纳米镍/聚苯胺的原位合成及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米镍粉是一种重要的磁性金属材料,具有一系列独特的物理化学特性,在催化剂、磁性材料、导电浆料、电池材料及屏蔽材料等许多领域都有广泛的应用前景。因此,将纳米镍与聚苯胺进行原位复合,合成纳米镍/聚苯胺复合材料,实现两者电、磁性能的结合,在电磁屏蔽和化学催化领域可望具有重要应用价值。
     本研究采用1,2-丙二醇液相还原法,合成具有纳米尺度的金属镍粒子,并对合成条件、粒径控制和表面修饰进行了较为系统的研究。在此基础上分别采用了原位聚合和原位生成这两种方法制备了纳米镍/聚苯胺复合材料,并对其结构及性能进行了研究。
     在1,2-丙二醇还原体系中,分别使用了十二胺、聚乙烯吡咯烷酮(PVP)和油酸作为修饰剂,利用1,2-丙二醇还原相同母体乙酸镍,成功合成了具有面心立方结构的纳米镍粒子,制备形貌分别为球形、刺球形和雪花状。考察了修饰剂的浓度和NaOH的浓度对金属镍粒子的形貌和粒径的影响,利用傅立叶红外(FTIR)分析初步解释不同形貌纳米镍的形成机理。SEM研究发现:三种表面活性剂作为稳定剂能够抑制纳米镍粒子的生长,防止团聚,实验所得的镍粒子粒径最小可控制在50 nm;适宜浓度的NaOH可以制备出粒径小、分散性好的纳米镍粒子。FTIR发现纳米镍与修饰剂之间有一定的相互作用。抗酸性试验发现油酸修饰的镍粒子耐酸性最好。
     首次采用固体颗粒稳定乳液法(Pickering乳液),在油酸修饰的镍纳米粒子稳定的甲苯/水乳液中发生原位聚合,制备了纳米镍/聚苯胺导电复合材料。SEM研究发现:随着纳米镍含量的增加,纳米复合材料的形貌由纳米棒结构转变成纳米球或纳米纤维结构。FTIR及Raman结果表明:纳米镍与聚苯胺之间存在着较强的相互作用。四探针电导率测试表明:当纳米镍的质量含量为2 wt%时,电导率最大,复合材料的电导率达到极大值2.7 S/cm之后电导率逐渐下降。
     采用两步法先合成聚苯胺,再将聚苯胺分散到1,2-丙二醇体系中,分别采用三种表面活性剂作为修饰剂,在聚苯胺表面原位生成纳米镍,制备了纳米镍/聚苯胺复合材料。结果表明:镍粒子均匀地镶嵌在聚苯胺的表面,复合材料中的镍粒子呈面心立方结构,纳米镍与聚苯胺之间存在一定的相互作用。
The nano-nickel powder is one of the most important magnetic metal materials applied widely in catalysis, magnetic materials, conductive materials and shielding materials due to their special physical properties. Therefore, the nano-Ni/PANI composites with both conducting and ferromagnetic properties have the important prospect in the field of electromagnetorheological shield and chemical catalysts. In this research, the nickel (Ni) nanoparticles were prepared with 1, 2-propanediol as the reductant. The synthetic condition, particle size-controlled and surface modification of the Ni nanoparticles were systematically investigated. Based on these studies, nano-Ni/PANI composites were prepared by in-situ synthesis and Pickering Emulsion polymerization, and the relations between their structures and properties were discussed.
     Ni nanoparticles with different morphologies, such as sphere, thorn-sphere and snowflake shape, were prepared by using nickel acetate as precursor, 1, 2-propanediol as solvent and reductant, with different surfactants as modifiers. These modifiers are laurylamine, polyvinyl pyrrolidone (PVP) and oleic acid, respectively. The effect of the concentration of modifier and NaOH on morphology and size of Ni nanoparticles were discussed. The systhesis mechanisms of Ni nanoparticles with different morphologies were investigated. SEM showed that different surfactants were important for preventing the Ni nanoparticles from agglomeration and uniformity of nanoparticles, the minimal size of Ni nanoparticles prepared was less than 50 nm and the concentration of NaOH strongly influenced on the size and the degree of agglomeration. The certain interaction between the modifiers and Ni nanoparticles was proved by FTIR. Ni nanoparticles modified by oleic acid responded for the good stability and acid resistance.
     Nano-Ni/PANI composites were prepared by a novel solids-stabilized emulsion (Pickering Emulsion) route for the first time. The sphere-like and nano-rod morphology of nano-Ni/PANI composites were synthesized in a toluene/water emulsion stabilized by oleic acid-stabilized Ni nanoparticles. SEM showed that morphology of the resulting Ni/PANI nanocomposites depended on the amount of Ni in the reaction system. The strong interaction between Ni nanoparticles and PANI was proved by FTIR and Raman. At the same time, their electrical properties of the nano-Ni/PANI composites were also affected by the content of Ni. The conductivities of nanocomposites reached the maximum value, 2.7 S/cm with 2 wt% Ni loading.
     The nano-Ni/PANI composites with the Ni content up to 20 wt% can be obtained by liquid phase reduction method in the presence of PANI. SEM images of nano-Ni/PANI composites showed that Ni nanoparticles were inlaid homogeneously in the surface of PANI. Ni nanoparticles were the typical diffraction patterns of single-phased and face-centered cubic (fcc) phase in the surface of nanocomposites, and the certain interaction between Ni nanoparticles and PANI was proved by FTIR and Raman.
引文
[1]吕英莹,伍青,卢泽俭.含金属高聚物材料[J].功能高分子学报, 1998,(3): 441 -448.
    [2]崔岩,张成义,张万喜等.聚合物基金属纳米复合材料研究进展[J]. 2004, 20 (2): 19 - 23.
    [3] Mayer A B R. Formation of noble metal nanoparticles within a polymeric matrix: nanoparticle features and overall morphologies[J] . Mater Sci. Eng. C, 1998, (6): 155 - 166.
    [4] Judeinstein P, Sanchez C. Hybrid organic/inorganic materials: a land of multidisciplinarity[J]. J Mater Chem, 1996, 6(4): 511 - 525.
    [5] Edwin A Chandross , Robert D M. Nanostuctures : Introduction[J] . Chem Rev, 1999 , 99 (7) : 1641 - 1642.
    [6]张立德,徐国财.纳米复合材料[M].北京:科学出版社, 2001: 3-6.
    [7]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社, 2004: 185-186.
    [8]唐建国,胡克螯等.聚合物-金属离子共溶液的制备与梯度复合材料的合成[J].高分子材料科学与工程. 2000, 16 (2): 109-111.
    [9]吴其晔,方鲲,崔陇兰.两步连续反相微乳液法原位合成铁钴镍/聚苯胺核-壳型纳米复合微粒[J].青岛科技大学学报, 2003, 24(1): 37-41.
    [10] Marcela M. Oliveira, Eryza G. Castro, Carla D. Canestraro, et al. A simple two-phase route to silver nanoparticles/polyaniline structures[J]. J. Phys. Chem. B, 2006, (110): 17063-17069
    [11] Geik L. Teoh, Kong Y. Liew, Wan A.K. Mahmood. Preparation of polyaniline -Al2O3 composites nanofibers with controllable conductivity[J]. Materials Letters, 2007
    [12] Silvia E. Jacobo, Juan C. Aphesteguy, R. Lopez Anton, et al. Influence of the preparation procedure on the properties of poly-aniline based magneticcomposites[J]. European Polymer Journal, 2007, 43 (4): 1333-1346.
    [13]汪敏强,姚熹.碳纳米管/UHMWPE复合材料的研究[J].功能材料, 2000, 31 (4): 337-340.
    [14] Usiki A, Kojima Y. Size effects in micromechanics of nanocrystals[J]. Progress in Materials Science. 1993, (8): 1179.
    [15]强敏,陈林,陈涛等.聚苯胺-蒙脱土纳米复合材料的耐腐蚀性能[J].腐蚀与防护, 2005, 26(5): 203-205.
    [16]胡圣飞.半导体超细粒子/聚合物光功能材料的特性及应用[J].中国塑料, 1999, 13(6): 25.
    [17]薛志坚,漆宗能,王佛松.聚苯胺水基胶体分散液及其复合物的研究Ⅰ—制备、表征及复合物的表观形貌、力学性能,高分子学报, 1997, (4): 439-444.
    [18] Shirakawa H, Louis E J, Macdiarmid A G, et al. Synthesis of electrically conducting organic polymer[J]. J Chem Soc, Chenm Commun, 1977:578.
    [19] Green A G, Woodhead A E. Aniline black and allied compounds[J]. J Chem. Soc. Tran, 1910,(97): 2388.
    [20] Pinto N J, Shah P D, McCormick B J, et al. Dependence of the conducting state of polyaniline films on moisture[J]. Solid State Comn, 1996, (97):2388.
    [21]沙兆林,苏广均,施磊等.导电聚苯胺的合成[J].南通工学院学报, 2000, 16(1): 25
    [22] Singh R, Arora V, Tandon R P, et al. Charge transport and structural morphology of HCl-doped polyaniline[J]. Journal of Materials Science, 1998, (33): 2069.
    [23]林薇薇,南军义,田永辉等. XPS研究聚苯胺的竞争掺杂行为[J].化学物理学报, 2000, 13(5): 592-597.
    [24] Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers[J]. Applied Physics Letter, 1994, 65(18): 2278-2230.
    [25]宋月贤,王红理,郑元锁等.高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究[J].高分子学报, 2002, (1): 92-95.
    [26] Trivedi D C, Dhawan S K. Shielding of electromagnetic interference using polyaniline[J]. Synthetic Metals, 1993, 59(2): 267-272.
    [27] Kulkarni V G, Angelopoulos M. Cross-linkable conducting polymer coatings[C]. Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 1995: 225-228.
    [28] Cottevieille D, LeMéhautéA, Challioui C, et al. Industrial application of polyaniline[J]. Synthetic Metals, 1999,(101): 704.
    [29]宋月贤,王红理,郑元锁等.高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究[J].高分子学报, 2002, (1): 94.
    [30]尹波,于润泽,杨鸣波.电磁屏蔽聚合物材料的研究进展[J].中国塑料, 2006, 20(3): 14-18
    [31]刘维锦,沈家瑞.聚苯胺导电纤维的湿法纺制[J].纺织科学研究, 1999, (4): 1.
    [32] Lian Zhong, Shuhu Xiao, Jie Hu, et al. Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solution[J]. Corrosion science, 2006, 48(12): 3960-3968.
    [33] Pereira de Silva, C′ordoba de Torresi, Torresi R. M. Polyaniline/ poly(methyl -methacrylate) blends for corrosion protection: The effect of passivating dopants on different metals[J]. Progress in organic coatings, 2007, (58):1033-1039.
    [34]黄梅芳.可溶性导电聚苯胺的研究现状及其发展[J].湘潭大学学报, 2000, (24): 187
    [35]关春秀,张爱清,陈栋华.导电高分子在光电材料领域中的研究进展[J].中南民族大学学报, 2003, 22(1): 16.
    [36] Yufeng Ma, Shah R. Ali, Ling Wang, et al. In situ fabrication of a water-soluble, self-doped polyaniline nanocomposite: the uique role of DNA functionalized single-walled carbon nano-tubes[J]. J. Am. Chem. Soc. 2006, (128):12064-12065.
    [37] Muthiah Thiyagarajan, Lynne A. Samuelson, Jayant Kumar, et al. Helical conformational specificity of enzymatically synthesized water-soluble conductingpolyaniline nanocomposites[J]. J. Am. Chem. Soc, 2003, 125: 11502-11503.
    [38]王杨勇,张军峰,井新利等.导电高分子聚苯胺及其应用[J].化工新型材料, 2003, 31(3): 3
    [39]王玉棉,余建明,李军强.多元醇液相还原法制备超细钴粉[J].有色金属, 2005, 57(3): 38-40
    [40]石玉光,廖青.超细金属镍粉的低温液相还原法制备[J].江苏冶金, 2003, 31(3): 11-13
    [41]马玉亮,王洁炜,周琼.两种还原剂体系制备纳米镍粒子结构与磁性的对比[J].稀有金属. 2006, 30(4): 436-439.
    [42] Kyeong Youl Jung , Jong Ho Lee, Hye Young Koo et al. Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)2·6H2O precursor: Effect of temperature and nickel acetate on the particle morphology[J]. Materials Science and Engineering B, 2007, (137): 10–19.
    [43] Huazhi Wang, Xinli Kou, Lei Zhang et al. Size-controlled synthesis, microstructure and magnetic properties of Ni nanoparticles[J]. Materials Research Bulletin, 2008, (43): 3529–3536.
    [44] M. Sertkol, Y.Koseoglu, A.Baykal et al. Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticlesvia a polyethylene glycol-assisted hydrothermal route[J]. Journal of Magnetism and Magnetic Materials, 2009, (321): 157-162.
    [45]李鹏,官建国,张清杰等. 1, 2-丙二醇液相还原法制备纳米镍粉的研究[J].材料科学与工艺, 2001, 9(3): 259-262.
    [46]秦振平,郭红霞,李东升.缩聚多元醇液相还原法制纳米镍粉及其表征[J].功能材料与器件学报, 2004, 10(1): 95-97.
    [47]张锡凤,程晓农,殷恒波等.液相化学还原法制备不同形貌的多晶纳米镍[J].中国有色金属学报, 2007, 17(10): 1700-1704
    [48]李新贵,孙晋,黄美容.聚苯胺/金属纳米粒子复合物的制备及性能[J].化学进展, 2007, 19(5): 787-795.
    [49]杨水金,高飞,童文龙.磷钨钼酸掺杂聚苯胺催化合成缩醛(酮)[J].北京工商大学学报(自然科学版), 2008, 26(1): 13-16.
    [50]谢英男,詹自力,张红芹等.有机磺酸掺杂聚苯胺的气敏性能[J].高校化学工程学报. 2009, 23(1): 154-158.
    [51]胡艳琴,罗红群,李念兵.咖啡酸掺杂聚苯胺修饰玻碳电极的制备及其电化学特性[J].西南大学学报(自然科学版), 2008, 30(1): 27-31.
    [52]王彦宗,沈明欢,刘振营等.聚苯胺-二氧化锡纳米复合材料合成及表征[J].化工新型材料, 2007, 35(1): 46-47
    [53] Axel Houdayer, Rapha¨el Schneider, Denis Billaud, et al. New polyaniline/Ni(0) nanocomposites: synthesis, characterization and evaluation of their catalytic activity in heck couplings[J]. Synthetic Metals, 2005, (151):165–174.
    [54] Qi Xiao, Xiaoke Tan, Lingling Ji, et al. Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route[J]. Synthetic Metals, 2007, (157): 784–791.
    [55] M.A. Bavio, T. Kessler, A.M. Castro Luna, et al. Preparation and characterization of composite polyaniline materials for catalytic purposes[J]. Journal of Colloid and Interface Science, 2008, (325): 414–418.
    [56]黄美荣,李新贵,曾剑峰.聚苯胺纳米复合材料的特异性能及应用前景[J]. FRP/CM, 2004, (1): 8-11.
    [57] Lian Zhong, Shuhu Xiao, Jie Hu, et al. Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4solutions[J]. Corrosion science, 2006, 48 (12): 3960-3968.
    [58] Kamat P. V. , Dimitrijevic N. M. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Solar Energy, 1990, 44(2): 83.
    [59] Cavicchi R E. Coulomb suppression of tunneling rate from small metal particles[J]. Phys. Rew. Lett. , 1984, 52(16): 1453.
    [60] Ball P. Science at the atomic scale[J]. Nature, 1992, (355):761.
    [61]张立德.物理学与新型功能材料专题系列介绍——开拓原子和物质的中间领域:纳米微粒与纳米固体[J].物理, 1992, 21(3): 167
    [62] Edelstein A S, Murday J S, Rath B B. Challenges in nanomaterials design[J]. Progress in Materials Science, 1997, (42): 5-21.
    [63] Braos G P, Mairelles T P, Rodriguez C E, et al. Gas-phase hydrogenation of acetonitrile on zirconium-doped mesoporous silica-supported nickel catalysts[J]. Journal ofMolecular Catalysis A: Chemical, 2003, (193): 185-181.
    [64] Takimoto M, Nakamura Y, Kimura K, et al. Highly enantioselective catalytic carbon dioxide incorporation reaction:nickel-catalyzed asymmetric carboxylative cyclization of bis-1, 3-dienes[J]. Journal of the American Chemical Society, 2004, (126): 5956-5957.
    [65] Andrievski R A, Glezer A M. Size effects in properties of nanomaterials[J]. Scripta Materials, 2001, (44): 1621-1642.
    [66] Pedro Tartaj, María del Puerto Morales, Sabino Veintemillas-Ver-daguer, et al. The analysis of dosimetric thermoluminescent glow peak ofα-Al2O3: C after different dose levels byβ-irradiation [J]. J. Phys. D: Appl. Phys., 2003, (36): 182.
    [67]李鹏,官建国,张清杰等. 1,2-丙二醇液相还原法制备纳米镍粉的研究[J].材料科学与工艺, 2001, 9(3): 259-262
    [68]廖戎,张云,周大利等.液相还原法制备超细球形镍粉[J].无机化学学报,2003, 19(10): 1047-1052.
    [69]秦振平,郭红霞,李东升等.缩聚多元醇液相还原法制纳米镍粉及其表征[J].功能材料与器件学报, 2004, 10(1): 95-97.
    [70]马玉亮,王洁炜,周琼等.两种还原剂体系制备纳米镍粒子结构与磁性的对比[J].稀有金属, 2006, 30(4): 436-439.
    [71]张锡凤,程晓农,殷恒波等.液相化学还原法制备不同形貌的多晶纳米镍[J].中国有色金属学报, 2007, 17(10): 1700-1704.
    [72]王玉棉,俞建明,李军强.多元醇液相还原法制备超细钴粉[J].有色金属.2005, 57(3): 14-16.
    [73] Edelstein A S, Murday J S, Rath B B. Challenges in nanomaterials design[J]. Progress in Materials Science, 1997, (42): 5-21.
    [74] Andrievski R A, Glezer A M. Size effects in properties of nanomaterials[J]. Scripta Materials, 2001, (44): 1621-1642.
    [75] Panigrahi S,Kundu S.Selective one-pot synthesis of coppernanorods under surfactantless condition[J].Polyhedron,2006, (25): l263—1269.
    [76] Puntes V F, Zanchet D, Erdonmez C K, et al. Synthesis of hcp-Co nanodisks[J]. Journal of the American Chemical Society, 2002, 124(43): 12874-12880.
    [77] Wang A L, Yin H B, Ren M, et al. Effects of different functional group-containing organics on morphology-controlled synthesis of silver nanoparticles at room temperature[J]. Acta Metallurgica Sinica, 2006, (19): 362-370.
    [78] Zhang X F, Yin H B, Cheng X N, et al. Effects of various polyoxyethylene sorbitan monooils(Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles[J]. Materials Research Bulletin, 2006, (41): 2041-2048.
    [79] Yen M Y, Chiu C W, Chen F R, et al. Convergent electron beam induced growth of copper nanostructures: Evidence of the importance of a soft template[J]. Langmuir, 2004, 20(2): 279-281.
    [80] Cheng X N, Zhang X F, Yin H B, et al. Modifier effects on chemical reduction synthesis of nanostructured copper[J]. Applied Surface Science, 2006, (253): 2727-2732.
    [81] Bradley J S, Tesche B, Busser W, et al. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids[J]. Journal of the American Chemical Society, 2000, (122): 4631-4636.
    [82] Huazhi Wang, Xinli Kou, Lei Zhang, et al. Size-controlled synthesis,microstructure and magnetic properties of Ni nanoparticles[J]. Materials Research Bulletin, 2008, (43): 3529-3536.
    [83]石玉光,廖青.超细金属镍粉的低温液相还原法制备[J].江苏冶金, 2003, 31(3): 11-13.
    [84]张锡凤,程晓农,殷恒波等.液相化学还原法制备不同形貌的多晶纳米镍[J].中国有色金属学报, 2007, 17(10):1700-1703.
    [85]马玉亮,王洁炜,周琼.两种还原剂体系制备纳米镍粒子结构与磁性的对比[J].稀有金属, 2006, 30(4): 436-439.
    [86] Huazhi Wang, Xinli Kou, Lei Zhang, et al. Size-controlled synthesis, microstructure and magnetic properties of Ni nanoparticles[J], Materials Research Bulletin, 2008, (43): 3529–3536.
    [87] Fievet F., Lagier J. P., Blin B., et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles[J]. Solid State Ionics, 1989, 32(33): 198-205.
    [88] Yao Y D, Chen Y Y, Tai M F, et al. Magnetic anisotropy of 3dtransition metal clusters and ultrathin films[J]. Materials ScienceEngineering A, 1996, 217/218: 281.
    [89] Zhang Z.T., Zhao B., Hu L. M. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes[J]. Journal of Solid State Chemistry, 1996, (121): 105-110.
    [90] Dubois L. H., Zegarski B. R., Nuzzo R. G. Spontaneous organization of carboxylic acid monolayer films in ultra high vacuum. Kinetic constraints to assembly via gas-phase adsorption[J]. Langmuir, 1986, 2(4): 412-417.
    [91]中西香儿,王绪明译.红外光谱分析100例[M].北京:科学出版社,1984.
    [92]朱副鼎.超微颗粒的吸收与散射截面[J].电子学报, 1996, (6): 82.
    [93] Carley A. F., Jackson S. D., Roberts M. W., et al. Alkali metal reactions withNi(110)-O and NiO(100) surfaces[J]. Surf. Sci., 2000, 455(456): 141-146.
    [94] Orawan Ngamna, Simon E. Moulton, Gordon G. Wallace. Incoporation of dye into conducting polyaniline nanoparticles[J]. Reactive or functional polymers, 2007, (67): 173-178.
    [95] Silvia E. Jacobo, Juan C. Aphesteguy, R. Lopez Anton, et al. Influence of the preparation procedure on the properties of polyaniline based magnetic composites[J]. European Polymer Journal, 2007, (43): 1333-1346.
    [96] Qi Xiao, Xiaoke Tan, Lingling Ji, et al. Preparation and characterization of polyaniline/nano-Fe3O4 composites via novel pickering emulsion route[J]. Synthetic Metals, 2007, (157): 784-791.
    [97] Aphesteguy J. C., Bercoff P. G., Jacobo S.E.. Preparation of magnetic and conductive Ni-Gd ferrite-polyaniline composite[J]. Physica B, 2007, (398): 200-203.
    [98] Genping Song, Jie Han, Rong Guo. Synthesis of polyaniline/NiO nanobelts by a self-assembly process[J]. Synthetic Metals, 2007, (157):170-175.
    [99] Reddy Kakarla Raghava, Lee Kwang Pill, Gopalan Anantha Iyengar. Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties[J]. Colloids and Surfaces A: Physicochem, 2008, 320(1-3): 49-56.
    [100] Geik Ling Teoh, Kong Yong Liew, Wan A K. Preparation of polyaniline-Al2O3 composites nanofibers with controllable conductivity[J]. Materials Letters, 2007, (61): 4947-4949.
    [101] Paul G K, Bhaumik A, Patra A S, et al. Enhanced photo-electric response of ZnO/polyaniline layer-by-layer self-assembled films[J]. Materials Chemistry and Physics, 2007, (106): 360-363.
    [102]强敏,陈林,陈涛等.聚苯胺/蒙脱土纳米复合材料的耐腐蚀性能[J].腐蚀与防护, 2005, 26(5): 203-204.
    [103]董国君,王桂香,张密林等.铁系纳米合金的合成进展[J].化工新型材料, 2003, 31(5):12-19.
    [104] Muthiah Thiyagarajan, Lynne A. Samuelson, Jayant Kumar, et al. Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites[J]. A M. Chem. Soc, 2003, (125): 11502-11503.
    [105] Zhijie Wu, Minghui Zhang, Zongfang Zhao, et al. Synthesis of a Pd on Ni–B nanoparticle catalyst by the replacement reaction method for hydrodechlorination[J]. Journal of Catalysis, 2008, (256): 323–330.
    [106]高保娇,高建峰,周加其等.超微镍粉的微乳液法制备研究[J].无机化学学报, 2001, 17(4): 491-495.
    [107]吴其晔,方鲲,崔陇兰等.两步连续反相微乳液法原位合成铁钴镍/聚苯胺核-壳型纳米复合微粒[J].青岛科技大学学报, 2003, 24(1): 37-41.
    [108]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报, 1995, (11) : 6-9.
    [109]王彦鹏,赵红晓,任莉君等. CeO2/聚苯胺纳米复合材料的合成与表征[J].化工新型材料, 2007, 35(3): 37-39.
    [110]孟令芝,龚淑玲,何永炳.有机波普分析(第二版)[M].武汉:武汉大学出版社,2003.9.244-246.
    [111] Yu Qiu, Lian Gao. Novel Polyaniline/Titanium Nitride nanocomposite: controllable structures and electrical/electrochemical properties[J]. J. Phys. Chem. B, 2005, (109): 19732-19740.
    [112] Jia W, Segal E, Kornemandel D, et al. Polyaniline-DBSA/organophilic clay nanocomposites: Synthesis and characterization[J]. Synthetic Metals, 2002, (128):115.
    [113] Wu Q, Xue Z, Qi Z, et al. Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline[J]. Polymer,2000, (41): 2029.
    [114] Kim B H, Jung J H, Kim J W, et al. Effect of dopant and clay on nanocomposites of polyaniline(PAN) intercalated into Na+-montmo-rillonite(Na+-MMT)[J]. Synthetic Metals, 2001, (121):1311.
    [115] Kim B H, Jung J H, Kim J W, et al. Physical characterization of polyaniline - Na+-montmorillonite nanocomposite intercalated by emulsion polymerization[J]. Synthetic Metals, 2001, (117):115.
    [116] Orawan Ngamna, Simon E. Moulton, Gordon G. Wallace. Incoporation of dye into conducting polyaniline nanoparticles[J]. Reactive or functional polymers, 2007, (67): 173-178.
    [117] Silvia E. Jacobo, Juan C. Aphesteguy, R. Lopez Anton, et al. Influence of the preparation procedure on the properties of polyaniline based magnetic composites[J]. 2007, (43): 1333-1346.
    [118] Qi Xiao, Xiaoke Tan, Lingling Ji, et al. Preparation and characterization of polyaniline/nano-Fe3O4 composites via novel pickering emulsion route[J]. Synthetic Metals, 2007, (157): 784-791.
    [119] Aphesteguy J.C. , Bercoff P. G. , Jacobo S.E. Preparation of magnetic and conductive Ni-Gd ferrite-polyaniline composite[J]. Physica B. , 2007 (398): 200-203
    [120] Genping Song, Jie Han, Rong Guo. Synthesis of polyaniline/NiO nanobelts by a self-assembly process[J]. Synthetic Metals, 2007, (157):170-175.
    [121]王彦妮.纳米粒子在乙炔聚合反应中的催化应用[J].催化学报, 1995, 16(4): 304-306.
    [122] Hideturni Hirai.Polymer—Protected Copper Collids as Catalysis for Selective of Acrylonitrile[J]. Chemistry Letters, 1983, 139(7): 743—745.
    [123] Camelet J. L, Lacorix J.C, Aeiyach S, et al. Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium[J].Synth Met. , 1998, (93): 133–142.
    [124] Paul E W, Ricco A J, Wrighton W S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices[J]. J Phys Chem, 1985, (89): 1441–1447.
    [125] Salaneck W R, Haung W S, Lundstrom I, et al. A twodimensional- surface‘state diagram’for polyaniline[J]. Synth Met, 1986, (13): 291–297.
    [126] Kumar S. A, Meenakshi K. S, Sankaranarayanan T.S.N, et al. Corrosion resistant behaviour of PANI–metal bilayer coatings[J]. Progress in Organic Coatings, 2008, (62): 285–292.
    [127] Nyczyk Anna,Sniechota Agnieszka,Adamczyk Anna, et al. Investigations of polyaniline-platinum composites prepared by sodium borohydride reduction[J]. European Polymer Journal, 2008, 3(4): 1-28.
    [128] Marcela M. Oliveira, Eryza G. Castro, Carla D. Canestraro, et al. A simple two-phase route to silver nanoparticles/polyaniline structures[J]. J. Phys. Chem. B, 2006, (110): 17063-17069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700