沾化凹陷古近系—新近系升降差异与断裂、裂缝关系及油气成藏特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油气盆地的升降差异与断裂、裂缝的关系对油气藏的形成具有重要的控制作用,目前对此的研究较为薄弱。本文对沾化凹陷沙三中段、沙三上段、沙二下段、沙二上段、沙一段、东营组、馆陶组、明化镇组及第四系的沉积与沉降特征和东营组沉积末期地层剥蚀征进行了分析,在此基础上分析沾化凹陷古近系主力烃源岩(沙四上-沙三中段)在沙三上段、沙二下段、沙二上段、沙一段、东营组、馆陶组、明化镇组沉积期及第四纪的沉降及抬升剥蚀的差异。利用沾化凹陷地震资料分析了断裂与古近系主力烃源岩沉降差异之间的关系,通过岩心、薄片中裂缝发育特征观察及岩石压缩-回弹、破裂力学实验,分析了沉降差异与裂缝的形成和演化的关系,利用渗透率测试实验比较了不同输导介质的输导性能。在以上研究基础上结合沾化凹陷古近系和新近系油气运移驱动力的分析,对沾化凹陷古近系和新近系与裂缝有关的和与断裂有关的油气藏的形成特点进行了初步分析。取得了以下认识:
     1沾化凹陷古近系-新近系主力烃源岩沙四上-沙三中段在沙三上段至沙一段沉积期,沉降最大区主要位于渤南-孤北和富林-孤南一带;东营组沉积期至第四纪,沉降最大区位于渤南-孤北、桩西和孤南一带。沉降最大区在沙一段沉积期已超过1200m,在东营组沉积期渤南-孤北和孤南一带超过1800m,桩西一带达到1300m;在馆陶组沉积期超过2000m,在第四纪超过3400m(该时期是主力烃源岩大量生成油气的时期)。整体上,沉降最大区沙三中段至沙一段沉积期相对较为稳定,自东营组沉积期至第四纪,沉降最大区逐步向凹陷东南部迁移,沉降幅度向盆地西北方向逐渐减小。现今的最大构造埋深区主要主要位于渤南-孤北、桩西和孤南一带,是在自沙三中段沉积期以来沉降基础上,继承发展而形成的。
     2沾化凹陷古近系-新近系主力烃源岩层最大埋深区与断裂的关系可以分成两类:第一类为断裂走向上深切最大埋深区或与埋深等值线相交,第二类为断裂没有深切最大埋深区并与埋深等值线近于平行。
     3盆地沉降过程中,岩石的演化分为塑性压实、弹塑性压缩和破裂三个阶段。沾化凹陷古近系-新近系地层中发育有平行层面裂缝、斜向裂缝和垂直裂缝,其中部分平行层面裂缝有滑移特征,多见于泥质岩。裂缝的组合以“T”或“工”型为主。沾化凹陷泥质岩裂缝发育深度一般在2000m以下。在沾化凹陷的拉张埋藏过程中,岩石在水平方向的伸展能力的差异是形成平行层面的裂缝主要原因;随着上覆岩层压力的增大,岩石横向上的伸展能力受到限制时就会在岩石中产生垂向裂缝;当垂向压力不均衡时,就容易形成斜向裂缝。当盆地发生抬升剥蚀时,不仅可诱发裂缝的发育,而且会使沉降阶段发育的裂缝发生扩展,裂缝的发育深度一般会变浅。
     4沾化凹陷古近系-新近系油气运移驱动力最大区主要位于渤南-孤北、桩西和孤南一带,主要受控于主力烃源岩层的沉降幅度和地层温度。孔隙性砂、泥岩在平行层面方向上的渗透率一般大于在垂直层面方向上的渗透率(泥质岩平行层面渗透率与垂直层面渗透率的比值一般在6.62-398.77,均值为220.79;砂岩平行层面渗透率与垂直层面渗透率的比值一般在1.05-7.17,均值为4.72);裂缝性砂、泥岩的渗透率大于孔隙性砂、泥岩的渗透率(裂缝性泥质岩的渗透率是孔隙性泥质岩渗透率的1.35-21000倍,平均2729.17倍;裂缝性砂岩渗透率是孔隙性砂岩渗透率的1.17-178.57倍,平均29.49倍)。
     5与裂缝有关的油气藏形成特点表现为油气在烃源岩层最大驱动力作用下,主要沿裂缝发生运移,油气自裂缝进入储层后,油和气受油、气、水的运移阻力差异作用在储层中的饱和度不断增加而聚集,油气藏主要形成于裂缝带,非裂缝带不易形成油气藏。与断裂有关的油气藏形成特点表现为油气在烃源岩层最大驱动力作用下,主要通过断层运移至断层顶端并聚集,最后进入断层顶端相邻的圈闭和储层中成藏。这一过程中,油气的运移主要与断层的走向有密切关系,若断层顶端为倾伏状,油藏主要分布在断层上倾端,若断层顶端为水平状,油气藏则沿断层顶端走向分布。
     6在沾化凹陷,与裂缝有关的油气藏勘探中,平面上应以超过埋深2000m的范围为有利含油气区,垂向上以烃源岩为底界,从源岩层向浅层进行勘探,烃源岩层内和邻近烃源岩层的砂体和泥岩裂缝带为有利含油气勘探部位。与断层有关的油气藏勘探中,对于断层顶端倾伏的断层,断层顶端附近的储层和圈闭为有利含油气区,对于断层顶端水平的断层,沿断层顶端走向两侧的储层和圈闭为有利含油气区。
The differnence of Subsidence and Uplift in the petroltferous basin and their relationship with faults and fractures greatly influence on the formation of the oil and gas reservoir. At the present time, the research on it is scarce.In the paper, based on the analysis of deposition-subsidence features of the middle and upper part of the3rd member,the upper and lower part of the2nd member, the1st member of Shahejie formation, Dongying formation,Guantao formation,Minghuazheng formation and the Quaternary, and of the erosion feature of Dongying formation in Zhanhua depression, the differences in subsidence and uplift of the major hydrocarbon source rocks of Zhanhua depression (the upper part of the4thmember-the middle part of the3rd member of Shahejie formation) in the sedimentary period of the upper part of the3rd member,the upper and lower part of the2nd member, the1st member of Shahejie formation, Dongying formation,Guantao formation,Minghuazheng formation and the Quaternary were researched. The relation between the fault and the differences in subsidence is researched through the research of seismic datas, The relation between the development characteristics of crack and the differences in subsidence is analyzed through the observation of crack in the core of the Paleogene-Neogene in Zhanhua depression and the compression-elasticity-fracture experiments of rock. The difference of transport capability between the different transport mediums is compared on the basis of the the experimental results of permeability of porous and fractured rock. Based on the above research, combination with the analysis of the driving force for hydrocarbon migration, the forming characteristics of oil and gas reservoir related to fault and crack of the Paleogene-Neogene in Zhanhua depression are discussed.The main conclusion as follows:
     1. The subsidence center of the major hydrocarbon source rock mainly distributed near Bonan-Gubei and Fulin-Gunan areas in the sedimentary period of the upper part of the3rd member of Shahejie formation to the sedimentary period of, the1st member of Shahejie formation, the subsidence center mainly distributed near Bonan-Gubei,Zhuangxi and Gunan areas in the sedimentary period of Dongying formation to Quaternary. In the sedimentary period of the1st member of Shahejie formation the largest degree of subsidence was more than1200m; In the sedimentary period of Dongying formation, it was more than1800m in Bonan-Gubei and Gunan areas, than1300m in the Zhuangxiarea; It was more than2000m in the sedimentary period of Guantao formation and3400m in the Quaternary(the major hydrocarbon source rocks began to generate more oil and gas in the period). On the whole, the mainly distributed areas of the largest degree of subsidence were steady in the sedimentary period of the upper part of the3rd member of Shahejie formation to the sedimentary period of the1st member of Shahejie formation, but from the sedimentary period of Dongying formation to Quaternary, it migrated step by step to the southeast, the subsidence degree of the depression reduced greatly from the subsidence center to the northwest. The present area of the largest structural depth of the major hydrocarbon source rock were located in Bonan-Gubei, Zhuangxi and Gunan, and developed from the subsidence of the sedimentary period of the middle part of the3rd member of Shahejie formation.
     2. The fault could be divided into two types based on the relation between the fault and the area of the largest structural depth. Along the fault strike, the first type is that the fault dug in the area of the largest structural depth or intersected the structural contour, the second type that the fault did not dig in the area of the largest structural depth and approximately paralleled the structural contour.
     3The burial process of stratum could divided into three phase:compaction phase, elastic-plastic compression phase, fracturing phase. In the Paleogene-Neogene formations of Zhanhua depression, there are parallel crack, vertical crack and oblique crack in sandstones and mudstones, some parallel cracks have the slipped features that greatly existed in mudstones. The main kinds of crack complex are "gong" or "T". In Zhanhua depression the crack developed in the mud rock which burial depth is more than2000m. In the development of Zhanhua depression, the different extension capability between zhe different rocks in the parallel direction is the mainly reason for the formation of parallel crack. With the increase of the pressure caused by the overlying rock, vertical crack would occur in the rock due to the restriction of the extension capability of rock in the horizontal direction. When the vertical pressure is unbalanced, the oblique crack would easily occur in the rock. When the uplift occurs in the basin, it would induce the development of the crack in the rock, lead the crack developed in the period of subsidence of the basin to expand, and cause he burial depth of the rock which the crack developed in to shallow
     4The area of the largest driving force for hydrocarbon migration in the main hydrocarbon source rock are distributed near Bonan-Gubei,Zhuangxi and Gunan, controlled by the subsidence degree and formation temperature of the main hydrocarbon source rock and corresponded with the area of the largest burial depth of the main hydrocarbon source rock in the key geologic period. The driving force for hydrocarbon migration greatly reduced from the area of the largest driving force to the around. In the porous rock, the parallel permeability is greater than the vertical (Parallel permeability is6.62-398.77times of vertical permeability in mudstone, average220.79times; parallel permeability of sandstone is1.05-7.17times of vertical permeability, average4.72times). The permeability of fractured rock is greater than the permeability of porous rock(Fractured mudstone permeability is1.35-21000times of porous mudstone, average2729.17times; fractured sandstone permeability is1.17-178.57times of porous sandstone, average29.49times.). The pathway system of hydrocarbon of the Paleogene-Neogene in Zhanhua depression was divided into two types. One type is related to the crack and mainly constituted of porous and fractured rock, and could be divided into the non-fracture developing belt and the fracture developing belt on the basis of the2000m of burial depth. Another type is related to the fault. and mainly constituted of all kinds of faults, according to the burial depth feature of the fault top along the strike of fault, this type could be divided into the plunging fault and the horizontal fault pathway system of hydrocarbon.
     5. In the Zhanhua depression, the forming process of oil and gas reservoir related to crack, as the action of the largest driving force in the hydrocarbon source rock, oil and gas mainly migrates along the crack, and finally entrances into the trap. According the migration resistance difference between oil, gas and water, the oil and gas reservoir would form with the increase of saturation of oil and gas in the reservoir and. The oil and gas reservoir related to the crack is mainly distributed in the developing crack belt, it is hard to form the oil and gas reservoir in the non-developing crack belt. In the forming process of oil and gas reservoir related to fault, oil and gas migrates along the fault, buoyancy-driven hydrocarbon easily float up to the top of the fault, assembles the top of the fault, and finally gathered in the adjacent traps and reservoir. The oil and gas reservoir distribution is related to the burial depth feature of the fault top along the strike of fault. If the fault top is plunging, the oil and gas reservoir is mainly distributed in the trap and reservoir adjacent to the fault peak; if the fault top is horizontal, the oil and gas reservoir is mainly distributed in the trap and reservoir adjacent to the fault along the strike of fault.
     6. In Zhanhua depression, in the process of the exploration of oil and gas reservoirs related to the crack, the favorable oil and gas distribution on the plane is mainly located in the range that the burial depth of the hydrocarbon source rock is more than2000m, in the vertical, the oil and gas exploration should start from the main source rocks for the bottom line, from deep to shallow, the attention should be paid to the sandbody located in or adjacent to the source rocks and the crack belt of madstone. in the process of the exploration of oil and gas reservoirs related to the fault, for the fault which top is plunging, the favorable oil and gas distribution is mainly located in the area of the fault peak; for the fault which top is horizontal, the favorable oil and gas distribution is mainly located in the both sides of the fault along the strike of fault.
引文
[1]. Barker C. Primary migration—the importance of water-organic-mineralmatter interactions in the source rock[M].Tulsa,Oklaho-ma:AAPG Studies in Geology,1980.1-13
    [2]. Berg R R.Capillarypressures in stratigraphic traps[J].AAPG Bulletin,1975,59:939-956.
    [3]. Caswell Silver. Entrapment of petroleum in isolated porous bodies[J]. AAPG Bull.,1973,57(4): 726-740.
    [4]. Chapman RE. Primary Migration of Petroleum from Clay Source Rocks[J]. AAPG Bulletin.1972, 56(11 Part 1):2185-2191.
    [5]. Cordell R J. How oil migrates in clastic sediments[J]. World Oil,1977,184(1):97-100.
    [6]. Cordell R J. How oil migration in clastic sediments[J].WorldOil,1977,183(1):6-7
    [7]. Dembicki H, Anderson MJ. Secondary migration of oil; experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J].AAPG Bulletin.1989,73(8): 1018-1021.
    [8]. Dow W. G.. Kerogen studies and geological interpretation. Journal of Geochemical Exploration [J].1977,Vol.7 (1):79-99.
    [9]. Du Rouchet J. Stress fields—a key to oil migration[J]. AAPG Bulletin,1981,65(1):74-85
    [10]. Fulljames J, Zijerveld L, Franssen R. Fault seal processes:systematic analysis of fault seals over geological and production time scales[J]. Norwegian Petroleum Society Special Publications. 1997,7:51-59.
    [11]. Hooper E. Fluid migration along growth faults in compacting sediments[J]. Journal ol Petroleum Geology.1991,14(2):161-180.
    [12]. Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990,74:1-12.
    [13]. Knipe R. Faulting processes and fault seal[J]. Structural and Tectonic Modelling and its Application to Petroleum Geology. Norwegian Petroleum Society Special Publication.1992,1: 325¨C342.
    [14]. Knipe R. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin.1997,81:187-195
    [15]. L B马贡著,张刚等译.含油气系统:从烃源岩到圈闭[M].北京:石油工业出版社;1998.
    [16]. Levorsen A I. Geology of petroleum[M]. Tulsa, Oklahoma:The APG Foundation,2001.234
    [17]. Leythaeuser D, Schaefer RG, Yukler A. Role of diffusion in primary migration of hydrocarbons[J]. AAPG Bulletin.1982,66(4):408-429.
    [18]. Leythaeuser D.Schaefen R G,Yuekler A. Role ofdiffusion in primary migration of hydrocarbons[J]. AAPG Bulletin,1982,66(4):408-429
    [19]. Losh Steven.Vertical and lateral fluid flow related to a large growth fault,south Eugene Island Block 330 Field, offshore Louisiana[J]. AAPG Bulletin,1999,83(2):245-276
    [20]. Magara K. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin[J]. AAPG Bulletin.1976,60(4):554
    [21]. Magara K.Reevalution of montmorillontile dehydration as cause of abnormal pressure and hydrocarbon migration[J].AAPG Bulletin,1975,59:292-302.
    [22]. MalcolmKJ.Oil and gas traps,aspects of their seismostratigraphy morphology and development[M]. Oklahoma:John Wiley&Sons,1994:26-30.
    [23]. McAullife C D.Oiland gasmigration—chemicaland physical constraints[J].AAPG Bulletin,1979, 63(5):767-781
    [24]. Rostron B J. Numerical simulation of oil entrapment in a sand lens:implications for organic contamination in the subsurface[A]. Subsurface contamination by immiscible fluids [C].Rotterdam:Balkema,1992.185-193.
    [25]. Schowalter TT. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin.1979,63(5):723-760.
    [26]. Seldon B, FlemingsB P. Reservoirpressure and seafloor venting:predicting trap integrity in a gulf ofMexico deepwater turbidite minibasin[J]. AAPG Bulletin,2005,89(2):193-209
    [27]. Stainforth J GPrimary migration of hydrocarbons by diffusion through organic matter networks,and its effect on oil and gas generation[J].Organic Geochemistry,1990,16(1):1-3.
    [28]. Strecker U, Stridtmann J R, Smithson.A conceptual tectonostratigraphic model or seismic facies migration in a fluvio-lacustrine extensional basin [J].AAPG Bulletin,1999,83(1):43-61.
    [29]. Van Hinte J. Geohistory analysis-application of micropaleontology in exploration geology[J]. AAPG Bulletin.1978,62(2):201.
    [30]. Yielding G, Freeman B, Needham DT. Quantitative fault seal prediction[J]. AAPG Bulletin.1997, 81(6):897-917.
    [32].操应长,姜在兴,夏斌.2003.幕式差异沉降运动对断陷湖盆中湖平面和可容空间变化的影响[J].石油实验地质,25(4):323-327.
    [33].操应长,姜在兴.2004.断陷湖盆层序界面的成因类型及其与油气藏的关系[J].石油大学学报(自然科学版),28(4):1-6.
    [34].陈冬霞,庞雄奇,邱楠生,等.砂岩透镜体成藏机理[J].地球科学—中国地质大学学报,2004,29(4):483-487.
    [35].陈冬霞,庞雄奇,翁庆萍,等.岩性油藏三元成因模式及初步应用[J].石油与天然气地质,2003,24(3):228-232.
    [36].陈恭洋.地层压实恢复的定量计算[J].江汉石油学院学报.1996,(01):1-6.
    [37].陈国达.中国东部后地台造山带新生代盆地成因一解[J].大地构造与成矿学,1988,12(1):1-4
    [38].陈荷立.油气运移研究的有效途径[J].石油与天然气地质,1995,16(2):126-130.
    [39].陈章明,张云峰,韩有信.透镜状砂岩体聚油模拟实验及其机理分析[J].石油实验地质,1998,20(2):166-170.
    [40].陈治华.含油气盆地埋藏史与油气成藏关系[D]:西北大学;2003
    [41].池英柳,张万选,张厚福,孙红军.1996.陆相断陷盆地层序成因初探[J].石油学报,17(3):19-26.
    [42].褚庆忠,张树林.渤海湾盆地垦利断裂带构造与油气关系研究[J].地球学报,2004,25(1):73-78.
    [43].褚庆忠,张雪勇,王长江.”断裂构造与油气运聚关系研究-以沾化凹陷垦利断裂带为例[J].河南石油.2003,01:9-13,13.
    [44].慈兴华,冀登武,陈汉林,等.济阳坳陷四扣洼陷泥质岩裂缝储层预测研究[J].高校地质学报,2002,8(1):96-100.
    [45].慈兴华,刘宗林,王志战.罗家地区泥质岩裂缝性储集层综合研究[J].录井工程,2006,17(1):71-74
    [46].邓运华.断裂—砂体形成油气运移的“中转站”模式[J].石油地质,14-17
    [47].丁增勇,王良书,张鹏,等.济阳坳陷及鲁西隆起区中、新生代伸展与断裂活动特征[J].石油与天然气地质,2008,29(1):107-112,140.
    [48].董波.构造作用与济阳坳陷上第三系油气成藏[J].油气地质与采收率,2004,11(03):25-27,30-82.
    [49].董冬,杨申镰,项希勇,等.济阳坳陷的泥质岩类油气藏.石油勘探与开发[J].1993.20(06):15-22.
    [50].杜春国,邹华耀,邵振军,等.砂岩透镜体油气藏成因机理与模式[J].吉林大学学报,2006,36(3):370-376
    [51].冯有良.断陷盆地层序格架中岩性地层油气藏分布特征[J].石油学报.2005.26(4):17-22
    [52].付广,孟庆芬.断层静止期同一断裂带封油封气的差异性研究[J].断块油气田.2004,(06):7-9.
    [53].付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制[J].新疆石油地质.2001,(01):24-26.
    [54].关德范,王国力,张金功等.成盆成烃成藏理论思维-从盆地到油气藏[M].北京:石油工业出版社,2004
    [55].郭兴伟,施小斌,丘学林,等.济阳坳陷新生代构造沉降特征[J].中国石油大学学报(自然科学版),2006,30(3):6-11.
    [56].郝志伟,朱定蓉,高秋菊等,济阳坳陷渤南地区沙三段浊积扇体油藏综合描述[J].油气地球物理,2008,6(3):40-43
    [57].何斌.渤海湾复式盆地动力学探讨[J].石油实验地质,2001,23(1):27-31
    [58].何生,王青玲.关于用镜质体反射率恢复地层剥蚀厚度的问题讨论[J].地质论评,1989,35(2):119-185.
    [59].侯贵廷,叶良新,杜庆娥.渤张断裂带的构造机制及其地质意义[J].地质科学,1999,34(3):375-380
    [60].胡朝元.渤海湾盆地的形成机理与油气分布特点新议[J].油实验地质,1982,4(3):161-167
    [61].胡圣标,张容燕,罗毓晖等.渤海盆地热历史及构造—热演化特征[J].地球物理学报,1999,42(6):748-755
    [62].华保钦.构造应力场、地震泵和油气运移[J].沉积学报.1995,(02):77-85.
    [63].姜振学,庞雄奇,金之钧,等.地层抬升过程中的砂体回弹作用及其油气成藏效应[J].地球科学.2004,(04):420-426.
    [64].姜振学,陈冬霞,苗胜,等.济阳坳陷透镜状砂岩成藏模拟实验[J].石油与天然气地质,2003,24(3):223-226.
    [65].解习农,程守田,陆永潮.1996.陆相盆地幕式构造旋回与层序构成[J].地球科学,2(1):27-331.
    [66].康永尚,邱楠生,吴文旷,等.柴达木盆地西部油气成藏流体动力系统分析[J].石油学报. 2000,(05):12-15.
    [67].孔屏.宇宙成因核素在地球科学中的应用[J].地学前缘.2002,(03):41-48.
    [68].李储华,纪友亮,张世奇,等.应用宇宙成因核素10Be和26A1估算剥蚀面的暴露时间及剥蚀速率和剥蚀厚度[J].石油大学学报(自然科学版),2004,28(1):1-4
    [69].李明诚,单秀琴,马成华,等.砂岩透镜体成藏的动力学机制[J].石油与天然气地质,2007,28(2):209-215
    [70].李明诚,李伟.利用平衡浓度研究天然气的扩散—扩散量模拟的一种新方法[J].天然气工业.1996,(01):1-5
    [71].李明诚.石油与天然气运移[M].北京:石油工业出版社,2004.50-64
    [72].李丕龙,陈冬霞,庞雄奇.岩性油气藏成因机理研究现状及展望[J].油气地质与采收率,2002,9(5):14
    [73].李丕龙,金之钧,张善文,等.济阳坳陷油气勘探现状及主要研究进展[J].石油勘探与开发,2003,30(3):1-4.
    [74].李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学(D辑),2004,34(S1):143-151
    [75].李丕龙,庞雄奇,张善文,等.陆相断陷盆地隐蔽油气藏形成——以济阳坳陷为例[M].北京:石油工业出版社,2004.
    [76].李丕龙.断陷湖盆油气聚集模式及其动力学特征.石油大学学报[J].2000,24(4):26-29
    [77].李绍虎,吴冲龙,吴景富,等.一种新的压实校正法[J].石油实验地质,2000,22(2):110-114
    [78].李伟,吴智平,张明华,等.埕岛地区中生代和新生代断层发育特征及其对沉积的控制作用[J].中国石油大学学报:自然科学版,2006,30(1):1-6.
    [79].李勇,钟建华,温志峰,等.济阳坳陷泥质岩油气藏类型及分布特征[J].地质科学,2006,41(4):586-600.
    [80].李宗亮,蒋有录,刘华.孤西断层对孤北潜山带天然气运移和聚集的影响[J].油气地质与采收率.2008.15(5):24-26,Ⅱ
    [81].林畅松,郑和荣,任建业等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制.[J]中国科学(D辑:地球科学)2003.33(11):1025-1036.
    [82].林景晔,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发.2004,23(2):5-7,38
    [83].刘魁元,孙喜新,李琦,等.沾化凹陷泥质岩储层中裂缝类型及其成因研究[J].石油大学学报(自 然科学版).2004,28(04):12-15
    [84].刘震,曾宪斌,张万选.1997.构造掀斜对单断湖盆湖平面变化的影响[J].沉积学报,15(4):64-65.
    [85].鲁兵,罗笃清,王凯.滨北地区浅层断裂特征、形成机制及其对圈闭的控制作用[J].大庆石油学院学报,1998,22(3):5-8.
    [86].吕修样,张一伟,李德生.从波动观点看渤海湾盆地济阳拗陷油气田分布[J].石油实验地质,1996,18(3):259-266
    [87].罗文生.渤南洼陷断裂活动与油气成藏关系研究(D).中国石油大学.2007
    [88].马杏垣,刘和甫,王维襄等.中国东部中、新生代裂陷作用和伸展构造[J].地质学报,1983,57(1):22-31
    [89].马中良,曾溅辉,王洪玉.砂岩透镜体“相—势”控藏实验模拟[J].天然气地球科学,2007,18(3):347-350
    [90].梅廉夫,徐思煌,李春梅,等.江汉盆地王场地区泥岩储层裂缝演化及其模拟[J].地球科学.1995,(03):256-263.
    [91].闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发.2000,(04):26-29
    [92].牟中海,唐勇,崔炳富,等.塔西南地区地层剥蚀厚度恢复研究[J].石油学报,2002,23(1):41.
    [93].牟中海.计算地层古厚度的一种方法[J].石油实验地质.1993,(04):414-422.
    [94].庞雄奇,陈冬霞,姜振学,等.隐伏砂岩透镜体成藏动力学机制与基本模式[J].石油与天然气地质,2007,28(2):216-228
    [95].庞雄奇,陈冬霞,李丕龙,等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003,24(3):38-41
    [96]. 庞雄奇,付广,陈章明,等.地震资料用于地层古厚度恢复与剥蚀量计算方法探讨[J].大庆石油学院学报,1991,15(4):1-8.
    [97].彭存仓.沾化凹陷断层活动性及其叠合特征[J].油气地质与采收率.2009.16(05):7-39,43,113
    [98].漆家福,张一伟,陆克政,等.渤海湾盆地新生代构造演化[J].石油大学学报(自然科学版)(增刊),19:1-6
    [99].漆家福.渤海湾新生代盆地的两种构造系统及其成因解释[J].中国地质,2004,31(1):15-22
    [100].钱凯,陈云林.济阳坳陷大、中型油气田的油气藏组合及其形成条件[J].石油与天然气地质,1987,8(4):349-351
    [101].邱楠生,李善鹏,曾溅辉.渤海湾盆地济阳坳陷热历史及构造一热演化特征[J].地质学报,2004,78(2):263-269
    [102].饶孟余,张遂安,赵常艳,等.砂岩透镜体成藏的成岩控制机理—以济阳坳陷牛庄洼陷沙三中亚段为例[J].特种油气藏,2006,13(2):12-15
    [103].石砥石.沾化凹陷东部北西向断裂系统与油气成藏研究[D],中国科学院研究生院(广州地球化学研究所).2006.
    [104].石广仁.油气盆地模拟方法[M].北京:石油工业出版社;1994
    [105].史新磊.沾化凹陷新生代构造沉降史分析[J].内蒙古石油化工,2011,16:123-126
    [106].宋国奇.含油气盆地成藏组合体理论初步探讨[J].油气地质与采收率,2002,9(5):4-7
    [107].宋梅远.渤南洼陷泥岩裂缝油气藏储层发育及成藏规律研究[D].中国石油大学
    [108].苏朝光,刘传虎,高秋菊.胜利油田罗家地区泥岩裂缝油气藏地震识别与描述技术[J].石油地球物理勘探,2001,36(3):371-377
    [109].苏向光,邱楠生,柳忠泉,等.沾化凹陷构造—热演化研究[J].西安石油大学学报(自然科学版),2006,21(3):9-12
    [110].隋风贵.浊积砂体油气成藏主控因素的定量研究[J].石油学报,2005,26(1):55-59
    [111].孙海涛,钟大康,刘洛夫,等.沾化凹陷沙河街组砂岩透镜体表面与内部碳酸盐胶结作用的差异及其成因[J].石油学报,2010,32(2):246-252.
    [112].孙卫国,杨成顺.砂岩透镜体储油机理新认识[J].油气地球物理,2005,3(2):57-62.
    [113].汤玉平,刘运黎.烃类垂向微运移的地球化学效应及其机理讨论[J].石油实验地质.2002,(05):431-436.
    [114].唐大卿,孙玉峰,余光春.邵家洼陷区断裂构造及其对油气成藏的影响[J].油气地质与采收率,2006,13(2):51-52+55
    [115].唐大卿,余光春.沾化凹陷四扣洼陷区断裂系统及其对油气的控制作用[J].南方油气.2006.19(01):15-19,71-72.
    [116].田世澄.论成藏动力系统[J].勘探家,1996,1(2):20-25
    [117].万晓龙,邱楠生,张善文,等.岩性油气藏成藏的微观控制因素探讨—以东营凹陷牛35砂体为例[J].石油与天然气地质,2004,15(3):261-265.
    [118].王秉海,钱凯.胜利油区地质研究与勘探实践[M].北京:石油大学出版社,1992
    [119].王朝安,张伟涛,冯斌等.沾化凹陷五号桩洼陷油气藏特征研究[J].油气地质与采收率.2001
    [120].王捷,关德范.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999:198-199.
    [121].王宁,陈宝宁,翟剑飞.岩性油气藏形成的成藏指数[J].石油勘探与开发,2000,27(6):4-5.
    [122].王世虎,夏斌,陈根文等.济阳坳陷构造特征及形成机制讨论[J].大地构造与成矿学,2004,28(4):428-434
    [123].王同和.渤海湾盆地中、新生代应力场的演化与古潜山油气藏形成[J].石油与天然气地质,1986,7(3):273-280
    [124].王颖,赵锡奎,高博禹.济阳坳陷构造演化特征[J].成都理工学院学报.2002.29(2):181-187
    [125].王永诗,张善文,曾溅辉等.沾化凹陷上第三系油气成藏机理及勘探实践[J].油气地质与采收率.2001.8(06):32-34,33
    [126].王志刚.沾化凹陷裂缝性泥质岩油藏研究.石油勘探与开发[J].2003.30(01):41-43.
    [127].魏艳萍.渤南洼陷断层封闭性评价-以义37断块为例[J].油气地质与采收率.2008.15(4):36-38
    [128].吴智平,韩文功.济阳坳陷早晚第三纪沉积间断地层剥蚀量研究[J].中国海上油气(地质),14(5):320-323
    [129].吴智平,李伟,关德顺等.沾化凹陷中、新生代断裂发育及其形成机制分析[J].高校地质学报.2004,10(03):405-417.
    [130].吴智平,史卜庆,周瑶琪,等.济阳坳陷新老第三纪地层间断面研究[J].石油与天然气地质,1998,19(4):313-317
    [131].肖焕钦,陈广军,李长宝.济阳坳陷盆地拉张量及其石油地质意义[J].石油实验地质,2002,24(1):13-18
    [132].肖焕钦,陈广军.断层在油气成藏中的作用探讨-以济阳坳陷为例[J].特种油气藏,2003,10(2):17-19,30.
    [133].徐福刚,李琦,康仁华等.沾化凹陷泥岩裂缝油气藏研究[J].矿物岩石.2003,23(1):74-76
    [134].鄢继华,张鹏,陈世悦,等.沾化凹陷断坳转换期层序地层及沉积特征[J].新疆石油地质,2007,28(4):465-467
    [135].阎福礼,贾东,卢华复,等.东营凹陷油气运移的地震泵作用[J].石油与天然气地质.1999,(04):295-298.
    [136].衣学磊,侯贵廷.济阳坳陷中、新生代断裂活动强度研究[J].北京大学学报(自然科学版),2002,38(4):504-509
    [137].易海,钟广见,马金凤.台西南盆地新生代断裂特征与盆地演化[J].石油实验地质,2007,29(6):560-564
    [138].袁炳存,钱奕中.计算沉积层古厚度的逐层恢复法[J].石油实验地质.1986,(03):253-262.
    [139].曾溅辉,张善文,邱楠生,等.东营凹陷岩性圈闭油气充满度及其主控因素[J].石油与天然气地质,2003,23(3):219-222.
    [140].曾溅辉,张善文,邱楠生,等.济阳坳陷砂岩透镜体油气藏充满度大小及其主控因素[J].地球科学—中国地质大学学报,2002,27(6):729-732
    [141].曾溅辉.东营凹陷岩性油气藏成藏动力学特征[J].石油与天然气地质,1998,19(4):326-329.
    [142].张凡芹,王伟锋,戴俊生.沾化凹陷断层活动性及其对层序发育的控制作用[J].石油与天然气地质,2003.24(03):253-259.
    [143].张凡芹,王伟锋,张晶,等.沾化凹陷断层对沉积的控制作用[J].石油大学学报(自然科学版),2005,29(5):1-6
    [144].张金功.控制超压泥质岩裂隙开启的主要因素[J].地质论评,第42卷,增刊,1996.
    [145].张金功.深盆气成藏机制及潜力评价方法[R].西北大学地质系,1999
    [146].张金功.异常超压带内油气初次运移的方式,《石油科技进展》[M].北京:石油大学出版社,1995.
    [147].张金功等.泥质岩类油气藏勘探[R].西北大学地质系,1996.
    [148].张金功等.岩石弹性岩石弹性与油气成藏地质及模拟实验研究[R].西北大学地质系,2006
    [149].张金功等.济阳、临清煤成气成藏机理、成藏模式研究及大中型勘探目标评价[R].西北大学地质系,
    [150].张金功等.异常超压带内开启泥质岩裂隙的分布与油气初次运移[J].石油与天然气地质,1996,17(1):27-31.
    [151].张金功等.油气藏上方地温异常原理与地表非常规油气勘探,《石油勘探新进展国际研讨会论文集》[M].北京:地质出版社1995.
    [152].张金功等.油气藏上方烃类异常与地温的关系[J].地质论评,第42卷,增刊,1996.
    [153].张金功等.油气初次运移模拟技术研究[R].西北大学地质系,1996
    [154].张俊,庞雄奇,姜振学.东营凹陷岩性油藏含油性定量预测[J].吉林大学学报,2005,35(6):732-737.
    [155]].张鹏,王良书,丁增勇,等.济阳坳陷中—新生代断裂发育特征及形成机制[J].石油与天然气地质,2006,27(4):467-474.
    [156].张惬,贾东,陈竹新等.济阳坳陷中、新生代构造沉降与板块聚敛速率关系探讨[J].高校地质学报,2005,11(4):642-648
    [157].张善文.济阳坳陷第三系隐蔽油气藏勘探理油与天然气地质,2006,27(6):722-740,761
    [158].张善文.曾溅辉.断层对沾化凹陷馆陶组石油运移和聚集影响的模拟实验研究[J].地球科学.2003.28(02):185-190.
    [159].张云峰,付广,于建成.砂岩透镜体油藏聚油机理及成藏模式[J].断块油气田,2000,7(2):12-14
    [160].章泽军.用有限应变测量恢复地层初始厚度的一种近似计算方法[J].地质评论,1987,33(6):564-569
    [161].赵文智,邹才能,谷志东,等.砂岩透镜体油气成藏机理初探[J].石油勘探与开发,2007,34(3):273-283.
    [162].郑德顺,吴智平,蔡进功,等.济阳坳陷中、新生代断层切割关系研究[J].石油天然气学报(江汉石油学院学报),2008.3(1):7-9
    [163].郑德顺,吴智平,李伟,等.济阳坳陷中、新生代盆地转型期断裂特征及其对盆地的控制作用[J].地质学报,2005,79(3):386-393.
    [164].智凤琴,李琦,樊德华,等.沾化凹陷泥岩裂缝油气藏油气运移聚集研究[J].油气地质与采收率,2004,11(5):27-29
    [165].钟俊义,邱荣华,漆家福,等.砂岩透镜体油气藏成藏动力学理论新进展[J].石油地质与工程,2008,26(3):1-4
    [166].朱光有,金强,张水昌,等.陆相断陷盆地复式成烃及成藏系统研究—以济阳坳陷沾化凹陷为例[J].石油学报,2004,25(4):12-18
    [167].庄文山,王永诗.试论沾化凹陷上第三系油气成藏与断层的关系[J].海洋石油,2002.(04):37-41.
    [168].卓勤功,向立宏,银燕,等.断陷盆地洼陷带岩性油气藏成藏动力学模式—以济阳坳陷为例[J].油气地质与采收率,2007,14(1):7-10
    [169].卓勤功.断陷盆地洼陷带岩性油气藏成藏机理及运聚模式[J].石油学报,2006,27(6):19-23
    [170].卓勤功.关于深洼区岩性油气藏成藏机理的研究与思考[J].油气地球物理,2005,3(4):49-53.
    [171].宗国洪,施央申,王秉海,等.济阳盆地中生代构造特征与油气究[J].地质论评,1998,44(3):289-294
    [172].宗国洪,肖焕钦,李常宝,等.济阳坳陷构造演化及其大地构造意义[J].高校地质学报.1999.5(3):275-282
    [173].邹才能,贾承造,赵文智.松辽盆地南部岩性-地层油气藏成藏动力和分布规律[J].石油勘探与开发,2005,32(4):125-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700