
    [146] Salam F. M. A. The Melnikov technique for highly dissipative systems. SIAM J. App. Math., 1987, 47: 232-243.
    [147] Chow S. N., Hale J. K. and Mallet-Paret J. An example of bifurcation to
    
    homoclinic orbits. J. Diff. Eqns., 1980, 37: 351-373.
    [148] Holmes P. J. and Marsden J. E. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Comm. Math.l Phys., 1982a, 82: 523-544.
    [149] Holmes P. J. and Marsden J. E. Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys., 1982b, 23: 669-675.
    [150] Holmes P. J. and Marsden J. E. Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J., 1983, 32: 273-309.
    [151] Robinson C. Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal., 1983, 14: 847-860.
    [152] Wiggins S. and Holmes P. J. Homoclinic orbits in slowly varying oscillators. SIAM J. Math. Anal., 1987, 18: 612-629.
    [153] Wiggins S. A generalization of the method of Melnikov for detecting chaotic invariant sets. Caltech preprint, 1986.
    [154] Wiggins S. The orbit structure near a transverse homoclinic torus. Caltech preprint, 1986.
    [155] Meyer K. R. and Sell G. R. Homoclinic orbits and Bernoulli bundles in almost periodic systems. Univ. of Cincinnati preprint, 1986.
    [156] Scheurle J. Chaotic solutions of systems with almost periodic forcing. ZAMP, 1986,37: 12-26.
    [157] Palmer K. J. Exponential dichotomies and transversal homoclinic points. J. Diff. Eqns., 1984, 55: 225-256.
    [158] Greundler J. The existence of homoclinic orbits and the method of Melnikov for systems in Rn. SIAM J. Math. Anal., 1985,16: 907-931.
    [159] Wiggins Stephen. Global bifurcations and chaos. Now York: Springer-Verlag, 1990.
    [160] Leigh J. R. Applied control theory. Peter Peregrinus Ltd., New York, 1982.
    [161] McDonald A. C. and H. Lowe. Feedback and control systems. Reston Publishing Co., Inc., Reston, VA, 1981.
    
    
    [162] Dyson F. Infinite in all directions. Harper and Row, New York, 1988.
    [163] 郝柏林。从抛物线谈起--混沌动力学引论。上海科技教育出版社,1995。
    [164] Takens F. In dynamical system and turbulence. Edited by D. Rand and L. S. Young, Springer-Verlag, Berlin, 1981.
    [165] Packard N. H. et al. Phys. Rev. Lett., 1980,45: 712.
    [166] Romeiras F. J., C. Grebogi, E. Ott and W. P. Dayawansa. Controlling chaotic dynamical systems. Physica D, 1992, 58: 165-192.
    [167] Zhao H., Y. H. Wang and Z. B. Zhang. Phys. Rev., 1998, E57: 1.
    [168] Ogata K. Control engineering. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1981.
    [169] Van Wyk M. A. and W.-H Steeb. Chaos in Electronics. Kluwer Academic Publishers, Norwell MA, 1997.
    [170] Jeanine Smallwood. Chaos control of the Henon map and an impact oscillator by the Ott-Grebogi-Yorke method. The Nonlinear Journal, 2000, 2: 37-44.
    [171] Hubinger B., R. Doerner and W. Martienssen. Local control of chaotic motion. Z. Phys. B: Condens Matter, 1993, 90: 103-106.
    [172] Okuno H. and T. Homma. Chaotic oscillations of domain wall in non-equilibrium state. IEEE Trans. Magn., 1993, 29: 2506-2511.
    [173] Okuno H., Y. Sugitani and T. Homma. Bifurcation diagram and large energy dissipation caused by chaotic domain-wall motion. IEEE Trans Magn., 1994, 30: 4305-4307.
    [174] Badescu C. S., Margareta Ignat and S. Oprisan. On the chaotic oscillations of Bolch walls and their control. Chaos, Solitons & Fractals, 1997, 8(1) : 33-43.
    [175] Malozemoff A. P. and J. C. Slonczewski. Magnetic domain walls in bubble materials. Academic Press, New York, 1979.
    [176] Tian Yu-Chun, Moses O. Tade and David Levy. Constrained control of chaos. Physics Letters A, 2002, 296: 87-90.
    [177] Chen G, X. Dong. IEEE Trans. CAS I, 1993, 40: 591.
    [178] Pyragas K. Phys. Lett. A, 1992, 170: 421.
    [179] Jackson E. A. and I. Grosu. Physica D, 1995, 85: 1.
    
    
    [180] Breeden J. L. Phys. Lett. A, 1994, 190: 264.
    [181] Tian Yu-Chun, M. O. Tade. Chaos, Solitons & Fractals, 2000, 11: 1029.
    [182] M. T. Yassen. The optimal control of Chen chaotic dynamical system. Applied Mathematics and Computation, 2002, 131: 171-180.
    [183] L. M. Hocking. Optimal control and introduction to the theory with applications. Clarendon Press, Oxford, 1991.
    [184] T. L. Liao, S. H. Lin. Adaptive control and synchronization of Lorenz systems. J. Franklin Inst., 1999, 336: 925-937.
    [185] H. N. Agiza, M. T. Yassen. Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A, 2001, 278: 191-197.
    [186] F. L. Lewis, V. L. Syrmos. Optimal control. John Wiley and Sons, New York, 1995.
    [187] R. B. Leipnik, T. A. Newton. Phys. Lett. A, 1981, 86: 63.
    [188] T. LoFaro. Int. J. Bifur. Chaos, 1997, 7: 2723.
    [189] L. E. Keshet. Mathematical models in biology. Random House, New York, 1988.
    [190] N. Krasovskii. Problems in the stabilization of controlled motion. In: I. G. Malkin (Ed.), Theory of stability of motion, Nauka, Moscow, 1969.
    [191] Stewart G. W. Perturbation bounds for the QR factorization of a matrix. SIAM J. Numer. Anal., 1977, 14: 509-518.
    [192] Wang Shuanglian, Guo Yimu, Gan Chunbiao. Noise-induced chaotic motions in Hamiltonian systeme with slow-varying parameters. Acta Mechanica Sinica, 2001, 17(3) : 281-288.
    [193] Minoru Y. and Shigeru K. Chaos control using noise. Materials Science & Engineering C, 2000, 12: 63-66.
    [194] Liu W. Y, Zhu W. Q. and Huang Z. L. Effect of bounded noise on chaotic motion of Duffing oscillator under parametric excitation. Chaos, Solitons & Fractals, 2001, 12:527-537.
    [195] Shyi-Kae Y, Chieh-Li C. and Her-Teng Y. Control of chaos in Lorenz system. Chaos, Solitons & Fractals, 2002, 13: 767-780.
    
    
    [196] Tzuyin W. and Min-Shin C. Chaos control of the modified Chua's circuit system. Physica D,2002,164:53-58.
    [197] Chaohong Cai, Zhenyuan Xu, Wenbo Xu and Bin Feng. Notch filter feedback control in a class of chaotic systems. Automatica, 2002, 38: 695-701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700