RLC电路弹簧耦合系统非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术的发展,大量的电、磁、机械耦合系统得到广泛应用,这类机电耦合系统存在着丰富的非线性动力学现象,对其进行深入地研究,掌握系统中电路子系统和机械子系统及全系统的动力学规律,可以提高系统运行的稳定性及安全性。
     应用Lagrange-Maxwell方程建立了一个RLC电路与弹簧耦合系统的多自由度动力学模型,充分考虑了系统的动能、势能、磁能和电场能,记入了系统的耗散做功和非保守的广义力的影响。运用非线性振动理论对该系统的单自由度模型、双自由度模型和三自由度模型分别进行动力学分析。发现在单自由度系统中,系统的固有频率随极板间距增大而增大,随极板面积和线性电感系数的增大而减小;系统的响应曲线存在着“跳跃”现象,电阻和电感的非线性,能改变系统响应曲线的软硬特性;用级数法得到的结果与龙格库塔法得到的结论相吻合;采用Lindstedt-Poincare方法可以迅速而准确地分析系统的稳定边界,极板间距的取值决定了阻尼和弹簧刚度的取值范围。对于具有2:1内共振关系的双自由度系统,两个模态之间出现了能量传递,在满足系统的双重共振ω2≈2ω1且?≈ω2的情况下,幅频响应曲线出现了“饱和”现象;电感的非线性,在双重共振ω2≈2ω1且?≈ω1的情况下,能在共振区的一侧激起新的振动,在双重共振ω2≈2ω1且?≈ω2的情况下,改变了响应曲线的拓扑结构;无论是电阻非线性还是电感非线性,都会抑制两个模态的振动;改变系统参数,振幅和共振区的大小会发生相应的变化,但两个模态对参数变化的响应程度是不一样的,可以通过一个模态控制另一个模态。对于三自由度系统,改变外激励和系统参数,能使三个模态的振幅发生变化。电路系统的固有频率随极板间距的增大而增大,随极板面积和电感的增大而减小。机械系统的固有频率随极板重量的增大而减小,随弹簧刚度的增大而增大。改变调谐值,能使系统响应的拓扑结构发生变化,在一些情况下,三自由度系统出现了与二自由度系统相近的动力学现象
     在本系统中,电极板的振幅和电量的大小都可以被控制在安全的范围之内,从而保证系统的安全性,也可以利用其特有的“饱和”现象,开发出新型的减振器。图139;参58
With the development of electronic technology, more and more coupled systems of electricity-magnetism-mechanism are used widely. These coupled systems have abundant non-linear dynamics phenomena. In order to improve stability and security of operation of these systems, we ought to study these systems in detail.
     Multi-degrees of freedom dynamics model of coupled RLC circuit and spring system is established by means of the Lagrange-Maxwell equation, considering the kinetic energy, the potential energy, the magnetic energy and electrical energy, the dissipation function and the influence of the non-conservative generalized force. Using the nonlinear oscillation theory to analyze single degree of freedom model, double degrees of freedom model and three degrees of freedom model. For single degree of freedom systems, with the increasing of plate distance, nature frequency of the system enlarge; with the increasing of plate area and linear inductance coefficient, nature frequency of the system decreases. The jump phenomenon is found in these systems. The non-linearity of resistance and inductance can change the nonlinear stiffness characteristic of response curves, and the results of the series method are in good agreement with the results of Runge-Kutta method. Based on the method of Lindstedt-Poincare, the stability of the system is analyzed, the values of damping and stiffness of spring can be effect by the value of plate distance. For double degree of freedom system, two coupled modals are all excited and vibrated; energy is transformed between two modals. The saturation phenomenon appears when the system meets double resonances conditionω2≈2ω1and ?≈ω2. In nonlinear inductance system, new vibrations are excited in one side of the response curves when the system meets double resonances conditionω2≈2ω1 and ?≈ω1. In double resonances conditionω2≈2ω1and ?≈ω2, with the changing of parameters of the system, amplitudes of certain modal can be changed. Changing the excitation, a similar saturation phenomenon can be found. When the parameters and resonant conditions are equal, nonlinear inductance can change the topology structure of response curves. Changing the nonlinear resistance and the nonlinear inductance can control peak value of response curves. Changing other parameters, amplitudes of response curves will change correspondingly, but the responses are different, one modal could be controlled by the other. For three degrees of freedom system, with the increasing of plate distance, the frequency of circuit systemω1 increases.
引文
[1] 邱家俊. 机电分析动力学[M]. 北京:科学出版社, 1992
    [2] 文成秀,赵常宽,闻邦椿. 分段线性振动机械关于外激励频率的分岔与混沌[J]. 东北大学学报,2001,22(2):200-202
    [3] 李鹤,姚红良,闻邦椿等. 振动锤的周期运动稳定性与分岔[J]. 东北大学学报, 2004,25(1):66-69
    [4] 李鸿光,闻邦椿. 一类具有可动边界的机械振动系统的混沌行为[J]. 东北大学学报,1999,20(4):376-379
    [5] 罗跃纲,曾海泉,李振平,闻邦椿. 基础松动—碰摩转子系统的混沌特性研究[J]. 振动工程学报,2003,16(2):184-188
    [6] 孙保苍,周传荣. 不平衡转子—轴承系统非线性行为研究[J]. 振动与冲击,2003,22(2):85-90
    [7] 侯书军,陈予恕. 柔性机械臂的非线性振动分析[J]. 振动工程学报,1999,12(4):492-498
    [8] 杨永锋,任兴民,秦卫阳. 松动-裂纹耦合故障转子系统的非线性响应[J]. 机械科学与技术,2005,24(8): 985-987
    [9] 刘占生,崔颖,黄文虎等.转子弯扭耦合振动非线性动力学特性研究[J]. 机械工程, 2003,14(7):603-606
    [10] 牛武.基于非线性电阻的 RLC 混沌电路实验分析[J]. 物理实验 ,2001,21(11):11-12
    [11] 詹士昌,梁方束. RLC 电路非线性现象产生机制的研究[J]. 杭州师范学院学报,2002,1(1):31-38
    [12] 孙海宁.一个非线性电路的梅尔尼科夫方法分析[J]. 上海大学学报,2003,9(3):232-237
    [13] Ali Oksasoglu and Dimitry Vavriv. Interaction of Low-and High-Frequency Oscillations in a Nonlinear RLC Circuit[J] . Fundamental Theory and Applications. 1994,41(10):669-672
    [14] S.K.Chakravarthy. Nonlinear Oscillations Due To Spurious Energisation of Transformers[J],IEE Proc-Electr.Power Appl.1998,145(6):585-592
    [15] S.K.Chakravarthy, C.V.Nayar. Parallel (Quasi-Periodic) Ferroresonant Oscillations in Electrical Power Systems[J]. Fundamental Theory and Applications. 1995,42(9):530-534
    [16] S.K.Chakravarthy, C.V.Nayar.Frequency-locked and Quasi-Periodic(QP) Oscillations in Power Systems[J]. IEEE Transations on Power Delivery, 1998,13(2):560-569
    [17] C.Kieny. Application of the Bifurcation theory in studying and understangding the global behaviour of a ferroresonant electric power circuit[J]. IEEE Trans on PWRD.1991(2):866-872
    [18] P.Bornard,V.Collet Billon ,C.Kieny. Protection of EHV power systems against ferroresonance[J]. CIGRE Paper,1990(8):34-103
    [19] N.Germay, S.Mastero, and J.Vroman . Review of ferroresonance phenomena in high voltage power system and presentation of a voltage transformer model for predetermining them[J]. CIGRE Paper,1974,No22:33-18
    [20] J.R.Marti and A.C.Soudack. Ferroresonance in power systems:Fundamental solutions[J]. IEE Proc.Pt-C,1991:321-329
    [21] A. E. A. Araujo, A.C. Soudack, and J. R. Marti. Ferroresonance in power systems: Chaotic behavior[J]. Proc IEE Pt-C,1993,Vol.140:237-240
    [22] A.Germond.Computation of ferroresonant overvoltages in actual power systems by Galerkin’s method[J].Presented at the PICA Conf. New Orleans,LA,1975:19-30
    [23] Muchnik, G.F., Domanin, M.G., and Astakov,A. The apparatus of Figenbaum’s universal theory for an oscillatory circuit with nonlinear capacitance[J]. Electr. Technol.USSR,1987(3):34-39
    [24] J.R.Marti and A.C.Soudack. Ferroresonance in AC power systems:fundamental solutions[J]. IEE Proc.C,1991(138):321-329
    [25] 刘崇新,金黎,邵红卫. 三阶非自治铁磁混沌电路的分析及控制[J]. 电路与系统学报,2003,8(2): 100-103
    [26] 王文龙,蔡敢为. 电动机-曲柄滑块机构系统的动态分析耦联方程[J]. 机械与电子,2002,20(6):35-38
    [27] 贾启芬,于雯,邱家俊,郎作贵. 机电非线性振动系统参、强联合激励的分岔[J]. 机械强度,2003,25(6):624-627
    [28] 贾启芬,邱家俊,牛西泽. 由电磁力激发的电机参数振动的分岔研究[J]. 振动工程学报,2003,16(1):129-132
    [29] 邱家俊,杨志安,蔡赣华. 发电机组转子轴系扭振双重共振的理论与实验研究[J]. 应用力学学报,1999,16(3):33-38
    [30] 李文兰,邱家俊,杨志安. 水轮发电机定子系统磁固耦合双重共振[J]. 应用数学和力学,2000,21(10):1069-1076
    [31] 杨志安,邱家俊,李文兰. 发电机转子气隙磁非线性耦合振动分析[J]. 振动工程学报,2000,13(2):170-177
    [32] 任立立,周波,相蓉. 电磁式双凸极电机的非线性电感模型[J]. 南京航空航天大学学报,2003,35(6): 634-638
    [33] 王姮,张华. 蔡氏电路及蔡氏振荡器中非线性电阻实现的研究[J]. 西南工学院学报, 2000,15(3):11-16
    [34] Nayfeh A H, Mook D T.. Nonlinear Oscillation[M]. New York:Wiley-interscience,1979.
    [35] 闻邦椿,李以农,韩清凯. 非线性振动理论中的解析方法及工程应用[M]. 沈阳:东北大学出版社,2001.
    [36] 李庆扬,王能超,易大义. 数值分析[M]. 北京:清华大学出版社,2001.
    [37] 黄忠霖,黄京. Matlab 符号运算及其应用[M]. 北京:国防工业出版社,2004.
    [38] 姚仲瑜. 用拉格朗日方程研究 RLC 电路的暂态过程[J]. 广西大学学报,2001,26(2):145-149
    [39] 向裕民. 电容器极板的非线性振动[J]. 非线性动力学学报,1996,3(1):67-72
    [40] 杨志安. 发电机组轴系扭振多重共振及电磁激发横、扭耦合振动研究[D]. 天津: 天津大学,1997.2.
    [41] O.N.Ashour, A.H. Nayfeh . Adaptive Control of Flexible Structures Using a Nonlinear Vibration Absorber[J]. Nonlinear Dynamics 28:309-322, 2002.
    [42] Bappaditya Banerjee, Anil K. Bajaj and Patricia Davies. Resonant Dynamics of An Autoparametric System: A Study Using Higher-Order Averaging[J]. Nonlinear Mechanics ,Vol 31, No1. September 1996
    [43] A.Hartung, H.Schmieg, P.Vielsack. Passive Vibration Absorber with Dry Friction[J] . Archive of Applied Mechanics . 71 (2001) :463-472
    [44] S.S.Oueini, A.H.Nayfeh, J.R.Pratt. A Nonlinear Vibration Absorber For Flexible Structures[J]. Nonlin. Dyn.15(1998):259-282
    [45] S.S.Oueini, A.H.Nayfeh, J.R.Pratt. A Review of Development and Implementation of An Active Nonlinear Vibration Absorber[J]. Archive of Applied Mechanics . 1999(69):585-620
    [46] 徐清华. 非线性电路分析[M]. 北京:高等教育出版社,1992.
    [47] 刘延柱,陈文亮,陈立群. 振动力学[M]. 北京:高等教育出版社,1998.
    [48] Roberson R E.Synthesis of a non-linear vibration absorber.Journal of the Franklin Institute,1952,254:205~220Rice H J, Mccraith J R. Practical non-linear vibration absorber design[J]. Journal of Sound and vibration, 1987, 116(3):545~559
    [49] Jordanov N,Cheshankov B I.Optimal design of linear and non-linear dynamic vibration absorber[J].Journal of Sound and vibration,1988,123(1):157~170
    [50] 杨志安. 求解一类特征值反问题的新方法[J]. 唐山高等专科学校学报,2002,15(2):45-47
    [51] 诸德超,邢誉峰,程伟,李敏. 工程振动基础[M]. 北京:北京航空航天大学出版社,2004.
    [52] 黄忠霖,黄京. MATLAB 符号运算及其应用[M]. 北京:国防工业出版社,2004.
    [53] 李海涛,邓樱. MATLAB 程序设计教程[M]. 北京:高等教育出版社,2002.
    [54] 肖达川. 线性与非线性电路[M]. 北京:科学出版社,1992.
    [55] [苏]Л.A.别索诺夫著,陈伟鑫,沈丽英译. 电工基础理论[M]. 北京:高等教育出版社,1986.
    [56] 谢嘉奎,宣月清. 电子线路[M]. 北京:高等教育出版社,1984.
    [57] 盛昭瀚,马军海. 非线性动力学系统分析引论[M]. 北京:科学出版社,2001.
    [58] 马兴义,杨立群等. Matlab6 应用开发指南[M]. 北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700