8自由度轮式移动操作机避障能力及其运动规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动操作机是一种由移动平台及安装其上的机械臂组成的机器人系统,具备大范围移动及作业能力,在助老助残、灾难救援、排险排爆等领域具有广泛应用前景。运动规划是移动操作机需要解决的重要问题,但由于8自由度轮式移动操作机(8 Degree Wheeled Mobile Manipulator, 8D-WMM)结构特点带来的非完整冗余特性,其运动规划问题较传统的移动机器人和冗余度机器人更为复杂,且8D-WMM一般工作于多障碍复杂环境下,如何合理利用其冗余度提升障碍环境下的作业能力具有重要的研究意义。当前,国内外在轮式移动操作机的机构综合及面向避障性能的逆运动学优化方面缺乏系统性的研究,无法充分发挥该构型机器人在复杂环境下的灵活作业能力。为此,论文对8D-WMM的运动学、避障能力、面向避障作业的移动平台和末端操作器路径规划方法、满足在线避障要求的逆运动学优化方法等进行深入研究,并建立面向助老助残服务任务的8D-WMM系统实验平台,完成相关实验验证。
     由于8D-WMM含有非完整约束,不易得到自运动流形解析解,论文结合8D-WMM关节轴线的几何分布特点,基于运动等效思想,以向量代数为工具,对8D-WMM运动学进行了研究,求解了8D-WMM自运动流形的解析解;并将移动平台视为广义运动副,利用速度叠加原理完成了雅可比矩阵的求解。
     针对冗余度机器人在避障能力方面评价困难问题,通过对杆件自运动轨迹的空间度量,提出并建立了具有几何意义的冗余度机器人通用避障能力指标—避障活动度,通过平面3自由度冗余机器人和8D-WMM分析了避障活动度的求解方法,进而利用该指标分析了机器人杆件参数对上述两种机器人避障能力的影响。
     在路径规划方面,首先对8D-WMM的典型作业环境和典型障碍物进行了分析,继而利用8D-WMM自运动分析结果,结合机械臂关节构型的特点,给出了平顶、斜顶、曲顶等各类障碍物的可回避性判据,并分析了移动操作机可避障域的求解方法,最后给出了面向可避障域的移动平台路径规划算法和面向障碍物轮廓的机械臂路径规划算法。
     在面向避障的逆运动学优化算法方面,从自运动角度出发,借助自运动流形的求解结果,提出了一种更适于避障作业的冗余度机器人逆运动学优化算法,解决了现有算法在位移精度和计算量方面的不足。并通过平面3自由度机器人轨迹跟踪和8D-WMM执行窗口作业的仿真实例,验证了算法的可行性。
     最后,应用避障能力的分析结果,面向助老助残任务构建了8D-WMM的系统实验平台,完成了机械本体、控制系统硬件及软件的设计。在此基础上利用该平台完成了自运动流形、可避障方向域、可避障域求解算法和基于自运动流形的冗余度机器人运动规划算法实验,实验结果证明了论文理论研究的正确性和可用性。
Mobile manipulator, a kind of robot system, is composed of mobile platform and manipulator installed on the platform, and can be widely used in elderly and disabled aid, disaster rescue, and explosives disposal, etc. The structural features of 8D-WMM show the characteristics of nonholonomic redundancy, so the problems of its motion planning are more complicated than mobile robot and traditional redundant robot. Furthermore, because 8D-WMM generally works in complicated environments with obstacles, it is meaningful to enhance its operating ability by use of the redundancy in non-structural environment full of obstacles. Nowadays, it is lack of systematic study in framework integration of WMM and inverse kinematics optimization facing obstacle avoidance throughout this field, which can not fully exert the flexible operating ability of this kind of robot in complicated environment. Therefore, this thesis focuses on theoretical exploration on motion planning method of 8D-WMM including kinematics, path planning, obstacle avoidance, and end effector operation. Besides, the 8D-WMM system was built for elderly and disabled aid, and experiments were carried out to testify theories.
     Because the 8D-WMM includes nonholonomic constraint, it is difficult to obtain analytical solution of self-motion manifold. Therefore, based on the theory of movement equivalence, this thesis carried through study on its kinematics and solved 8D-WMM self-motion manifold by combining geometric distribution characteristics of 8D-WMM joint axes and using the tool such as vector algebra. And it also got Jacobian matrix by using the speed superposition principle through regarding mobile platform as Generalized Kinematic Pair.
     To easily evaluate the obstacle avoidance capabilities of a redundant robot, this thesis proposed and established obstacle avoidance ability index of redundant robot which has intuitive geometric meaning in virtue of space measurement of pole self-motion trajectory-obstacle avoidance activity, whose solution is obtained through a planar 3-DOF robot, and further analyzes the influence of 8D-WMM framework size on its obstacle avoidance ability by using the index.
     In the aspect of path planning study, the typical operating environment and obstacle of 8D-WMM were analyzed firstly. Then the avoidable criterion of various obstacles such as flat top, slant, and dome, etc, was given by using the results of 8D-WMM self-motion analysis and combining the characteristics of arms joint configuration and the solution to the mobile manipulator’s obstacle avoidance area was analyzed. Finally, the path planning algorithm of the mobile platform facing obstacle avoidance area and manipulator facing the outline of obstacles were presented.
     In the study on inverse kinematics optimizing method for obstacle avoidance, from the perspective of self-motion, the thesis puts forward inverse kinematics optimizing method which is more suitable for redundant robot performing obstacle avoidance based on self-motion manifold in virtue of the results of self-motion manifold, which solved the deficiency of the present method in displacement accuracy and calculation quantity. Through the trajectory tracking of a planar 3-DOF robot and the simulation examples of 8D-WMM implementation window, the algorithm feasibility is validated.
     Finally, by use of the analysis results of obstacle avoidance ability, this thesis built 8D-WMM system experimental platform including the completion of the mechanical body design, the control system hardware, and software design aiming at the task of the elderly and disabled aid. With help of this platform, the thesis completed self-motion manifold experiments, avoidable obstacle direction field experiments, avoidable obstacle direction field algorithm verification experiments, and motion planning algorithm experiments of redundant robots based on self-motion manifold. The experimental results verified the correctness and availability of the theories.
引文
1吴玉香.滑模控制理论及在移动机械臂中的应用.华南理工大学博士学位论文. 2006: 1-12
    2崔根群.用于危险品检测的移动机械手的运动性能分析及其控制.河北工业大学博士学位论文. 2007: 1-12
    3 J. Kyungminl, C. Yongsoo1, L. Sung-Uk. Tele-operated robotic systems for nuclear power plants in South Korea and lessons learned. Robotic and Remote Systems Topical Meeting. 2006: 497-502
    4 E. T. Baumartner, et al. Mobile manipulation for the Mars Exploration Rover - A dexterous and robust instrument positioning system. IEEE Robotics and Automation. 2006, 13(2): 27-36
    5张金国.存取放射源机器人目标识别系统研究.华中科技大学硕士学位论文. 2004: 1-6
    6 S. Kommu. The rehabilitation Robots FRIEND I & II: Daily life independency through semi-autonomous task-execution. Rehabilitition Robotics. 2007: 137-162
    7 S. H. Dong, S. Sanjiv, et al. Mobile planning for a mobile manipulator with imprecise locomotion. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2003: 847-853
    8 D. Patrick, G. Roderic, H. Allen, et al. Mobile manipulators for assisted living in residential settings. Autonomous Robots. 2008, 24(2): 179-192
    9 Y. S. Choi, C. D. Anderson, J. D. Glass. Human-Robot Interaction Studies for Autonomous Mobile Manipulation for the Motor Impaired. The 10th International ACM SIGACCESS Conference on Computers and Accessibility. 2008:225-232
    10 O. Lang, O. Ivlev, A. Gr?ser. A FRIEND for assisting handicapped people. IEEE Robotics and Automation Magazine. 2001, 7(1): 540-544
    11 H. A. Tijsma, L. Freek, J. L. Herder. A framework of interface improvements for designing new user interfaces for the MANUS robot arm. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics. 2005: 235-240
    12 C.R. Weisbin, et al. Miniature robots for space and military missions. Robotics & Automation Magazine. 1999, 6(3): 9-18
    13 Weidong Wang, Lei Zhou, Zhijiang Du, et al. Track-Terrain Interaction Analysis for Tracked Mobile Robot. International Conference on Advanced Intelligent Mechatronics. 2008: 126-131
    14王伟东,孙立宁,杜志江.具有手臂的移动机器人越障性能分析.上海交通大学学报. 2009, 43(3): 494-498
    15王立权,吴健荣,刘于珑,唐德栋.核电站蒸汽发牛器检修机器人设计及运动学分析.机器人. 2009, 31(1):61-66
    16柳长安,许松,刘春阳,周宏.核电站检修机器人运动学仿真研究.华中科技大学学报(自然科学版). 2008, 36(10): 23-26
    17 X. G. Fu, G. Z. Yan, et al. A new robot system for auto-inspection of intersected welds of pipes used in nuclear power stations. International Journal of Advanced Manufacturing Technology. 2006, 28(5): 596-601
    18胡志军,戴敏,张磊等.一种视觉引导助老服务机器人的总体设计.机电工程. 2009, 26(4): 1-4
    19李瑞峰,高彤,闫国荣,刘广利.双臂作业型智能服务机器人的研制.华中科技大学学报(自然科学版). 2004, 32(10): 179-181
    20桂仲成,陈强,孙振国等.水力发电设备检修机器人研究进展.能源工程焊接国际论坛论文集. 2005: 225-230
    21陆震.冗余自由度机器人原理及应用.机械工业出版社. 2007: 1-7
    22席裕庚,张纯刚.一类动态不确定环境下机器人滚动路径规划.自动化学报. 2002, 28(2): 161-175
    23 N. S. Rao. Robot Navigation in unknown generalized polygonal terrains usingvision sensors. IEEE Transactions on Systems. Man and Cybernetics. 1995, 25(6): 947-962
    24 M. Neus, S. Maouche. Motion Planning Using the Modified Visibility Graph. International Conference on Control Applications. 1998, 2: 1333-1337
    25 Z. David, J. C. Latorabe. Constraint Reformulation in Hierarchical Path Planner. IEEE International Conference on Robotics and Automation. 1990: 1918-1923
    26 V. Boschian, A. Pruski. Grid Modeling of Robot Cells:A Memory-Efficient Aproach. Journal of Intelligent and Robotics Systems. 1993, 8: 201-219
    27 T. Lozano-Pererez, M.A. Wesley. An algorithm for Planning Collision-free Paths among Polyhedral Obstacles. Communications of the ACM. 1979, 22(10): 560-570
    28 M.A. Weley, T. Lozano-Perez, M.A. Lavin. A geometric modeling system for automated mechanical assembly. IBM J.R&D. 1980, 24(1): 64-74
    29 Lozaper. Spatial Planning: a Configuration Space Approach. IEEE Transactions on SMC. 1983, C-32(2): 108-118
    30 C. Chang, M. J. Chung, Z. Bien. Collision-free Motion Planning for two Articulated Robot Arms Using Minimun Distance Function.Robotica. 1990, 8: 137-144
    31 E. Rimon, D. E. Koditschek. Exact robot navigation using artificial potential functions, IEEE Trans. Robotics Automation. 1992, 8: 501-518
    32 S. S. Ge and Y. J. Cui. New potential functions for mobile robot path planning, IEEE Transation on Robotics and Automation. 2000, 16: 615-620
    33 V. Gazi, K. M. Passino. Stability analysis of swarms. IEEE Trans. Automatic Control. 2003, 48: 692-697
    34 D. H. Kim. Self-organization for multi-agent groups. International Journal of Control Automation, and Systems. 2004, 2: 342-351
    35 P. Vadakkepat, K. C. Tan, M. Wang. Evolutionary artificial potential fields and their application in real time robot path planning. In: Proc. Congr. of Evolutionary Computation. 2000: 256-263
    36 W. J. Cho, D. S. Kwon. A sensor-based obstacle avoidance for a redundant manipulator using a velocity potential function, in: Proc. IEEE Int. Workshop on Robot and Human Communication. 1996: 306-310
    37 D. H. Kim, S. Shin. Local path planning using a new artificial potential function composition and its analytical design guidelines. Advanced Robotics. 2006, 20(1): 115-135
    38 T. Laliberte, C. M. Gosselin. Efficient Algorithms for the Trajectory Planning of Redundant Manipulators with Obstacle Avoidance. IEEE Int. Conf. on Robotics and Automation. 1994, 3: 2044-2049
    39 W. J. Cho, D. S. Kwon. A Sensor-based Obstacle Avoidance for a Redundant Manipulator Using a Velocity Potential Function. IEEE Int. Conf. on Robot and Human Communication. 1996: 306-310
    40 F. Fahimi, H. Ashrafiuon, C. Nataraj. Obstacle Avoidance for Spatial Hyper-Redundant Manipulators Using Harmonic Potential Functions and the Mode Shape Technique. Journal of Robotic Systems. 2003, 20(1): 23-33
    41 H.Mahjoubi, F. Bahrami, C. lucas. Path planning in an environment with static and dynamic obstacles using genetic algorithm: A simplifled search space approach. In Proeeedings of IEEE Congress on Evolutionary computation. 2006: 2483-2489
    42 Y. Zhang, L. Zhang; X. H. Zhang. Mobile robot path planning base on the hybrid genetic algorithm in unknown environment. Proceedings of International Conference on Intelligent Systems Design and Applications. 2008: 661-665
    43 O. V. Darintsev, A. B. Migranov. Genetic algorithms-based path-planning system for the motion of a group of mobile micro-robots. Journal of Computer and Systems Sciences International. 2007, 46(3): 493-502
    44 Y. R. Hu, S. X. Yang. A Knowledge Based on genetic algorithm for path planning of a Mobile Robot. In Proeeedings of the IEEE international Conference on Robotics and Automation. 2004: 4350-4355
    45 M. B. Motamedinejad, R. Barzamini, J. Jouzdani, A. Khosravi. A new fuzzy path planning for multiple robots. International Conference on Information and Automation. 2006: 295-300
    46 B. Q. Huang, G. Y. Cao, Y. Q. Fei, Z. Q. Wang. Fuzzy controller for the autonomous mobile robot path planning. Journal of Computational Information Systems. 2007, 3(1): 1-8
    47 H. Li, S. X. Yang, Y. Biletskiy. Neural network based path planning for a multi-robot system with moving obstacles. IEEE Conference on Automation Science and Engineering. 2008: 163-168
    48 Y. M. Zhong, B. J. Shirinzadeh, Y. L. Tian. A new neural network for robot path planning. IEEE International Conference on Advanced Intelligent Mechatronics. 2008: 1361-1366
    49 C. Fayad, P. Webb. Development of a hybrid crisp-fuzzy logic algorithm optimised by genetic algorithms for path-planning of an autonomous mobile robot. Journal of Intelligent and Fuzzy Systems. 2006, 17(1): 15-26
    50 T. Mahmoud. A genetic robot path planner with fuzzy logic adaptation. Proceedings of IEEE International Conference on Computer and Information Science. 2007: 388-393
    51 Z. W. Su, B. Zeng, G. C. Liu, F. Ye, M. L. Xu. Application of fuzzy neural network in parameter optimization of mobile robot path planning using potential field. IEEE International Symposium on Industrial Electronics. 2007: 2125-2128
    52 Jr. Jamisola. S. Rodrigo, A. A. Maciejewski, G. R. Roberts. Failure-tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures. IEEE Transactions on Robotics. 2006, 22(4): 603-612
    53 I. Ebrahimi, A. J. Carretero, R. Boudreau. Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica. 2008, 26(3): 405-413
    54 A. Ligeois. Automatic Supervisory Control of the Configuration and Behaviour of Multi-body Mechanisms. IEEE Trans. 1977, 7(12): 868-871
    55高同跃,戴炬.冗余度机器人多指标融合优化.华中科技大学学报. 2004, 32(10): 71-73
    56吴瑞珉,刘廷荣.一种新的冗余度机器人梯度投影算法.机械工程学报. 1999, 35(1): 76-79
    57祖迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法.机械工程学报. 2005, 41(6): 71-75
    58赵建文,李来航,左志远.冗余度机器人梯度投影逆解算法的改进.机械科学与技术. 2009, 28(5): 618-621
    59 R.V. Dubey, J. A. Euler, S. M. Babcock. An Efficient Gradient Optimization Scheme for a Seven-Degree-of–Freedom Redundant Robot with Spherical Wrist. IEEE Int. Conf. on Robotics and Automation. 1988, 1: 28-36
    60 P. Jonghoon, W.K.Chung, Y.Youm. Behaviors of Extended Jacobian Method for Kinematic Resolutions of Redundancy. IEEE Int. Conf. on Robotics and Automation. 1994, 1: 89-95
    61 K. C. Park, P. H. Chang, J. K. Salisbury. A unified approach for local resolution of kinematic redundancy with inequality constraints and its application to nuclear power plant. IEEE Int. Conf. on Robotics and Automation. 1997, 1: 766-773
    62 S. Mitsi, K. D. Bouzakis. Optimization of Robot Links Motion in Inverse Kinematics Solution Consideration Collision Avoidance and Joint Limits. Elsevier Mech. Mach. Theory. 1995, 30(5): 653-663
    63 W. S. Tang, J. Wang. An Improved Neurocomputation Scheme for Minimum Infinity-Norm Kinematic Control of Redundant Manipulators. IEEE Int. Conf. on Robotics and Automation. 1999, 3: 2005-2110
    64 C. J. Lin, C. L. Chen, Chieh-Li . Motion planning of redundant robots with singularities using transputer based fuzzy inverse kinematic methodInternational Conference on Intelligent Computing. 2006: 140-145
    65 Y. M. Li, Y. G. Liu. Fuzzy logic self-motion planning and robust adaptive control for tip-over avoidance of redundant mobile modular manipulators. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2005, 7: 1281-1286
    66 Z. A. Hammour, N. M. Mirza. Cartesian path generation of robot manipulator using continuous generic algorithms. Robotics and Autonomous Systems. 2002, 41(10): 179-223
    67 Y. K. Hwang, N. Ahuja. Path Planning Using a Potential Field Representation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1989: 569-575
    68 J. K. Satisburg, J. Craig. Articulated Hands: Kinematics and Force Control Issues. International Journal of Robotics Research. 1982, 1(2): 4-17
    69 T. Yoshikawa. Manipulability of Robotic Mechanisms. International Journal of Robotics Research. 1985, 4(2): 3-9
    70 C. Gosselin, J. Angeles. Singularity analysis of closed-loop kinematics chains. IEEE Transaction on Robotics and Automation. 1990, 6(6): 281-290
    71 A. Wolf, E. Ottaviano, M. Shoham, C. Marco. Application of line geometry and linear complex approximation to singularity analysis of the 3-DOF CaPaMan parallel manipulator. Mechanism and Machine Theory. 2004, 39(5): 75-95
    72 H. Zghal, R.V. Dubey, J.A. Euler. Efficient Gradient Projection Optimization for Manipulators with Multiple Degrees of redundancy. Proc. IEEE Int. Conf. on Robotics and Automation. 1990: 1006-1011
    73赵建文. P2S5型串并复合式冗余度机器人机构及运动规划研究.哈尔滨工业大学博士论文. 2007: 73-75
    74 G. Miroslaw. Inverse Kinematics Solution to Mobile Manipulators. The International Journal of Robotics Research. 2003, 22(12): 1041-1063
    75 B.Bayle, M.Renaud, J.Y.Fourquet. Nonholonomic Mobile Manipulators: Kinematics, Velocities and Redundancies. Journal of Intelligent and RoboticSystem. 2003: 45-63
    76 K. Tchon, M. Robert. Instantaneous Kinematics and Dexterity of mobile manipulators. IEEE International Conference on Robotics and Automation. 2000: 2493-2498
    77 Y. Ymamaoto, X. P. Yun. Coodrinating locomotion and manipulation of a mobile manipulator. IEEE Transaction on Automatic Control. 1994, 39(6): 1326-1332
    78 J. G. Kang, J. M. Lee. A Study on Optimal configuration for the mobile manipulator considering the minimal Movement. IEEE Conference on ISIE. 2000:546-551
    79 M. Zhao, N. Ansari. Mobile manipulator path planning by a genetic algorithm IEEE/RSJ International Conference on Intelligent Robots and Systems. 1992: 681-688
    80 J. K. Lee, H. S. Cho. Mobile manipulator motion planning for multiple tasks using global optimization approach. Journal of Intelligent and Robotic Systems. 1997, 18: 169-190
    81 W. F. Carriker, P. K. Khosla, B. H. Krogh. Path planning for mobile manipulators for multiple task execution. IEEE Transaction on Robotics and Automation. 1991, 7(3): 403-408
    82 H. G. Tnnaer, K. J. Kyriakopoulos. Nonholonomic motion planning for mobile manipulators. IEEE Conference on Robotics and Automation. 2000: 1233-1238
    83 M. Akira, F. Seiji, M. Yamamaoto. Trajectory planning of mobile manipulator with end-effetor’s specified Path. IEEE International Conference on Intelligent Robots and systems. 2001: 2264-2269
    84 Q. Hunag, K. Tnaie, S. Sugnao. Coordinated motion planning for a mobile manipulator considering stability and manipulation. International Journal of Robotics research. 2000, 19(8): 732-742
    85王向灿,崔泽,曹鹏.冗余移动机械手避障能力评估及避障轨迹规划.机械设计. 2009, 47(535): 8-11
    86 M.W. Chen, A.M.S.Zalaza. Dynamics modeling and genetic based trajectory generator for nonholonomic mobile manipulators. Control Engineering Practice. 1997, 5(l): 39-48
    87 F. Seiji, M. Yamamoto, M. Akira. Trajectory planning of mobile manipulator with stability considerations. IEEE International Conference on Robotics and Automation. 2003: 3403-3408
    88 Y. X. Wu, Y. M. Hu. Kinematics, dynamics and motion planning of wheeled mobile manipulators. International Conference on CSIMTA. 2004: 221-226
    89 L. X. Chun, D. B. Zhao, Y. J. Qiang, X. H. Lu. A coordinated and hierarchical path planning approach for mobile manipulators. International Conference on Machine Learning and Cybernetics. 2005: 3013-3018
    90 A. Mohri, S. Furuno, M. Iwamura, et al. Sub-Optimal Trajectory Planning of Mobile Manipulator. IEEE International conference on Robotics and Automation. 2001: 1271-1276
    91 E. Papadopoulos, I. Poulakakis, I. Papadimitriou. On Path Planning and Obstacle Avoidance for Nonholonomic Platforms with Manipulators: A Polynomial Approach. International Journal of Robotics Research. 2002, 21(4): 367-383
    92 Y. Yamamoto, X. Yun. Coordinated Obstacle Avoidance of A Mobile Manipulator. IEEE International Conference on Robotics and Automation. 1995: 2255-2260
    93 W. B. JOEL. On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds. IEEE International Conference on Robotics and Automation. 1989: 264-270
    94 A. MULLER. Collision avoiding continuation method for the inverse kinematics of redundant manipulators. IEEE International Conference on Robotics and Automation. 2004: 1593-1598
    95 L. L. CARLOS, L. SUKHAN. Redundant manipulator self-motion topology under joint limits with an 8-DOF case study. IEEE International Conference on Intelligent Robots and Systems. 1993: 848-85
    96赵建文,杜志江,孙立宁. 7自由度冗余手臂的自运动流形.机械工程学报. 2007, 43(9): 132-137
    97刘宇.七自由度冗余手臂多性能准则优化及运动控制的研究.哈尔滨工业大学博士论文. 2004: 33-42
    98丁汉,熊有伦.冗余度机器人的障碍物躲避.华中理工大学学报. 1989, 17(5): 21-25
    99刘迎春,余越庆,姜春福.冗余度机器人研究动向. 2003, 19(1): 24-27
    100 R. V. Patel, F. Shadpey, F. Ranjbaran, et al. A Collision-avoidance scheme for redundant manipulators: Theory and Experiments. Journal of Robotic Systems. 2005, 22(12): 737-757
    101 F. Fahimi, H. Ashrafiuon, C. Nataraj. Obstacle Avoidance for Spatial Hyper-Redundant Manipulators Using Harmonic Potential Functions and the Mode Shape Technique. Journal of Robotic Systems. 2003, 20(1): 23-33
    102 R. Geraerts, M. H. Overmars. Creating high-quality paths for motion planning. International Journal of Robotics Research. 2007, 26(8): 845-863
    103 A. Luca, G. Oriolo, P. Giordano. Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators. Proceeding of the 2006 IEEE International Conference on Robotics and Automation. 2006, 5: 1867-1873
    104 S. G. Tzafestas. Research on autonomous robotic wheelchairs in Europe. IEEE Robotics & Autonomous Magazine. 2001, 8(1): 4-6
    105孙立宁,何富军,杜志江,等.辅助型康复机器人技术的研究与发展.机器人. 2006, 28(3): 355-360
    106杨军,陈卫东,王景川,等.装备机械臂的智能轮椅研究.上海电机学院学报. 2008, 11(2): 160-164
    107 Redwan M. Alqasemi, Edward J. McCaffrey, Kevin D. Edwards, et al. Wheelchair-Mounted robotic arms: analysis, evaluation and development. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey. 2005: 1164-1169
    108 Z. Bien, M. J. Chung, P. H. Chang, et al. Integration of a rehabilitation robotic system (KARES II) with Human-Machine Interaction units. Autonomous Robots. 2004, 16: 165-191
    109 W. K. Song, H. Y. Lee, Z. Bien. KARES: Intelligent wheelchair-mounted robotic arm system using vision and force sensor. Robotics and Autonomous System. 1999, 28: 83-94
    110 I. Volosyak, O. Ivlev, A. Graser. Rehabilitation robot FRIEND II- The general concept and current implementation. Proceedings of the 2005 9th International Conference on Rehabilitation Robotics. 2005: 540-544
    111吴玉香,胡跃明.轮式移动机械臂的建模与仿真研究.计算机仿真. 2006, 23(1): 147-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700