含氟丙烯酸酯聚合物共混乳液自组织形成梯度结构膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从功能梯度材料概念出发,将含氟丙烯酸酯聚合物与其它价格便宜粘结性好的聚合物共混,通过巧妙的梯度复合技术,使膜材料的一侧表面具备有机氟的优点,另一侧表面具备其它聚合的优异性能,而在膜的厚度方向上组分连续过渡,无任何不良宏观界面,这样可以解决含氟丙烯酸酯表面性能优越但粘结性差价格昂贵所造成的使用限制。最引人注目的梯度材料的制备方法是自组织法,而目前用自组织法制备梯度材料的研究主要集中在可能会造成环境污染的溶液体系和耗能高的熔融体系,环保节能的乳液体系中,由于聚合物被乳化剂包裹,不同聚合物乳胶粒性能差别很小,缺乏梯度形成的驱动力,而少有人研究。本论文概述了高分子梯度材料的研究进展及自组织形成梯度结构的理论依据和影响因素,在分析乳液共混体系自组织形成梯度结构条件的基础上,设计制备了含氟丙烯酸酯与普通丙烯酸酯共混梯度乳胶膜,讨论了成膜温度、热处理温度和时间、聚合物的玻璃化转变温度,共混比例,乳胶粒的粒径,成膜的基材、含氟烷基侧链以及共聚物的加入对含氟丙烯酸酯聚合物共混乳液自组织形成梯度结构的作用。
     首先,研究了成膜温度、热处理温度和时间、玻璃化转变温度对含氟丙烯酸酯共混乳液自组织梯度成膜的影响。选择Tg不同但含氟量和表面能相近的六种含氟丙烯酸酯聚合物分别以1/1与丙烯酸酯共聚物共混,得到六种共混乳液。将共混乳液在不同温度下(15℃,30℃,45℃,60℃)成膜,后在110℃/170℃下进行了热处理。用接触角法测试了乳胶膜的表面能;单点反射红外光谱测试了膜正反两面的基团信息;SEM-EDX分析了乳胶断面的元素分布;AFM测试了膜的表面形貌和分相情况,XPS测试了膜的表面元素。结果表明:控制成膜温度高于共混两组份的最低成膜温度是直接成膜不热处理得到氟浓度梯度的必要条件,满足此条件的情况下,使含氟组分的Tg高于不含氟组分,加大两组份的Tg差并降低成膜温度有利于得到梯度结构。含氟乳胶粒在共混体系干燥的时候未进行融合和扩散有利于在组分Tf以下Tg以上热处理形成氟浓度梯度结构。热处理温度升高到组分的黏流温度以上使体系中两组分发生明显相分离,不利于梯度结构的形成。
     对于含氟丙烯酸酯Tg高于普通丙烯酸酯的共混体系,研究了两种乳液的乳胶粒粒径及含量对膜表面性能及梯度结构的影响,用AFM表征了膜的表面形貌,ATR-FTIR、XPS、SEM-EDX表征了膜的表面及内部组成,表面能测试和膜的附着力测试表征了膜的表面性能,结果发现含氟丙烯酸酯粒径远小于普通丙烯酸酯的粒径有利于含氟乳胶粒在膜F-A面富集并在膜断面方向呈浓度梯度分布,成膜之后热处理(高于含氟组分Tg的温度)使膜具备明显沿膜厚方向的氟浓度梯度,且共混体系中含氟乳液含量达到30%即可以得到氟浓度梯度结构膜,膜的F-A面具备纯丙烯酸酯的优异表面性能。
     对于含氟丙烯酸酯/普通丙烯酸酯的共混体系(含氟组分Tg高),选用了不同表面能的铝、不锈钢、玻璃、聚四氟乙烯四种基材成膜并进行热处理,研究了不同成膜基材对乳胶膜梯度结构的影响。用接触角法测试了共混乳液在不同基材上成的膜及膜经过110℃、210℃退火不同时间的表面能,用SEM-EDX测试乳胶膜断面的元素分布和含量,同时也测试了热处理前后不同基材上乳胶膜的附着力。结果表明,增大基材的表面能,减小膜厚,有利于热处理之后氟组分浓度梯度的形成。在表面能很高的金属基材上,控制膜厚小于20μm,高于组分黏流温度热处理后,可以得到膜F-A面为100%含氟组分,膜F-G面为95%以上的普通丙烯酸酯组分,中间组分浓度连续变化,无不良界面的完美梯度结构。在表面能较低的玻璃基材上,膜厚要小于10μm才能得到完美梯度结构,PTFE基材上的膜只能形成夹心结构。
     研究了共聚物的加入对含氟/无氟丙烯酸酯乳液共混体系相容性、膜表面性能和梯度结构的影响。通过表面能、’附着力、DSC和膜的断面SEM-EDX表征发现:含氟/无氟丙烯酸酯共聚物加入到含氟/无氟丙烯酸酯共混体系中后,有利于体系相容性的改善,但对膜的表面性能及梯度结构影响不大。将与普通丙烯酸酯共混的含氟组分改为含氟丙烯酸酯与不含氟丙烯酸酯的共聚物后,体系中含氟单体单元含量减小到18%,室温成膜即可形成氟浓度梯度,在组分Tf以下Tg以上热处理以及共聚物中含氟烷基侧链的加长有利于梯度结构的完美及表面性能的提高。
Based on the concept of gradient polymer blend films and self-stratification mechanisms, a gradient blend film with surface property of fluorinated polyacrylate on one side and good adhesion on another side is possible by blending fluorinated polyacrylate latices and other latices. If achieved, the incompatibility of the fluorinated film with substrate could be avoided. The self-organization process over a heterophase liquid applied a driving force during the film-forming process so as to distribute the phases between the air and substrate is simple and tractable. However, the self-stratification mechanism was mainly applied in solution system which usually uses poisonous organic solvents and melts systems which usually need high temperature and is energy consuming. With regard to the latex blends system which is environmentally friendly and energy saving, the polymers are covered by emulsifier such that the surface free energies of different latex particles in the system are of little differences. Unfortunately, the differences of surface free energies between different latex particles have been a main provider of the driving force during the self-organization process in the blends system. So the formation of gradient structures by self-organization in latex blends system is difficult due to the lack of driving forces. In this paper, the self-organization process of gradient structure in latex blends system were discussed in detail, the effect factors on gradient, such as temperature, Tg, particle size, substrates and so on were studied.
     The effects of film-formation temperature (FFT), heat treatment and Tg on the self-organized film-formation of fluorinated/non-fluorinated polyacrylate latex blends were studied. To this end, six kinds of fluorinated polyacrylate latices with different Tg and same content of fluorine were prepared and mixed with the same non-fluorinated polyacrylate latex, respectively. All the blends latices were dried at 15℃; 30℃; 45℃and 60℃. The surface properties and morphologies were characterized by contact angle measurement and AFM. The element composition and structure of films across the section was analyzed by XPS, SEM-EDX and ATR-FTIR. The results showed that, drying at temperatures above the MFFT of fluorinated component is necessary for the enrichment of fluorinated component on film-air interface (F-A) of the film and formation of gradient structure. Moreover, when the Tg of fluorinated component is higher than that of the non-fluorinated polyacrylate, the big difference of Tg of the two components and the low FFT are in favor of the formation of gradient structures of the films. Compared with that of sample whose two components can film-formation at room temperature, the two components of sample which only one component can film-formation at room temperature were easier to self-organize to the different surface of the film during film-formation and anneal process because of their different Tg. Increasing the heat treatment temperature above the Tf of polymers make for the phase separation but the formation of gradient structure.
     The effects of particle size of the components and content of PF6MBA on the gradient structure of films were discussed. The content of fluorine in film-thickness direction was analyzed by XPS depth profiling, SEM-EDX and ATR-FTIR. The surface properties and morphology were characterized by contact angle measurement and AFM. It was found that, after film-formation at room temperature and anneal 2h at 110℃, the fluorine content increased from F-G to F-A gradually in the blends film whose fluorinated polyacrylate latex with smaller particle size and higher Tg than that of fluorine-free polyacrylate latex. Moreover, the content of PF6MBA in the system was above 30%is necessary for the gradient structure and the pure fluorinated polyacrylate surface of F-A.
     The effects of substrates of film on the gradient structure were discussed. The blend latex was film-formed on Al, Steel, Glass, and PTFE. The content of fluorine in film-thickness direction was analyzed by XPS depth profiling, SEM-EDX and ATR-FTIR. The surface properties and morphology were characterized by contact angle measurement and AFM. The result shows that increasing the surface free energy of substrate and decreasing the thickness of film would promote the formation of perfect gradient structure(the fluorinated polymer content increased from 0%on F-G to 100%on F-A gradually) after anneal above the Tf of polymer.
     The effects of adding the fluorinated acrylate copolymer in fluorinated/non-fluorinated polyacrylate latex blend on the surface property, gradient structure and compatibility of the blend film were studied by surface free energy testing, adhesion test, DSC and SEM-EDX. The results showed that the compatibility of the blend system was improved after adding the copolymers. The increasing of the fluorine content of copolymer was beneficial to the formation of gradient structure. The copolymer had little influence on the surface property of the films. Blending fluorinated polyacrylate copolymer and non-fluorinated polyacrylate copolymer latexes, the gradient structure film was abtained while film-formation at room temperature, the gradient structure was obviouse after annealing at 110℃, the lengthening of the fluorinated chain segment was in favour of the gradient structure and surface property.
引文
[1]新野正之,平井敏雄,渡边龙三.倾斜机能材料,宇宙机用超耐热材料应用[J].日本复合材料学会志,1987,13(6):257-264.
    [2]渡边龙三.倾斜机能材料[M].东京,工业调查会,1993,(1):3-6.
    [3]温变英,聚合物梯度材料的制备及材料结构与性能研究[D].北京,北京化工大学,2003.
    [4]Kryszewski M. Gradient polymers and Copolymers[J]. Polymers for Advanced Technologies,1998(9): 244-259.
    [5]陈艳军,张超灿,胡园园.高分子梯度材料的研究现状[J].材料导报,2006,20(9):59-61.
    [6]孙文兵.高分子梯度材料的制备研究[J].材料导报,2006,20(7):95-98.
    [7]朱永彬,宁南英,孙阳等.聚合物功能梯度材料的研究现状与展望[J].高分子通报,2007,6:24-31.
    [8]Arehartsv, Matyjaszewski K. Atomtransfer radical copolymerization of styrene andn-butyl acrylate [J]. Macromolecules,1999,32:2221-2231.
    [9]Matyjaszewski K, Gresztad. TEMPO-mediated polymerization of styrene:Rate enhance-ment with dicumyl peroxide [J]. Journal of Polymer Science Part A:Polymer Chemistry,1997,35 (9): 1857-1861.
    [10]Ishizu K, Sunahara K, Asai S. Synthesis and solution properties of gradient-modulus star copolymers[J]. Polymer,1998,39(4):953-957.
    [11]王涛,刘峰,罗宁等.苯乙烯和甲基丙烯酸甲酯梯度共聚物的合成[J].合成橡胶工业,2001,24(5):268-270.
    [12]张彬,张兆斌,万小龙等.水分散体系中苯乙烯和甲基丙烯酸甲酯梯度共聚物的合成与表征[J]。高等学校化学学报,2004,6:1170-1173.
    [13]Graym K, Zhou Hongying, Sonbinh T, et al. Synthesis and glass transition behavior of high molecular weight styrene/4-ace-toxystyene and styrene/4-hydrox-ystyrene gradient copolymers made via nitroxidemediated controlled radical polymerization [J]. Macromolecules,2004,37:5586-5595.
    [14]Dettmer CM, Graymk, Torkelson JM, et al. Synthesis and functionalization of ROMP-based gradient copolymers of 5-substituted norbornenes [J]. Macromolecules,2004,37:5504-5512.
    [15]Lee SB, Alan J, Russel L, et al. ATRP synthesis of amphiphilicrandom, gradient, and block copolymers of 2-(dimethylamino) ethyl methacrylate and n-butyl methacrylate in aqueousmedia [J]. Biomacromolecules,2003,4:1386-1393.
    [16]Liu Ping, Jin Lan, Hu Jianhua, et al. Synthesisofwell-defined comb-like amphiphilic copolymers with protonizable units in the pendent chains [J]. Polymer International,2004,53:136-141.
    [17]Tang Jianguo, Chen Q, Liu H, et al. Influences of co-monomers and electrolyte acidity on morphological structure of copper-in-copolymer gradient film[J]. Journal of Applied Polymer Science, 2004.92:373-38.0
    [18]Krumova M, Klingshirn C, Haupert F, et al. Microhardness studies on functionally graded polymer composites[J].Composites Science and Technology,2001,61:557-563.
    [19]Mashiro F.Gradient composites of nickel coated carbon fibre filled epoxy resin moulded under centrifugal force[J].Composites:Part A,1997,28A:731-737.
    [20]徐坚,马军,等.中华人民共和国发明专利,001237111X.
    [21]Jang J, Han S. [J] Composites:Part A,1999,30:1045-1053
    [22]Huang ZM, Wang QA, [J] Polymers & Polymer Composites,2002,10:307-317
    [23]Murayama S, Kuroda S, Osawa Z. [J] Polymer,1993,34:3893-3898
    [24]Jasso CF, Martinez JJ, Mendizabal E, et al. Mechanical and rheological properties of styrene/acrylic gradient polymers[J]. Journal of Applied Polymer Science,1995,58:2207-2212.
    [25]Jasso CF, Valdez I, Perez JH, et al. Analysis of acrylat diffusion in a glassy polystyrene matrix to predict gradient structure[J]. Journal of Applied Polymer Science,2001,80:1343-1348.
    [26]Milczarek P, Kryszewski M. Polyethylene-polystyrene gradient polymers. Ⅱ. The swelling-induced crystallization in the PE-PS gradient polymers and modified by styrene LDPE Samples[J]. Colloid and Polymer Science,1987.265(6):481-489.
    [27]Akovali C. Studies with gradient polymers of polystyrene and poly(methyl acrylate) [J]. Journal of Applied Polymer Science,1999,73:1721-1725.
    [28]Kano Y, Akiyama S, Sano H, et al. Sectional morphology of gradient structure found in acrylate copolymer/fluoro-copolymer blends[J]. Kobunshi Ronbunshu,1997,54(5):325-332.
    [29]Kano Y, Akiyama S, Sano H, et al. ATR-FTIR and SEM gradient study of poly(2-ethylhexyl acrylate)/poly(vinylidene fluoride-co-hexafluoro acetone) blends[J]. Journal of Adhesion,1998, 66(1-4):319-337.
    [30]Kong XM, Xie XM, Yang R. Determination of the composition distribution of polymer blend films by using microscopic FTIR [J]. Spectroscopy And Spectral Analysis,2000,20(5):623-625.
    [31]Nicolas B, Sara M, Raphae P. Gradients of topographical structure in thin polymer films[J]. Applied Surface Science,2008,254:6820-6825.
    [32]Kano Y, Sato H, Okamoto M, et al. Phase separation process during solution casting of acrylate-copolymer/fluoro-copolymer blends[J]. Journal of Adhesion Science and Technology,1999, 13(11):1243-1251.
    [33]Agari Y, Yamamoto T, Nomura R. Preparation and properties of polystyrene/SEBS blends with compositional gradients in their sheet direction[J]. Macromolecular Symposia,2006,242:1-4.
    [34]Agari Y, Anan Y, Nomura R. Estimation of the compositional gradient in a PVC/PMMA graded blend prepared by the dissolution-diffusion method[J]. Polymer,2007 (48):1139-1147.
    [35]Ikejima T, Inoue Y. Experimental approaches to generate compositional gradients in the fully biodegradable polymer blend system based on poly(3-hydroxybutyric acid) [J]. Macromolecular Chemistry and physics,2000,201(14):1598-1604.
    [36]Xie XM, Chen Y, Zhang ZM. Controls of Gradient Morphology and Surface Properties of Polymer Blends[J]. Macromolecules,1999.32(13):4424-4429.
    [37]Koide S, Asakawa N, Inoue Y, et al. Influence of a Melt Flow on Generation of Functionally Graded Structure in Bulk Polymeric Materials under Uniaxial Thermal Gradient[J]. Macromolecular Chemistry and physics,2008,209:499-507.
    [38]Hexig B, Alata H, Asakawa N, et al. Novel biodegradable poly(butylene succinate)/poly (ethylene oxide) blend film with compositional and spherulite-size gradients[J]. Journal of Polymer Science Part B:Polymer Physics,2005,43(4):368-377.
    [39]Wen Bianying, Li Qingchun, Hou Shaohua, et al. Preparation and Structure Study of Polypropylene/Polyamide-6 Gradient Materials[J]. Journal of Applied Polymer Science,2004, 91:2491-2496.
    [40]Wen Bianying, Wu Gang, Yu Jian. A flat polymeric gradient material:preparation, structure and property[J]. Polymer,2004,45:3359-3365.
    [41]Takahashi H, Orihara K, Okamoto M. Formation of composition gradient or step from melted polymer blend of poly(ethylene oxide) and polypropylene[J]. Kobunshi Ronbunshu,2002,59(7):445-447.
    [42]Bronstein LM, Ivanovskaya Anna, Mates T. Bioinspired Gradient Materials via Blending of Polymer Electrolytes and Applying.Electric Forces[J]. The Journal of Physical Chemistry B,2009,113: 647-655.
    [43]Simon GC, Eidelmen N, Deng Y, et al. High-throughput method for determining modulus of polymer blends[J]. Macromolecular Rapid Communications,2004,25(24):2003-2007.
    [44]Jiang C, Chen YM, Pan ZJ. Gradient phase structure formation of polymer-polymer blend composites during melt spinning[J]. Materials Science and Technology,2007,23(6):53-756.
    [45]赵培仲,朱金华,王源升.高分子梯度材料的研究[J].弹性体,2006,16(3):58-60.
    [46]Kano Y, Akiyama S, Sano H, et al. Controlling gradient domain morphology in blend of poly (2-ethylhexylacry-late-co-acrylic acid-co-hexafluoroacetone)/poly (vinyli-denefluorie-co-hexafluoroacetone) by adding micrograin silica[J]. Polymer Journal,1997, 29(2):158-164.
    [47]Agari Y, Shimada M, Ueda A, etal. Preparation, characterization and properties of gradient polymer blend:discussion of poly(vinylchloride)/poly(methylmethacry-late)blend films containing a wide compositional gradient phase[J]. Macromolecular Chemistry and physics,1996,197:2017-2033.
    [48]Krumova M, Lingshirn CK, Aupert FH, et al. Microhardness Studies on functionally graded polymer composites[J].Composites Science and Technology 2001,61:557-563.
    [49]刘世宏,王当憨,潘承璜编著.X射线光电子能谱分析[J].北京:科学出版社,1988.231-235.
    [50]Parry K L, Shard AG, Short RD, et al. ARXPS characterisation of plasma polymerised surface chemical gradients. Surface and Interface Analysis,2006,38:1497-1504.
    [51]Bronstein LM, Ivanovskaya A, Mates T, et al. Bioinspired Gradient Materials via Blending of Polymer Electrolytes and Applying Electric Forces[J]. Journal of Physical Chemistry B,2009,113(3):647-655.
    [52]Cui XJ, Zhong SL, Wang HY. Synthesis and characterization of emulsifier-free core-shell fluorine-containing polyacrylate latex[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects.2007,303(3):173-178.
    [53]Zhang Chaocan, Chen Yanjun. Investigation of fluorinated polyacrylate latex with core-shell structure[J]. Polymer International.2005,54:1027-1033.
    [54]Beamson G, Alexander MR. Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymers. Surface and Interface Analysis,2004,36:323-333.
    [55]吴人洁,等著.高聚物的表面与界面.北京:科学出版社,1998.66-67.
    [56]Chen Jiaxing, Gardella JA. Quantitative ATR FT-IR analysis of surface segregation of polymer blends of polystyrene/poly(dimethylsiloxane)co-polystyrene[J]. Applied Spectroscopy,1998.52(3):361-366
    [57]孔祥明,谢续明,杨睿等.用显微红外光谱法研究高分子共混物溶液自组织形成的相组成分布[J].光谱学与光谱分析,2000,20(5):623-625.
    [58]Saito T, Tanuma H, Pan P, et al. Gelatin/Poly(ethylene oxide) Blend Films with Compositional Gradient:Fabrication and Characterization. Macromolecular Materials and Engineering,2010,295(3): 256-262.
    [59]Osugi N, Dong T, Hexig B, et al. Generation and characterization of compositional gradient structure in the biodegradable chitosan/poly(ethylene oxide) blend. Journal of Applied Polymer Science,2007, 104(5):2939-2946.
    [60]Menzies DJ, Cowie B, Fong C, et al. One-Step Method for Generating PEG-Like Plasma Polymer Gradients:Chemical Characterization and Analysis of Protein Interactions. Langmuir,2010,26(17): 13987-13994.
    [61]Bhatia QS, Brrell MC. Static SIMS study of miscible blends of polystyrene and poly(vinyl methyl ether) [J]. Surface and Interface Analysis,1990,15:388-391.
    [62]邱清华,贾德民.聚合物表面/界面表征技术进展[J].高分子材料科学与工程,1998.14(5):1-5
    [63]Walz SM, Malner TE, Mueller U, et al. Depth profiling of latex blends of fluorinated and fluorine-free acrylates with laser-induced secondary mass[J]. Journal of Applied Polymer Science,2003,41: 360-367.
    [64]Kailas L, Nysten B, Bertrand P. Difference in the annealing behaviour of thin films of PS/PMMA blends and copolymers as revealed by ToF-SIMS and AFM[J]. Surface and Interface Analysis.2004, 36:1227-1230.
    [65]Lagunas A, Comelles J, Martinez E, et al. Universal Chemical Gradient Platforms Using Poly(methyl methacrylate) Based on the Biotin Streptavidin Interaction for Biological Applications. Langmuir, 2010,26(17):14154-14161.
    [66]Takemoto I, Ando N, Edamatsu K, et al. Tailoring surface properties of ArF resists with functionally graded materials (FGM). Journal Of Photopolymer Science And Technology,2007,20(3):473-480.
    [67]Man N, Okumura H, Oizumi H, et al. Depth profile analysis of chemically amplified resist by using TOF-SIMS with gradient shaving preparations. Applied Surface Science,2004,231:353-356.
    [68]Lee Y, Akiba I, Akiyama S. The study of surface segregation and the formation of gradient domain structure at the blend of poly(methyl methacrylate)/poly(dimethyl siloxane) graft copolymers and acrylate adhesive copolymer[J]. Journal of Applied Polymer Science,2003.87:375-380.
    [69]Elena C, Alberto M, Laura R, et al. Synthesis, characterization, and properties of a novel acrylic terpolymer with pendant perfluoropolyether segments[J]. Polymer,2002,43(4):1207-1214.
    [70]Hexig B, Alata H, Inoue Y. Self-organization of Functional Gradient Structure in the Biodegradable Chitosan/Poly(vinyl alcohol) Blend Film[J]. Journal of Polymer Science:Part B:Polymer Physics, 2005,43:3069-3076.
    [71]Ning NY, ZhuYB, Zhang XQ, et al. A new technique for preparing polyethylene/polystyrene blends with gradient structure. Journal of Applied Polymer Science,2007,105(5):2737-2743.
    [72]Zhu YB, Ning NY, Sun Y, et al. A new technique for preparing a filled type of polymeric gradient material. Macromolecular Materials and Engineering,2006,291(11):1388-1396.
    [73]Agari Y, Shimada M, Ueda A. Preparation, characterization and properties of gradient polymer blends: discussion of poly(vinyl chloride)/poly(methyl methacrylate) blend films containing a wide composition gradient phase[J]..Macromolecular Chemistry and physics,1996,197:2017-2033.
    [74]Martin GC. Mechanical behavior of gradient polymer[J]. Journal of Applied Polymer Science,1981. 26:1465-1437
    [75]Bielinski DM, Kajzer M, Slusarski L, Kaczmarek L. Gradient structure of polymer materials [J]. Polimery,2005,50(4):298-304.
    [76]Misra R, Fu BX, Morgan SE. Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites[J]. Journal Of Polymer Science Part B-Polymer Physics.2007, 45(17):2441-2455.
    [77]Blondiaux N, Morgenthaler S, Pugin R, et al. Gradients of topographical structure in thin polymer films[J]. Applied Surface Science.2008,254(21):6820-6825.
    [78]顾明冬,李林艳.高分子梯度玻璃的研制和表征[J].南京化工大学学报,2001,23(3):45-48.
    [79]Koike Y, Tanio N, Nihei E, et al. Gradient-index polymer materials and their optical devices[J]. Polymer Engineering and Science,1989,29(17):1200-1204.
    [80]Liu JH, Liu HT, Cheng YB. Preparation and characterization of gradient refractive index polymer optical rods [J]. Polymer,2006,47(16):5799-5809.
    [81]Koike Y, Tanio N, Nihei E, et al. Gradient-index polymer and their optical devices [J]. Polymer Engineering Science,1989,29(17):1200-1204.
    [82]张帆,张其锦.梯度折射率塑料光纤的研究进展[J].高分子通报,2001,(3):33-38.
    [83]Karabanova LV, Mikhalovsky SV, Lloyd AW, et al. Gradient semi-interpenetrating polymer network based on polyurethane and poly(vinyl pyrrolidone) [J]. Journal of Materials chemistry,2005,15(4): 499-507.
    [84]高长有.促进组织生长的聚合物骨架工程材料[J].功能高分子学报,1998(3):408-412.
    [85]Watari F, Kondo H, Matsuo S. Development of functionally graded implant and dental post for biomedical application [J]. Materials Science Forum,2003,423:321-326.
    [86]Kyeck S, Remer P. Realisation of graded coating for biomedical use[J]. Materials Science Forum, 1999,308:368-373.
    [87]Qin CL, Cai WM, Cai J, et al. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials Chemistry and Physics,2004.85:402-409.
    [88]Qin CL, Tang DY, Bai XD. Vibration damping properties of gradient polyurethane/vinyl ester resin interpenet rating Polymer network[J]. Materials Chemistry and Physics,2006,97(2-3):517-524.
    [89]Tang DY, Qin CL, Cai WM, et al. Preparation, morphology and mechanical properties of modified-PU/UPR graft-IPNs nanocomposites with BaTiO3 fiber[J]. Journal of Materials Science, 2003,82(1):73-77.
    [90]李波,周洪,黄光速.声阻抗梯度渐进的高分子微球吸声材料[J].高分子材料科学与工程,2005,19(2):5-8.
    [91]Wang YQ, Wang Y, Zhang HF, et al. A novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization. Macromolecular Rapid Communications,2006,27:1162-1167.
    [92]李健民编译.通过聚合物掺混制造梯度功能材料[J].粘接,2002.3(3):57(原刊:日本接着学会志,2002年,第2期)
    [93]用溶液扩散法制造高功能高分子梯度材料[J].现代化工,2000.(1):60(原刊:化学工业时报(日),第2371号:1-2)
    [94]张晓铃,张馨,陈一民.有机梯度功能材料的研究[J].功能材料,1994,25(6):511-514.
    [95]杨雪,王源升,余红伟.梯度聚氨酯吸声性能研究[J].武汉理工大学学报,2008,30(3):21-23.
    [96]王源升,杨雪,朱金华.高分子梯度溶液吸声机理的研究[J].化学物理学报,2005,18(5):842-844.
    [97]李波,周洪,黄光速.声阻抗梯度渐进的高分子微粒吸声材料[J].高分子材料科学与工程,2006,22(3):239-242.
    [98]Ogumi Z, Abe T, Nakamura S, et al. Functionally gradient polymer electrolyte prepared by plasma polymerization. Solid State Ionics,1999,121:289-293.
    [99]Oikawa A, Hosoya M, Orihara K. Influence of the direction of temperature gradient of structure of the gradient from polymer blend [J]. Polymer Preprints,2002,51(11):2715-2716.
    [100]戴亚辉,折原胜男,仓本宪幸等.利用挤出成型法制备具有夹芯结构的三层特殊梯度材料[J].中国塑料,2005,19(8):56-62.
    [101]Walbridge DJ. Self-stratifying coatings-an overview of a European Community Research Project[J]. Progress in Organic Coating,1996,28 (3):155-159.
    [102]Verkholantsev V, Flavian M. Polymer structure and properties of heterophase and self-stratifying coatings[J], Progress In Organic Coatings,1996,29:239-246.
    [103]Carr C, Eva W. Theoretical Aaspects of Self-stratification[J]. Progress In Organic Coatings.1996, 28(3):161-171.
    [104]Hansen CM. The Three Dimensional Solubility Parameter-key to Paint Component Affinities:I. Solvents Plasticizers, Polymers, and Resins[J]. Journal of Paint Techonology,1967,39(505):104-117.
    [105]Hansen CM. The Three Dimensional Solubility Parameter-key to Paint Component Affinities: Ⅱ-Ⅲ.Dyes, Emulsifiers, Mutual Solubility and Compatibility, and Pigments[J]. Journal of Paint Techonology,1967,39(511):505-510.
    [106]Vink P, Bots TL. Formulation Parameters Influencing Self-stratification of Coating[J]. Progress In Organic Coatings,1996,28(3):173-181.
    [107]Verkholantsev VV. Non homogeneous-in-Layer Coating[J]. Progress in Organic Coatings,1985, 13(2):71-96.
    [108]Verkholantsev VV. Heterophase and Self-Stratifying Polymer Coating[J], Progress in Organic Coatings,1995,26(1):31-52.
    [109]Verkholantsev VV. Coating Based on Polymer-Polymer Composites[J], Progress in Organic Coatings, 1990,18:43-77.
    [110]Fredeslund A, Gmehling J., Rasmussen P. Vapor-Liquid Equilibria using UNIFAC—A Group Contribution Method[J]. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1997.
    [111]孔祥明,李治,谢续明.一种利用电场制备聚合物梯度材料的方法.CN 1339520A,2002.
    [112]李治,孔祥明,谢续明.电场条件下高分子共混物组浓度梯度化的研究[J].高等化学学报,2001,21(10):1764-1766.
    [113]Hexig B, Alata H, Inoue, Y. Self-organization of functional gradient structure in the biodegradable chitosan/poly(vinyl alcohol) blend film. Journal of Polymer Science Part B-Polymer Physics,2005, 43(21):3069-3076.
    [114]Minarik A, Perutka M, Urban P, et al. A special instrument for exact control of self-organized structures preparation in polymer layers. International Journal of Heat and Mass Transfer,2010, 53(23-24):5472-5477.
    [115]Nambu T, Yamauchi Y, Kushiro T, et al. Micro-convection, dissipative structure and pattern formation in polymer blend solutions under temperature gradients. Faraday Discussions,2005,128:285-298.
    [116]Bormashenko E, Balter S, Pogreb R, et al. On the mechanism of patterning in rapidly evaporated polymer solutions:Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning? Journal of Colloid and Interface Science,2010,343(2):602-607.
    [117]Byun M, Hong SW, Qiu F, et al. Evaporative Organization of Hierarchically Structured Polymer Blend Rings. Macromolecules,2008,41(23):9312-9317.
    [119]Koide S, Yazawa K, Asakawa N, et al. Fabrication of functionally graded bulk materials of organic polymer blends by uniaxial thermal gradient. Journal of Materials Chemistry,2007,17:582-590.
    [120]Xie XM, Matsuoka M, Takemura K. Formation of gradient phase structure during annealing of a polymer blend[J]. Polymer,1992,33:1996-1998.
    [121]Xie XM, Chen Y, Zhang ZM. Controls of Gradient Morphology and Surface Properties of Polymer Blends[J]. Macromolecules,1999,32(13):4424-4429.
    [122]Xie XM, Hu W, Chen Y, et al. Control of surface properties of gradient component polymer blend[J]. Polymer Preprint,1994,43:3842-3843.
    [123]孔祥明,王震,谢续明.高分子共混物梯度相结构形成过程中的界面效应[J].高等学校化学学报,2001,22(12):2104-2107.
    [124]孔祥明,谢续明,高宁,等.相界面张力对两相聚合物熔体中分散相粒子粗化速度的影响研究[J].高分子学报,1999,6:752-756.
    [125]Xie XM, Xiao TJ, Zhang ZM, et al. Effect of interfacial tension on the formation of the gradient morphology blends[J]. Journal of Colloid and Interface Science,1998,206:189-194.
    [126]Stefanie MW, Thomas EM, Ulrich M, et al. Depth profiling of latex blends of fluorinated and fluorinefree acrylates with laser-Induced secondary mass spectrometry[J]. Journal of polymer science: part B:polymer physics,2003,41:360-367.
    [127]秦总根,涂伟萍.环氧乳液与含氟乳液的拼混研究[J].现代化工,2004,24(5):34-37.
    [128]秦总根,涂伟萍.自交联含氟乳液与水性环氧树脂共混乳液自分层的研究[J].精细化工,2006,23(5):487-501.
    [129]Chevalier Y, Pichot C, Graillat C, et al. Film formation of latex particles[J]. Colloid & Polymer Science,1992,270:806-821.
    [130]Sperry PR, Snyder B, O'Dowd ML, et al. Role of water in particle deformation and compaction in latex film formation[J]. Langmuir,1994,10:2619-2628.
    [131]Sheetz DP. Formation of films by drying of latex[J]. Journal of Applied Polymer Science,1965,9: 3759-3773
    [132]Lin F, Meier DJ. A study of latex film formation by atomic microscopy.1. A compariaion of wet and dry conditions[J]. Langmuir,1995.11:2726-2733.
    [133]贾世军,朱世雄,廖琦,等.高分子水胶乳成膜过程研究现状[J].化学通报,1999,(9):30-38.
    [134]李秀平,范胜华.影响聚合物最低成膜温度的因素[J].河北化工,2005,(3):21-22.
    [135]Protzman TF, Brown GL. An apparatus for the determination of the minimum film temperature of polymer emulsions[J]. Journal of Applied Polymer Science,1960.4(10):81-85
    [136]金熹高,朱世雄,贾世军,等.多组份高聚物体系多层形态观察的新方法:激光共聚焦荧光显微技术[J],化学通报,1999,6:34-39.
    [137]Glandt CA, Toh HK, Gillham JK, et al. Effect of dispersity on the Tll (>Tg) transition in polystyrene[J]. Journal of Applied Polymer Science,1976.20:1277-1288
    [138]Goh MC, Juhue D, Leung OM, et al. Annealing effects on the surface structure of latex films studied by atomic force microscopy. Langmuir,1993,1319-1322.
    [139]林义,余自力,徐彬.含氟丙烯酸酯三元共聚乳液的制备及表征[J].高分子材料科学与工程,2005,21(5):63-66.
    [140]赵兴顺,丁小斌,张军华,等.含氟丙烯酸酯共聚乳液及其膜表面特性的研究[J].高分子学报,2004,2:196-200.
    [141]金日光,华幼卿主编.高分子物理.化学工业出版社,2000,208.
    [142]吴人洁主编.高聚物的表面与界面.1997年8月出版,科学出版社,26
    [143]Yoo JN, Sperling LH, Glinka CJ, et al. Characterization of Film Formation from Polystyrene Latex Particles via SANS.2. High Molecular Weight. MacromoLecules[J],1991,24:2868-2876.
    [144]Visschers M, Laven J, German AL. Current understanding of the deformation of latex particles during film formation[J]. Progress in Organic Coatings,1997,30:39-49.
    [145]Brown GL. Formation of films from polymer dispersion [J]. Journal of Polymer Science,1956,22: 423-434.
    [146]Thomas RR, Lloyd KG, Stika KM, et al. Low Free Energy Surfaces Using Blends of Fluorinated Acrylic Copolymer and Hydrocarbon Acrylic Copolymer Latexes[J]. Macromolecules,2000,33: 8828-8841.
    [147]Wang Y, Kats A, Juhue D, et al. Freeze-fracture studies of latex films formed in the absence and presence of surfactant[J]. Langmuir,1992,8:1435-1442
    [148]Chevalier Y, Pichot C, Graillat C, et al. Film formation of latex particles[J]. Colloid & Polymer Science,1992.270:806-821
    [149]刘国杰.氟化丙烯酸树脂涂料进展动向[J].涂层新材料,2005,1:32-36.
    [150]Park IJ, Lee SD, Choi CK. Et al. Surface properties and structure of poly (perfluoroalkylethyl methacrylate) [J]. Journal of Colloid and Interface Science 1996,181(1):284-288.
    [151]沈一丁,李小瑞.N-羟基全氟辛酰胺丙烯酸酯共聚物的制备及应用[J].精细化工,1997,(5):11-14.
    [152]王永琦.含氟涂料的研制及其在防腐方面的应用[J].涂料工业,1999,12(1):8-11.
    [153]Yokoshima M. Glycidyl methacrylate-based'fluoropolymer coatings for protection of filters. JP 04,164,970,1992
    [154]Yokoshima M.保护滤色器用的可紫外光固化的丙烯酸含氟聚合物涂料.JP 04,153,274,1992
    [155]Savu PM, McAllister JW. Low refractive index plastics for optical fiber cladding[J]. US 4,148,511, 1992
    [156]刘爽,安秋凤,许伟,等.长链含氟丙烯酸酯乳液的合成及其在皮革防水中的应用[J].化工新型材料,2010,38(9):138-140.
    [157]郭肖霞,黄德智,刘彦军.含氟丙烯酸酯皮革防水剂的制备及性能研究[J].中国皮革,2010,39(30:32-35.
    [158]李中华,孟卫东.新型含氟丙烯酸酯聚合物的合成及其在棉织物上的应用.东华大学学报(自然科学版),2009,35(5):547-553.
    [159]Chen Yanjun, Zhang Chaocan, Chen Xinxin. Emulsifier-free latex of fluorinated acrylate copolymer[J], European Polymer Journal,2006,42:694-701.
    [160]Yang S, Wang J, Ogino K, et al. Low-surface-energy fluoromethacrylate block copolymers with patternable elements[J]. Chemistry Material,2000,12:33-40.
    [161]Li H, Zhang ZB, Hu CP, et al. Surface composition and property of film prepared with aqueous dispersion of polyurethaneurea-acrylate including fluorinated block copolymer[J]. European Polymer Journal,2004,40:2195-2201.
    [162]Lazzari M, Chiantore O, Castelvetro V. Photochemical stability of partially fluorinated acrylic protective coatings:Part 3. Copolymers of 1H,1H,2H,2H-perfluorodecyl acrylate and 2,2,2-trifluoroethyl methacrylate with butyl methacrylate[J]. Polymer International,2001,50:863-868.
    [163]Zhang Chaocan, Chen Yanjun. Investigation of fluorinated polyacrylate latex with core-shell structure[J]. Polymer International,2005,54(7):1027-1033.
    [164]Chen Su, Yan Weicai, Chen Li, et al. Morphology and microstructure of core-shell hybrid latexes containing fluoropolymer and acrylic copolymer[J], Colloid and Polymer Science,2006,284:413-421.
    [165]Cui Xuejun, Zhong, Shuangling Wang Hongyan. Synthesis and characterization of emulsifier-free core-shell fluorine-containing polyacrylate latex[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,303:173-178.
    [166]He Ling, Liang Junyan. Synthesis, modification and characterization of core-shell fluoroacrylate copolymer latexes[J]. Journal of Fluorine Chemistry,2008,129:590-597.
    [167]Cui Xuejun, Zhong Shuangling,Yan Gao, et al. Preparation and characterization of emulsifier-free core-shell interpenetrating polymer network-fluorinated polyacrylate latex particles[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,324:14-21.
    [168]Ha JW, Park IJ, Lee SB, Preparation and Characterization of Core-Shell Particles Containing Perfluoroalkyl Acrylate in the Shell[J], Macromolecules,2002,35:6811-6818.
    [169]Doris P, Liane H, Dieter J. Bulk and Surface Properties of Blends with Semifluorinated Polymers and Block Copolymers[J]. Macromolecular Symposia,2003,198,421-434.
    [170]Li Ganghui, Shen Yiding, Ren Qinghai. Effect of Fluorinated Acrylate on the Surface Properties of Cationic Fluorinated Polyurethane-Acrylate Hybrid Dispersions[J], Journal of Applied Polymer Science,2005,97:2192-2196.
    [171]Jin FL, Kimb HY, Park SJ. Effect of fluorine functional groups on surface and mechanical interfacial properties of epoxy resins[J]. Journal of Fluorine Chemistry,2007,128:184-189.
    [172]Sunga LP, Vicini S, Derek L, et al. Effect of microstructure of fluorinated acrylic coatings on UV degradation testing[J], Polymer,2004,45:6639-6646.
    [173]Huang HL, Goh SH, Doreen MY, et al. Miscibility and Surface Properties of Fluorinated Copolymer Blends Involving Hydrogen-Bonding Interactions[J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:1145-1154.
    [174]Huang HL, Goh SH, Doreen MY, et al. ToF-SIMS studies of poly (methyl methacrylate-co-methacrylic acid), poly (2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) and their blends[J]. Applied Surface Science,2004,227:373-382.
    [175]Stefanie MW, Thomas EM, Ulrich M, et al. Depth Profiling of Latex Blends of Fluorinated and Fluorine-Free Acrylates with Laser-Induced Secondary Mass Spectrometry[J]. Journal of Polymer Science:Part B:Polymer Physics,2003,41:360-367.
    [176]Reinhard FL, Thomas EM, Rainer B, et al. Latex Blends of Fluorinated and Fluorine-Free Acrylates: Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formation[J].1999, 36(6):1715-1721.
    [171]Song Rui, Yang Debin, He Linghao, et al. Surface Enrichment and Crystallization of Polyamide and Polytetrafluoroethylene Blend[J]. Journal of Polymer Science:Part B:Polymer Physics,2007, 45:138-152.
    [172]Koh K, Sugiyama S, Morinaga T, et al. Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate) [J]. Macromolecules,2005,38(4):1264-1270.
    [173]Hexig B, Alata H, Asakawa A. Generation of compositional-gradient structures in biodegradable, immiscible, polymer blends by intermolecular hydrogen-bonding interactions. Advanced Functional Materials,2005,15(10):1630-1634
    [174]Orihara K, Takano S, Aoki K. Self-organizing formation of composition graded polymer blend of poly(ethylene oxide) and poly(methyl methacrylate). Kobunshi Ronbunshu,2002,59(11):713-715.
    [175]Owens D.K., Wendt R.C. J Appl Polym Sci[J],1969,13:1741-1747.
    [176]Fowkes F.M.. Ind Eng Chem[J],1964,56:40-52.
    [177]蒋文贤.特种表面活性剂.北京,轻工业出版社,1995,198-100.
    [178]Eckersley ST, Helmer B. [J]. Coat. Technol.,1997,69,97.
    [179]卢玉华钟伟陈新李文俊.基板界面诱导共混高分子膜的有规相分离.复旦学报(自然科学版),1999.38(1),19-24.
    [180]Reich S, Cohen Y. Phase separation of polymer blends in thin films. J Polym Sci, Polym Phys Ed 1981.19:1255-1267.
    [181]张国颖,汪伟志,吴强.共聚物在聚合物共混体系中的增容作用Ⅱ.接枝共聚物和无规共聚物[J].高分子通报,2003,3:29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700