基于DSP的10kW微网逆变器软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性的能源危机和环境污染的日益严重,可再生能源的开发与利用越来越受人类的重视。太阳能作为当今世界上取之不尽、用之不竭、廉价无污染、能大规模开发利用的可再生能源之一,其并网发电已受到世界各国的普遍关注。其中光伏并网发电是太阳能光伏利用的主要发展趋势,必将得到快速的发展。此外,随着高性能的数字信号处理芯片(DSP)的出现,使得一些复杂、先进的控制策略在光伏并网逆变器中的应用成为可能。
     本论文就是在此背景下,对新型的光伏微网逆变器(具备微网特性的光伏逆变器)进行了较为深入的研究,以三相10kW微网逆变器为研究对象,将最大限度的利用太阳能、为负载提供稳定、可靠的电能供应作为主要目标,采用TI公司生产的高性能的32位DSP(TMS320F28335)为控制芯片,开展光伏微网发电系统的理论和试验研究,具有重要的现实意义。论文的主要工作如下:
     首先,概述了本课题研究的背景及意义以及国内外光伏产业的研究现状。
     其次,分析了光伏微网发电系统的系统结构,阐述了光伏微网发电系统的主要特点,并对系统的主要构成部分作了详细的介绍。
     然后,针对光伏微网逆变器离网、并网两种运行方式所采用的控制策略作了详细的分析,对其中的PI控制器、SPWM波的生成、数字锁相环技术等关键环节的软件控制作了详细的分析,并给出了各个环节所对应的详细程序流程图。
     最后,通过仿真并进行实验调试,给出了部分仿真和实验结果波形及分析。
     综上所述,本文主要分析了光伏微网逆变器的离网、并网运行方式的控制策略。通过几种控制策略的比较,在离网工作模式下采用电压闭环控制策略,并网工作模式下采用改进型的三角波电流比较方式的控制策略,并进行了控制策略的仿真研究。通过相关仿真和实验,验证了控制策略所具有的良好的动态和稳态性能。
With a global energy crisis and the increasingly serious environmental pollution, energy development and utilization of renewable are becoming more and more attention of the human. Solar energy as one of the renewable energy is an inexhaustible, cheap and non-pollution, and could large-scale exploitation in the world, photovoltaic grid-connected power generating has been world attention. And solar photovoltaic grid-connected power generating is the main development tendency in utilization, and it will get fast development. In addition, with the appearing of the high-performance digital signal processing chip (DSP), makes some complex, advanced control strategy in the application of photovoltaic grid-connected inverter become possible.
     This thesis, in this context, have a more depth study to the new photovoltaic micro-grid inverter (have micro-grid characteristics of photovoltaic inverter), taking three phase 10kW micro-grid inverter as research object, taking the best utilization of solar energy and providing for load stable and reliable power supply as the main goal, using TI company production of high-performance 32-bit DSP (TMS320F28335) as control chip, conducting photovoltaic micro-grid power generating system’theory and experiment research, have important practical significance. This paper’major works are as follows:
     Firstly, summarizes the background and significance of the research and the research status of photovoltaic industry at domestic and overseas.
     Secondly, analyzes the system structure of photovoltaic micro-grid power generating systems, expounds the main features of photovoltaic micro-grid power generating systems, and analyzes, in detail, the main component part of the system.
     Then, aimed at photovoltaic micro-grid inverter gird-disconnected and grid- connected two operation mode adopted by the control strategy has made the detailed analysis, presents the PI controller, SPWM wave generating, phase-lock-loop technique such key links control software has made the detailed analysis, and gives each link of the corresponding detailed program flowchart.
     Finally, with simulation and experiment debugging, gives part of the simulation and experiment results waveform and analysis.
     In conclusion, this paper mainly analyzes photovoltaic micro-grid inverter grid-disconnected, grid-connected two operation mode control strategy. Through the comparison of several control strategy, grid-disconnected operation mode adopts voltage closed-loop control strategy, grid-connected operation mode adopts modified triangle wave comparative current control strategy, and makes the simulation of the control strategy. Through the related simulation and experimental results demonstrate that the control strategy has good dynamic and stable performance.
引文
[1]王峰.一种新型光伏发电变换器[D].南京:南京航空航天大学硕士学位论文,2008.
    [2] (奥)伟纳姆(S.R. Wenham)等编,狄大卫等译.应用光伏学[M].上海:上海交通大学出版社,2008.
    [3]世界能源统计2009,2009.
    [4]单单.突破低碳经济发展的资金瓶颈[J].江南论坛,2010:15-16.
    [5]王章权.1KW光伏并网发电系统的实现[D].杭州:浙江大学硕士学位论文,2006.
    [6]王长贵.新能源和可再生能源的现状和展望[J].太阳能光伏产业发展论坛论文集,2003,9:4-17.
    [7] J. C. Wiles and W. Bower.”photovoltaic industry-proposed changes for the 1999 National Electrical Code for PV applications”[C].The 26th IEEE Photovoltaic Specialists Conference, 2001.September: 1237~1242.
    [8]李文婷,刘宏,陈惫玲.国内外太阳能光伏发电发展综述[J].青海电力.2004,4:3-6.
    [9]孙龙林.单相非隔离型光伏并网逆变器的研究[D].合肥:合肥工业大学硕士学位论文,2009.
    [10]单琳.单相光伏并网发电系统的研究[D].西安:西安理工大学硕士学位论文,2010.
    [11]Lasseter R H. Microgrids [C]. IEEE Power Engineering Society Winter Meeting, New York,USA,2002.
    [12]Lasseter R H, Paigi P. Microgrid, A conceptual solution[C].The 35th Annul IEEE Power Electronics Specialists Conference, Anchen, Germany: 2004.
    [13]Kjaer S B,Pedersen J K,Blaabjerg F. Power inverter topologies for photovoltaic modules’review[C]. The 37th IAS Annual Meeting. Conference Record of the Pittsburgh, PA, USA, IEEE, 2002:782-788.
    [14]Chen Y, Slmdley K.A. cost-effective single-stage inverter with maximum, power point tracking[J].IEEE Transaction on Power Electronics, 2004,19(5): 1289-1294.
    [15]Liang T J, Kou Y C, Chen J R. Single-stage photovoltaic energy conversion system [C]. IEEE Proceedings on Electric Power Applications,2001,4(148):339-344.
    [16]梁雪峰.5kW光伏并网逆变器的研究[D].北京:北京交通大学硕士学位论文,2008.
    [17]李俊峰,刘颖,王斯成等著.中国两岸光伏产业发展报告2008/2009(普及版).
    [18]2011年中国及海外太阳能光伏产业发展报告,2011.
    [19]PIAGI P, LASSETEL R H. Autonomous control of MicroGrids[C]. Proceedings of IEEE Power Engineering Society Meeting. June 18-22, 2006, Montreal, Canada: 1-8.
    [20]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(9):100-106.
    [21]盛鹍,孔力.新型电网-微电网(Microgrid)研究综述[J].继电器.2006,35(12):75-81.
    [22]Patram S B, Mitram J, Ranade S J. Microgrid architecture: a reliability constrained approach[C].2005 IEEE Power Engineering Society General Meeting, San Francisco, USA, 2005.
    [23]Dimeas A L, Hatziargyriou N D. Operation of a multi-agent system for microgrid control[J].IEEE Trans on Power Systems. 2005, 20 (3): 1447-1455.
    [24]Barnes M, Dimeas A, Engler A,et al. MicroGrid laboratory facilities [C].2005 International Conference on Future Power Systems, Amsterdam, Netherlands,2005.
    [25]赵宏伟,吴涛涛.基于分布式电源的微网技术[J].电力系统及其自动化学报. 2008,20(1):112-126.
    [26]Zoka Y, Sasaki H, YoMo N, et al. An interaction problem of distributed generators installed in a microgrid [C].2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, 2004.
    [27]Kariniotakis G N, Soultanis N L, Tsouchnikas A I, et al. Dynamic modeling of microGrids[C].2005 International Conference on Future Power Systems, Amsterdam, Nether lands, 2005.
    [28]POGAKU N, PRODANOVIC M, GREEN T C. Model, analysis and testing of autonomous operation of an inverter-based MicroGrid[J].IEEE Trans on Power Electronics. 2007,22(2): 613-625.
    [29]OSIKA O. Stability of MicroGrids and inverter-dominated grids with high share of decentralized sources [D]. Kassel Germany, Institute of Solar Energy Technology (ISET), 2005.
    [30]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化. 2005,29(24):90-97.
    [31]陈坚.电力电子学-电力电子变换和控制技术(第二版)[M].北京:高等教育出版社,2004.
    [32]Binduhewa P J,Renfrew A C, Barnes M. Ultra capacitor Energy Storage for MicroGrid Micro-Generation[C].Power Electronics,PEMD 2008,4th IET Conference on Machines and Drives,UK,2008:270-274.
    [33]Weiss G, Zhong Q Ch, Green T C, Liang J. Repetitive control of DC-AC convertersin microgrids [ J ]. IEEE Trans on Power Electronics, 2004,19(1):219-230.
    [34]Katiraei F, Iravani M R, Lehn P W. Micro-grid autonomous operation during and subsequent to islanding process [J]. IEEE Trans on Power Delivery, 2005, 20(1): 248-257.
    [35]时智勇.三相单级式光伏并网发电系统综合控制与应用[D].北京:北京交通大学硕士论文,2009.
    [36]Xiaoming Yuan,Yingqi Zhang. Status and Opportunities of Photovoltaic Inverters in Grid-Tied and Micro-Grid Systems[J]. IEEE, 2006.
    [37]Laaksonen H, Saari P, Komulainen R. Voltage and Frequency Control of Inverter Based Weak LV Network Microgrid [C].2005 International Conference on Future Power Systems, 30th, Amsterdam, Netherlands, 2005.
    [38]Katiraei F,Iravani M R.Power Management Strategies for a Microgrid With Multiple Distributed Generation Units[J].IEEE Transactions on Power Systems,2006,21(4):1821-1831.
    [39]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学博士学位论文,2003.
    [40]陈愚,潘俊民,禹华军.光伏并网发电系统的DSP控制与实现[J].微机算计应用.2007年第27卷(第4期):450-452.
    [41]李春玲.基于光伏并网发电系统的孤岛检测[D].天津:天津大学硕士学位论文,2008.
    [42]杨军.光伏并网逆变器的研制[D].北京:北京交通大学硕士学位论文,2007.
    [43]张凌.单相光伏并网逆变器的研制[D].北京:北京交通大学博士论文,2007.
    [44]朱炜锋.高频隔离式光伏并网逆变器的研制[D].郑州:郑州大学硕士学位论文,2006.
    [45]王兆安,黄俊.电力电子技术(第四版)[M].机械出版社, 2005.
    [46]苏奎峰,蔡昭权,吕强等.TMS320X281x DSP应用系统设计[M].北京:北京航空航天大学出版社,2008.
    [47]刘凤君.开关死区对SPWM逆变器输出电压波形的影响[J].电源技术应用,2000(12):645-648.
    [48]施韵.单相光伏并网逆变器的研制[D].北京:北京交通大学硕士学位论文,2010.
    [49]梅志伟.单相光仗并网逆变器的设计与实现[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [50]陈东华,谢少军,周波,瞬时值电流控制逆变技术比较[J],南京航空航天大学学报,2004,36(3):343-347.
    [51]许爱国,谢少军,数字双闭环瞬时值控制逆变器外特性研究[J],南京航空航天大学学报,2006,38(4):513-518.
    [52]过亮.独立/并网双模式逆变器控制技术研究[D].南京:南京航空航天大学,2008.
    [53]赵宏伟,吴涛涛.基于分布式电源的微网技术[J].电力系统及其自动化学报,2008,20(l):121-126.
    [54]谢仕宏.MATLAB R2008控制系统动态仿真实例教程[M]。北京:化学工业出版社,2009.
    [55]汪安民,程昱.DSP应用开发实用子程序[M].北京:人民邮电出版社,2005.
    [56]李元春.计算机控制系统[M].北京:高等教育出版社,2005.
    [57]姜俊峰.并联型有源电力滤波器的研究[D].武汉:武汉大学硕士论文,2004.
    [58]李红云.并联型有源电力滤波器的研究[D].南昌:南昌大学硕士论文,2008.
    [59]蒋燕君.单相两级式光伏并网功率变换器的研究[D].杭州:浙江大学硕士论文,2006.
    [60]刘爱忠,刘俊华,肖岚.数字锁相技术在逆变器并联系统中的应用[J].电力电子技术,2007:41(7):80-81.
    [61]蒋燕君,张超,何湘宁.基于DSP的光伏并网发电系统数字锁相技术[J].电源技术应用,2007:10(2):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700