基于微逆变器的屋顶光伏并网系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微逆变器为研究对象,对当前的微逆变器的拓扑结构进行了深入的分析研究。每种结构都有自己的优缺点和使用场合,本文选择了电流型微逆变器进行深入研究。由于反激型是电流型微逆变器的基础,所以本文对反激型微逆变器进行详细的分析研究,主要研究了微逆变器的拓扑结构和反激型微逆变器的损耗分布,还对并网的控制技术和最大功率跟踪技术进行了研究和仿真分析,设计了主电路的器件和系统硬件电路,该研究工作对于光伏并网微逆变器具有一定的参考价值。
     首先,文章论述了光伏并网结构的分类,随后介绍了微逆变器的概念和微逆变器所具有的优点和不足以及关键性技术。研究了并网微逆变器的拓扑结构的特点,分析了电压型和电流型微逆变器的典型结构优缺点和特点以及应用场合。
     其次,文章主要阐述了电流型微逆变器的并网工作原理,然后计算了电路中开关管的电压和电流应力,为后面的开关损耗计算以及变压器、主电路的元器件的选择提供了依据。分析计算了原边开关管和副边开关管、二极管以及变压器的损耗,并绘出电路的损耗的分布图,最终得出与损耗相关的主要因素以及降低损耗需要改变的因素,这对于设计电流型的微逆变器具有重要的指导意义。
     再次,文章对光伏并网系统的最大功率跟踪控制问题进行了研究,通过比较分析最大功率跟踪的几种方法,选择适合本设计的最大功率方法,然后研究了最大功率跟踪的控制策略问题,研究分析了多级和单级控制策略以及多级控制中的前级和后级控制,从理论上分析了单级控制中的三环控制和双环控制的区别,同时对最大功率跟踪的算法和效果进行了仿真分析。对固定开关频率的控制方法进行了详细的研究,建立了反激型微逆变器的小信号模型,得到了逆变器传递函数,然后分析网压前馈对进网电流的影响,设计了电流环PI控制器,对进网电流控制的算法和效果进行了仿真分析。
     最后,文章对反激电流型微逆变器的主电路器件和硬件电路进行了设计,根据前面的理论分析研究,设计出相对损耗比较低高频变压器、开关管和二极管,并且设计了检测电路和电源管理电路,还对软件的总体设计给予了说明,最后进行了独立负载的实验。
In this paper, micro-inverter has been studied and the current micro-inverter topologies have conducted deeply. Each structure has its own advantages and disadvantages and the occasions which can be applied.The paper has researched the current micro-inverter. The flyback current micro-inverter is the base, so micro-inverter flyback has been detailed analyzed, and mainly studied the micro-inverter flyback topology and the distribution of loss, researched and simulation analyzed the network control and maximum power point tracking technology, designed the main circuit of the device and system hardware circuit. The research for the photovoltaic grid-connected micro-inverter has a significant reference value.
     Firstly, the article has discussed the classification of photovoltaic grid structure, then the concept of micro-inverter and its advantages and disadvantages and its key technologies of micro-inverter has been introduced.Characteristics of the grid-connected micro-inverter topology has been discussed, and the advantages, disadvantages, characteristics and applied surrounding of the typical structure of voltage and current micro-inverter have been studied.
     Secondly, the photovoltaic grid structure's working principle of the current micro-inverter has been mainly discussed in this paper, then the voltage and current stress of the switch circuit has been calculated in order to provide a basis for the choice of components and the switching loss calculation and transformer in the main circuit. The primary side switch and the switch of the secondary tubes, diodes and transformer losses have analyzed and calculated, and the map of the circuit loss has been drawed. To some conclusions, the main factors related to the loss and the changed factor that can decline the loss have been obtained, which has an important guiding significance for the design of the current type of micro-inverter.
     Thirdly, the tracking the maximum power of the photovoltaic grid-connected systems's control problems have been studied through comparative analyzing several methods of the maximum power point tracking to find the maximum power for this design. Then the maximum power tracking control strategy has been studied, and analyzed the control strategy of multi-stage and single stage and multi-level control before class and after class control loop. The difference in the single-level control and dual-loop control is analyzed theoretically, while the maximum power point tracking algorithms and the effects have been simulation analyzed. Fixed switching frequency control method has been reseached in detail to establish a small-signal model of the flyback-type micro-inverters, inverter transfer function, and then the network voltage feed-forward network access current has been analyzed, the current loop PI controller hes been designed and the net current control algorithm and the effect has been simulation analyzed.
     Finally, the flyback current micro-inverter main circuit devices and hardware circuit have been designed. According to the previous theoretical analysis, a relatively low loss high frequency transformer, switch and diode have been designed, and the detection circuit and power management circuits have been designed, the overall design of the software to instructions have alse been designed, and finally a load independent experiments has been made.
引文
[1]罗四海,娄本超,唐君,李彦.MOSFET的损耗分析与工程近似计算[J].电子设计工程.2011.11:136-138.
    [2]Sanjaya Maniktala,精通开关电源设计[M].北京:人民邮电出版社,2008.
    [3]赵修科.实用电源技术手册磁性元器件分册[M].沈阳:辽宁科学技术出版社,2005.
    [4]http://www.datasheet5.com/[Online]
    [5]郭世明.高频电力变换技术[M].成都:西南交通大学出版社,2007.
    [6]陈家洗.RCD箱位反激变换器的设计与实现[J].通信电源技术.2002.10.5.
    [7]张兴,曹仁贤,等编著.太阳能光伏并网发电及其逆变控制.机械工业出版社.北京.2011.5
    [8]刘邦银,梁超辉,段善旭.直流模块式建筑集成光伏系统的拓扑研究[J].中国电机工程学报.2008.7.15
    [9]T Shimizu, K Wada, N Nakamura. A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system. [C]. IEEE PESC,2002,.3:1483-1488.
    [10]丰瀚麟.低成本小功率光伏并网逆变器研究.[M].南京航空航天大学,2010.
    [11]梅志伟.单相光伏并网逆变器的设计与实现.[M].哈尔滨工业大学,2011.
    [12]胡江毅.反激变换器的应用研究.[M].南京航空航天大学,2003.
    [13]徐德红,电力电子系统建模及控制.机械工业出版社.北京.2010.7
    [14]周小义.基于独立光伏组件并网逆变器(acmodule)的研究.[M].合肥工业大学硕士学位论文,2007.
    [15]李志江.逆变电源控制方案的研究与实现[M].浙江大学硕士学位论文.2004.3
    [16]胡寿松.自动控制原理.第四版.科学出版社.北京2001.
    [17]项安.小功率全桥双向电流源高频链光伏户用逆变器研究[D].上海交通大学博士后学位论文.2003.12
    [18]杨海柱.小功率光伏并网发电系统最大功率跟踪与孤岛问题的研究[D].北京交通大学博士学位论文.2005.12
    [19]Yu Fang and Xudong Ma, "A Novel PV Microinverter With Coupled Inductors and Double-Boost Topology",IEEE Trans Ansctions On Power Electronics,vol.25, no.12, PP.3139-3147, December 2010.
    [20]张超.光伏并网发电系统MPPT及孤岛检测新技术的研究[D].浙江大学博士学位论文.2006.9
    [21]王飞.单相光伏并网系统的分析与研究[D].合肥工业大学博上学位论文.2005.10
    [22]龙海峰.高频交流环节研究[M].西南交通大学硕士学位论文.2004.5
    [23]梁启权.基于TMS320F28335电能质量监测装置的设计与实现[M].北京交通大学硕士学位论文.2011.6
    [24]孙林.单级式反激逆变器研究[M].南京航空航天大学硕士学位论文.2006.2
    [25]汪进进.光伏并网控制方法和系统的研究[M].合肥工业大学硕士学位论文.2002.4
    [26]龚春英,李伟,胡晓君,严仰光.单级式半桥电流源高频链逆变拓扑研究分析[J].电工技术学报.2002.4.
    [27]郭世明,黄念慈.电力电子技术.西南交通大学出版社.2005
    [28]冯晓云.电力牵引交流传动及其控制系统.高等教育出版社.2009
    [29]康华光,陈太钦.电机技术基础模拟部分(第四版).高等教育出版社.1998
    [30]洪乃刚等.电力电子和电力拖动控制系统的MATLAB仿真.机械工业出版社.2005
    [31]W. Bower, R. West, and A. Dickerson, "Innovative PV micro-inverter topology eliminates electrolytic capacitors for longer lifetime," in Proc. IEEE 4th World Conf. Photovoltaic Energy Convers., Conf. Record, May7-12,2006, vol.2, pp. 2038-2041.
    [32]W. Hai-Ning, S. Jian-Hui, D. Ming, and Z. Guo-Rong, "Photovoltaic grid connected power conditioner system," Proc. CSEE, 2009, vol.27, no.11, pp.75-79,2007.
    [33]Souhib Harb, Haibing Hu, Nasser Kutkut, Issa Batarseh, Z. John Shen"A Three-Port Photovoltaic (PV) Micro-Inverter with Power Decoupling Capability" IEEE vol.978, no.11, pp.4244-80852011.
    [34]S.B.Kjaer, J.H.Pedersen, F. Blaabjerg. "A Review of Single-Phase Grid-connected Inverters for Photovoltaic Modules". IEEE Trans Industry Applica. Vol.41 no.5, pp.1292-1306, Sept. 2005.
    [35]A.C. Kyritsis, N. P. Papanikolaou, E. C. Tatakis. "A novelParallel Active Filter for Current Pulsation Smoothing on Single Stage Grid connected AC-PV Modules", in Proc. European Conf. Power Electronics and Applications (EPE), 2007.
    [36]T. Shimizu, K. Wada, and N. Nakamura, "Flyback-type singlephase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system," IEEE Trans. Power Electron., vol. 21, no.5, pp.1264-1272, Sep.2006.
    [37]G. H. Tan, J. Z. Wang, and Y. C. Ji, "Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications," IET Trans. Elect. Power Appl., vol.1, no.2, pp. 264-274, Mar. 2007.
    [38]N. A. Ninad, L. Lopes, "A Low Power single-Phase Utility Interactive Inverter for Residential PV Generation with Small DC Link Capacitor"
    [39]Al-Atrash, H.; Tian, F.; Batarseh, I., "Tri-Modal Half-Bridge Converter Topology for Three-Port Interface," IEEE Trans. Power Electronics, vol.22, pp.341 - 345, January 2007.
    [40]H. Hu, S. Harb, N. Kutkut, I. Batarseh, Z. J. Shen, "Power Decoupling Techniques for Micro-inverters in PV Systems-a Review", IEEE Energy conversion congress and Exposition, 2010.
    [41]Zhijun Qian; Abdel-Rahman, O.; Hu, H.; Batarseh, I.;, " An Integrated Three-port Inverter for Stand-alone PV Applications," Energy Conversion Congress and Exposition, 2010. ECCE 2010. IEEE, vol25, no2, pp.1471-1478,12-16 Sept. 2010
    [42]Kern, G., "SunSineTM300:Manufacture of an AC Photovoltaic Module," A PVMaT Contractors Final Report by Ascension Technology, Phases I & II, NREL/SR-520-26085, Golden, CO, Mar 1999.
    [43]桑福环.光伏并网逆变系统的研究与设计[M].西安理工大学硕士学位论文.2010.3
    [44]Nobuyuki Kasa and Takahiko Iida.;" Flyback type Inverter for Small Scale Photovoltaic Power System," Power Electronics, IEEE vol.25, no.2, pp.1089-1094, March 2010
    [45]Z. Chao and H. E. Xiang-ning, "A novel high-frequency DC-link inverter. for grid-connected photovoltaic system," Autom. Electr. Power Syst.,vol.29, no.11, pp. 119-124,2009.
    [46]李先祥,李宏.基于DSP控制的高频链逆变电源的设计[J].仪表技术与传感器.2006.5.
    [47]张玉明.基于DSP的移相全桥高颇链逆变器的研制[M].中国科学院硕士学位论文.2002.5
    [48]王姜铂.基于DSP的高频链逆变电源[M].哈尔滨工程大学硕士学位论文.2007.3
    [49]任奇.单相光伏发电逆变系统研究及实现[M].青岛大学硕士学位论文.2007.6
    [50]李伟.单激高频链逆变技术研究[D].南京航空航天大学博士学位论文.2001.5
    [51]董密.太阳能光伏并网发电系统的优化设计与控制策略研究[D].中南大学博士学位论文.2007.5
    [52]毛洪生,毛行奎,裴昌盛.基于Simulink的单相光伏并网逆变器仿真研究[J].分布式电源.2011.6.
    [53]袁江伟.单相并网逆变器及反孤岛控制研究[M].浙江大学硕士学位论文.2011.1
    [54]董妍.新型反激式光伏并网逆变器的研究[M].哈尔滨工业大学学位论文.2007.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700