几类优化问题的数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在这篇论文里,我们研究了几个相互关联的优化问题的数值方法。文中所涉及到的问题分别是互补问题、分裂可行问题和随机分裂可行问题。
     第一章介绍了本文所研究的几个优化问题,它们之间的关系以及文中要用到的一些记号。
     在第二章里,我们研究了一类非线性互补问题。互补问题是运筹学与计算科学的一个交叉研究领域,它与非线性规划、极大极小、对策论、不动点理论等分支有紧密联系,在力学、工程、经济、交通等许多实际部门有广泛的应用。
     互补问题的标准形式是:给定连续可微的向量函数F(x):Rn→Rn求一向量x∈Rn使得x≥0,F(x)≥0,xTF(x)=0
     当F(x)为线性函数(令F(x)=Mx+q,M Rn×n,q∈Rn)时,称其为线性互补问题,记为LCP (M,q);否则,称其为非线性互补问题,记为NCP(F)互补问题的一个自然的推广就是变分不等式问题(VI),即求解一向量x∈C使得(y-x)TF(x)≥0, (?)y∈C,这里C(?)Rn为一个非空闭凸集.
     本章针对非线性互补问题(P0-NCP),研究了一类非内点路径跟踪算法。相对于标准中心路径,我们使用了尺度化的中心路径。基于尺度化的中心路径,我们给出了一个求解P0-NCP的一步式非内点连续光滑化牛顿算法。在不需要严格互补性的假设条件下,证明了该算法的全局收敛性,并在适当的假设下,证明了局部二次收敛性。最后,我们通过几个算例与另一类求解P0-NCP的一步式光滑化牛顿法进行了比较。
     在第三章里,我们研究了求解分裂可行问题的几种投影方法。所谓分裂可行问题(SFP)是:求x∈C,使得Ax∈Q,其中集合C和Q分别是RN和RM中的非空闭凸集,A是M×N阶实矩阵。这类问题产生于信号处理中,特别是在图像重构和其他的图像还原问题中。近年来,分裂可行问题在调强放疗(IMRT)方面也有了重大的应用。同时,分裂可行问题还与凸可行问题密切相关。凸可行问题(CFP)就是要找有限个闭凸集的非空交集中的点,它在数学,物理等许多学科中是一个基本的问题。因此,研究如何求解分裂可行问题具有重要的意义。
     CQ算法是求解SFP的一种简洁的方法。在本文中,我们首先给出了CQ算法的一个非精确松弛格式,当正交投影PC和PQ不容易求得时,此格式比CQ算法更具实用性。然后我们讨论了变步长的CQ算法,并且说明,不论是带固定步长的CQ算法,还是变步长的CQ算法,都是梯度投影算法的一个具体实现。相对于固定步长,变步长可以提高算法的收敛速度。最后,我们提出了变步长CQ算法的非精确格式以及非精确松弛格式。
     在第四章里,我们应用样本均值近似(SAA)方法研究了随机分裂可行问题(SSFP)o样本均值近似方法的基本思想是利用Monte Carlo样本技术产生具有独立同分布(iid.)的样本,来模拟随机模型中的随机参数。利用Monte Carlo样本技术,由随机样本产生的样本均值来近似估计随机优化问题的目标函数的数学期望函数,由此产生的样本均值近似问题,可以利用确定性优化技术来求解。用不同的样本重复上述过程,可以用统计方法估计产生的候选解的优化间隙。
     我们首先定义了随机分裂可行问题(SSFP),然后讨论用样本均值近似(SAA)方法求解该问题。我们研究了样本均值近似的随机分裂可行问题的解的存在性和收敛性。在一定的条件下,我们证明了随着样本点的增加,样本均值近似的随机分裂可行问题依概率1有解,且该解依概率1指数收敛到随机分裂可行问题的解。
In this thesis, we study on numerical methods for several related optimization prob-lems, which are the nonlinear complementarity problems with Po-function (P0-NCP), the split feasibility problem (SFP), and the stochastic split feasibility problem (SSFP).
     In the first chapter, we introduce several optimization problems concerned in this thesis, their relations, and some basic notations.
     In chapter 2,we investigate the nonlinear complementarity problems with Po-function (P0-NCP).Nonlinear complementarity problem is the interdisciplinary research areas of operations research and computational science,and has various important ap-plications in many fields,such as mechanics,engineering,economics, transportation, and so on.In its general form, the nonlinear complementarity problem is formally de-fined below:Let F:Rn→Rn be a continuous differentiabie function.The nonlinear complementarity problem (NCP) is to find a vector x∈Rn such that x≥0, F(x)≥0, xTF(x)=0.
     In this chapter, we present a new non-interior path-following methods for nonlin-ear complementarity problems with Po-function (P0-NCP).Instead of using the standard central path,we use a scaled central path.Based on this new central path, we give a one-step smoothing Newton method for solving nonlinear complementarity problems with Po-function. Our smoothing Newton method solves only one linear system of equations and performs only one line search at each iteration.It is proved that our proposed al-gorithm has superlinear convergence in absence of strict complementarity assumption at the P0-NCP solution. Under suitable conditions, the modified algorithm has global convergence and local quadratic convergence.Finally, we perform some numerical ex-periments, which preliminarily show the behaviors of the algorithms proposed, and we made comparison of the new method with the method which using the standard central path.
     In chapter 3,we propose several solution methods for the split feasibility problem (SFP).The split feasibility problem (SFP) is to find x∈C, such that Ax∈Q, where C and Q are nonempty closed convex sets in RN and RM,respectively, and A is an M by N real matrix. Such problems arise in signal processing, especially in phase retrieval and other image restoration problems.Recently the split feasibility problem has been proposed application in intensity modulated radiation therapy. Meanwhile, the SFP is closely related to the convex feasibility problem (CFP),i.e.,to find a point in the nonempty intersection of finitely many closed and convex sets.The latter is a fundamental problem in many disciplines, such as mathematics and physical science, and so on.So it is of great meaning to study on how to solve the split feasibility problem.
     The so-called CQ algorithm is a brief method for solving the SFP. In this thesis, we first give an inexact relaxed scheme of the CQ algorithm, which is more practicable than the CQ algorithm when orthogonal projections PC and PQ are not easy to get. Then we discuss about the variable stepsize CQ algorithm and demonstrate that the CQ algorithm with fixed stepsize and variable stepsize CQ algorithm are both a specific realization of gradient projection algorithm.The variable stepsize, comparing with a fixed one, can accelerate the convergence of algorithm.In the end,we offer an inexact scheme of variable stepsize CQ algorithm and its relaxed version.
     Chapter 4 deals with stochastic split feasibility problem(SSFP) and apply the SAA method to solve it. The sample average approximation (SAA) method is an approach for solving stochastic optimization problems by using Monte Carlo simulation.In this technique the expected objective function of the stochastic problem is approximated by a sample average estimate derived from a random sample. The resulting sample average approximating problem is then solved by deterministic optimization techniques. The process is repeated with different samples to obtain candidate solutions along with statistical estimates of their optimality gaps.
     In this chapter, we present a definition for the stochastic split feasibility problem (SSFP) and apply the SAA method to solve it. We investigate the existence and conver-gence of a solution to the sample average approximated SSFP. Under some moderate conditions, we show that the sample average approximated SSFP has a solution with probability one and with probability approaching one exponentially fast with the in-crease of sample size,the solution converges to its true counterpart.
引文
[1]F. Facchinei and J.S.Pang, Finite-dimensional varia tional inequality and com-plementarity problems, Vol.1 and 2,Springer-Verlag, New York,2003.
    [2]R. W. Cottle, J.S.Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press,Boston,1992.
    [3]G.Isac,Complementarity Problems, Lecture Notes in Mathematics, Springer-Verlag, New York,1992.
    [4]K. G.Murty,Linear Complementarity, Linear and Nonlinear Programming, Helderman-Verlag,Berlin,1988.
    [5]P. T. Harker and J.S.Pang, Finite-dimensional variational inequality and nonlin-ear complementarity problems:A survey of theory,algorithms and applications, Math.Programming.48(1990),161-220.
    [6]J.S.Pang, Complementarity problems,in Handbook in Global Optimization,R. Horst and P. Pardalos, eds.,Kluwer Academic Publishers,Boston,1994.
    [7]M.C.Ferris AND J.S.Pang, Engineering and economic applications of com-plementarity problems, SIAM Rev.,39(1997),669-713.
    [8]C.E. Lemke and J.T. Howson, Equilibrium points of bimatrix games, SIAM Rev. 12(1964),45-78.
    [9]H.E. Scarf and T. Hansen, Computation of Economic Equilibria, Yale University Press, New Haven, CT,1973.
    [10]L.Walras, Elements of Pure Economics, Allen and Unwin, London,1954.
    [11]J. G.Wardrop, Some theoretical aspects of road traffic research, Proceeding of the Institute of Civil Engineers,Part Ⅱ,(1952),325-378.
    [12]C.B.Garcia and W. I.Zangwill,Pathways to Solutions,Fixed Points, and Equi-libria, Prentice-Hall,Englewood Cliffs, NJ,1981.
    [13]M. J.Todd, Computation of Fixed Points and Applications, Lecture Notes in Econom.and Math.Systems 124, Springer-Verlag, Heidelberg,1976.
    [14]P. T.Harker and B.Xiao,Newton's method for the nonlinear complementarity problem:A B-differentiable equation approach,Math. Programming,48(1990), 339-358.
    [15]J.S.Pang, A B-differentiable equation based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems, Math. Programming,51(1991),101-132.
    [16]S.M.Robinson, Newton's method for a class of nonsmooth functions, Set Valued Analysis,2(1994),291-305.
    [17]S.P. Dirkse and M.C.Ferris,The PATH solver:A non-monotone stabilization scheme for mixed complementarity problems, Optimization Methods and Soft-ware,5(1995),123-156.
    [18]S.P. Dirkse and M.C.Ferris,A pathsearch damped Newton method for com-puting general equilibria. Ann.Oper. Res.,68(1996),211-232.
    [19]D.Ralph,Global convergence of damped Newton's method for nonsmooth equa-tions, via the path search,Math.Oper. Res.,19(1994),352-389.
    [20]S.C.Billups and M.C.Ferris,QPCOMP:A quadratic program based solver for mixed complementarity problems, Math.Programming,76(1997),533-562.
    [21]S.A.Gabriel and J.S.Pang, An inexact NE/SOP method for solving the nonlinear complementarity problem, Comput. Optim.Appl.,1(1992),67-91.
    [22]S.A.Gabriel and J.S.Pang, A trust region method for constrained nonsmooth equations, in Large-Scale Optimization:State of the Art, W. W. Hager, D.W. Hearn, and P. M.Pardalos, eds.,Kluwer Academic Publishers,Norwell, MA, 1994,159-186.
    [23]J. S.Pang and S.A.Gabriel, NE/SQP:A robust algorithm for the nonlinear com-plementarity problem,Math.Programming,60(1993),295-338.
    [24]M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Programming, 53(1992),99-110.
    [25]C.Kanzow, Some equation-based methods for the nonlinear complementarity problem,Optimization Methods and Software,3(1994),327-340.
    [26]O.L. Mangasarian and M. V. Solodov, Nonlinear complementarity as uncon-strained and constrained minimization,Math. Programming,62(1993),277- 298.
    [27]P. Tseng, N.Yamashita, and M. Fukushima, Equivalence of complementarity problems to differentiable minimization:A unified approach, SIAM J. Optim.,6 (1996),446-460.
    [28]A.Auslender, Convergence of stationary sequences for variational inequalities with maximal monotone operators, Appl.Math. Optim.,28(1993),161-172.
    [29]A.Auslender and M.Haddou, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math.Pro-gramming,71(1995),77-100.
    [30]M.C.Ferris and D.Ralph, Projected gradient methods for nonlinear comple-mentarity problems via normal maps, in Recent Advances in Nonsmooth Op-timization,D.Du, L.Qi,and R. Womersley,eds.,World Scientific Publishers, River Edge, NJ,1995,57-87.
    [31]J.J.More,Global methods for nonlinear complementarity problems, Math.Oper. Res.,21(1996).589-614.
    [32]M.V. Solodov and P. Tseng,Modified projection-type methods for monotone variational inequalities, SIAM J.Control Optim.,34 (1996),1814-1830.
    [33]B.Chen and P. T. Harker,A noninterior continuation method for linear comple-mentarity problems, SIAM J.Matrix Anal.Appl.,14(1993),1168-1190.
    [34]B.Chen and P. T. Harker, A continuation method for monotone variational in-equalities, Math. Programming,69(1995),237-253.
    [35]C.Chen and O.L.Mangasarian, Smoothing methods for convex inequalities and linear complementarity problems, Math.Programming,78(1995),51-70.
    [36]C. Chen and O.L.Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim.Appl.,5(1996),97-138.
    [37]S.A.Gabriel and J.J.More, Smoothing of mixed complementarity problems,in Complementarity and Variational Problems:State of the Art, Philadelphia, PA, 1997,105-116.
    [38]C.Kanzow, Some Tools Allowing Interior-Point Methods to Become Noninterior, Tech.rep.,Institute of Applied Mathematics, University of Hamburg, Germany, 1994.
    [39]L.Qi and X.Chen, A Globally Convergent Successive Approximation Method for Nonsmooth Equations, Tech.rep.,School of Mathematics, University of New South Wales,Sydney,1993.
    [40]E.Andersen and Y. Ye, On a homogeneous algorithm for a monotone comple-mentarity problem with nonlinear equality constraints, in Complementarity and Variational Problems:State of the Art, M.C.FERRIS AND J.S.PANG,EDS., SIAM,Philadelphia, PA,1997,1-11.
    [41]E.Andersen and Y. Ye, On a homogeneous algorithm for the monotone comple-mentarity problem, Math. Programming,84(1999),375-399.
    [42]S.C.Billups and M.C.Ferris.Convergence of an infeasible interior-point algo-rithm from arbitrary positive starting points, SIAM J.Optim.,6(1996),316-325.
    [43]O. Goler,Existence of interior points and interior paths in nonlinear monotone complementarity problems,Math.Oper. Res.,18(1993).128-147.
    [44]B.Jansen,K.Roos,T. Terlaky, and A.Yoshise,Polynomiality of affine-dual affine-scaling algorithms for nonlinear complementarity problems,Discussion Paper 648,Institute of Socio-Economic Planning,University of Tsukuba,Ibaraki, Japan,1995.
    [45]M.Kojima, T. Noma, and A.Yoshise, Global convergence in infeasible inlerior-point algorithms, Math.Programming,65(1994),43-72.
    [46]R. D.C.Monteiro, J.S.Pang, and T. Wang, A positive algorithm for the nonlinear complementarity problem,SIAM J.Optim.,5(1995),129-148.
    [47]T. Wang, R. D.C.Monteiro,and J.S.Pang, An interior point potential reduction method for constained equations, Math.Programming,74(1996),159-196.
    [48]S.J.Wright and D.Ralph,A superlinear infeasible-interior-point algorithm for monotone complementarity problems, Math. Oper. Res.,21(1996),815-838.
    [49]J.Burke and S.Xu, The global linear convergence of a non-interior path-following algorithm for linear complementarity problems,Math.Oper. Res.,23 (1998),719-734.
    [50]J.Burke and S.Xu, A non-interior predictor-corrector path-following algorithm for LCP, in Reformulation:Nonsmooth, Piecewise Smooth and Smoothing Meth-ods, Edited by M. Fukushima and L.Qi,Kluwer Academic Publishers, Boston, 1999,45-64.
    [51]J.Burke and S.Xu, A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem, Math.Program.,87 (2000), 113-130.
    [52]J.Burke and S.Xu, Complexity of a noninterior path-following method for the linear complementarity problem, J.Optim. Theory Appl.,112 (2002),53-76.
    [53]B.Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems, SIAM J. Optim.,7(1997),403-420.
    [54]B.Chen and N.Xiu, A global linear and local quadratic non-interior con-tinuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions, SIAM J.Optim.,9(1999),605-623.
    [55]B.Chen and N.Xiu. Superlinear noninterior one-step continuation method for monotone LCP in the absence of strict complementarity, J.Optim.Theory Appl., 108(2001),317-332.
    [56]M.Fukushima,Z.Luo,and J.Pang, A globally convergent sequential quadratic programming alogorithm for mathematical programs with linear complementar-ity constraints,Comput. Optim.Appl.,10(1998),5-34.
    [57]K. Hotta and A. Yoshise,Global convergence of a non-interior-point algorithms using Chen-Harker-Kanzow functions for nonlinear complementarity problems, Math.Program.,86(1999),105-133.
    [58]K. Hotta and A. Yoshise,A complexity bound of a predictor-corrector smoothing method using CHKS-functions for monotone LCP, Comput. Optim. Appl.,22 (2002),329-350.
    [59]Z.Huang, J.Han, D.Xu and L.Zhang, The non-interior continuation meth-ods for solving the P0 function nonlinear complementarity problem, Science in China(Series A),44(2001),1107-1114.
    [60]Z. Huang, J.HAN,Z.CHEN,Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P0 Function,J.Optim.Theory Appl.,117 (2003),39-68.
    [61]C.Kanzow, Some noninterior continuation methods for complementarity prob-lems, SIAM.1.Matrix Anal.Appl.,17(1996),851-868.
    [62]L.Qi and D. Sun, Improving the convergence of non-interior point algorithm for nonlinear complementarity problems, Math.Comput.,69 (2000),283-304.
    [63]S.Smale,Algorithms for solving equations, Proceedings of the International Congress of Mathematicians,Edited by Gleason, A.M.,American Mathematics Society, Providence,Rhode Island,1987,172-195.
    [64]P. Tseng, Analysis of a non-interior continuation method based on Chen-Mangasarian smoothing functions for conplementarity problems, in Reformulation-Nonsmooth,Piecewise Smooth,Semismooth and Smooth-ing Methods,edited by M.Fukushima and L.Qi, Kluwer Academic Publishers, Boston,1999,381-404.
    [65]N.Xiu, New methods for complementarity problems, Ph.D.Dissertation,Insti-tute of Applied Mathematics. Academia Sinica. Beijing 100080, Chian,1997.
    [66]S.Xu,The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions, Math.Pro-gram.,87 (2000),501-517.
    [67]Y. Yuan.A scaled central path for linear programming. J.Comput. Math.,19 (2001),35-40.
    [68]H.Qi,A regularized smoothing Newton method for box constrained varia-tional inequality problems with P0-functions, SIAM Journal on Optimization,10 (2000),315-330.
    [69]L.Qi,D.Sun, and G.Zhou, A new look at smoothing Newton methods for nonlin-ear complementarity problems and box constrained variational inequality prob-lems,Math.Program.,87(2000),1-35.
    [70]Q.Wang, J. Zhao, and Q.Yang, Some non-interior path-following methods based on a scaled central path for linear complementarity problems, Comput. Optim. Appl.,46(2010),31-49.
    [71]L.Qi, and J.Sun, A Nonsmooth Version of Newton's Method, Math.Program.,58 (1993),353-367.
    [72]Y. Zhao and D.Li, Existence and limiting behavior of a non-interior-point trajec-tory for nonlinear complementarity problems without strict feasibilty condition, SIAM J.Control.Optim.,40(2001),898-924.
    [73]L.Zhang and Z.Gao, Superlinear/quadratic one-step smoothing Newton method for P0-NCP without strict complementarity, Math.Meth.Oper. Res.,56 (2002), 231-241.
    [74]A.Fischer, Solution of monotone complementarity problems with locally lipschitz functions, Math. Programming 76(1997),513-532.
    [75]M.S.Gowda, and J. J.Sznajder, Weak univalence and connectedness of inverse images of continuous functions, Mathematics of Operations Research,24(1999), 255-261.
    [76]G.Ravindran and M.S.Gowda, Regularization of P0-functions in box variational inequality problems, SIAM Journal on Optimization,11 (2001),748-760.
    [77]D.P. Bertsekas, Convex Analysis and Optimization,Athena Scientific,Belmont, MA,With A.Nedic and A.E.Ozdaglar,2003.
    [78]Ph.L.Toint,Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space,IMA J.Numer. Anal.8(1988)231-252.
    [79]E.M.Gafni and D.P. Bertsekas,Two-Metric Projection Methods for Constrained Optimization,SIAM J.Control Optim.22(1984) 936-964.
    [80]N.E.Hurt,Phase Retrieval and Zero Crossings:Mathematical Methods in Image Reconstruction, Kluwer Academic,Dordrecht,The Netherlands,1989.
    [81]T. Kotzer, N.Cohen and J.Shamir, Extended and alternative projections onto convex sets:theory and applications, Technical Report No.EE 900, Dept. of Electrical Engineering, Technion, Haifa, Israel (November 1993).
    [82]H.H.Bauschke and J.M.Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38(1996),367-426.
    [83]F. Natterer and F. Wubbeling, Mathematical methods in image reconstruction, SIAM (Monographs on Mathematical Modeling and Computation), Philadelphia, PA,USA,2001.
    [84]C.L.Byrne,Iterative projection onto convex sets using multiple Bregman dis-tances,Inverse Problems,15(1999),1295-1313.
    [85]C.L.Byrne,Bregman-Legendre multidistance projection algorithms for convex feasibility and optimization,Inherently Parallel Algorithms in Feasibility and Op-timization and Their Applications,D.Butnariu,Y. Censor, and S.Reich,eds., Elsevier Science Publishers,Amsterdam,The Netherlands(2001),87-99.
    [86]C.L. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002),441-453.
    [87]C.L.Byrne,A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004),103-120.
    [88]C.L.Byrne,Applied Iterative Methods, A.K. Peters Ltd.,Wellesley, MA, USA, 2008
    [89]M. Fukushima, On the convergence of a class of outer approximation algorithms for convex programs, J.Comput. Appl.Math.10(1984),147-156.
    [90]M.Fukushima, A relaxed projection method for variational inequalities, Math. Program.35(1986),58-70.
    [91]B.He.Inexact implicit methods formonotone general variational inequalities. Math.Program.A 86(1999),199-217.
    [92]J.S.Pang,Inexact Newton methods for the nonlinear complementarity problem, Math.Program.36(1986),54-71.
    [93]Y. Censor and S.A.Zenios.Parallel Optimization:Theory,Algorithms, and Ap-plications,Oxford University Press, New York. NY,USA,1997.
    [94]H.Stark and Y. Yang,Vector Space Projections:A Numerical Approach to Sig-nal and Image Processing, Neural Nets, and Optics.New York, NY, USA. John Wiley Sons,1998.
    [95]Y. Censor, D.Gordon, and R. Gordon, BICAV:A block-iterative, parallel al-gorithm for sparse systems with pixel-related weighting,IEEE Transactions on Medical Imaging 20 (2001),1050-1060.
    [96]Y. Censor, Row-action methods for huge and sparse systems and their applica-tions,SIAM Review 23(1981),444-466.
    [97]Y.Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space,Numer. Algorithms 8(1994),221-239.
    [98]Y. Censor, M. D.Altschuler and W. D.Powlis, On the use of Cimmino's simul-taneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning,Inverse Problems 4(1988),607-623.
    [99]Y. Censor, Mathematical optimization for the inverse problem of intensity mod- ulated radiation therapy, in:J.R. Palta and T.R. Mackie (Editors), Intensity-Modulated Radiation Therapy:The State of The Art, American Association of Physicists in Medicine, Medical Physics Monograph No.29, Medical Physics Publishing, Madison, Wisconsin, USA (2003),25-49.
    [100]B.Qu and N. Xiu,A note on the CQ algorithm for the split feasibility problem, Inverse Problems,21(2005),1655-1665.
    [101]P. L.Combettes,The foundations of set-theoretic estimation, Proceedings of the IEEE 81(1993),182-208.
    [102]P. L.Combettes, The convex feasibility problem in image recovery, Advances in Imaging and Electron Physics 95(1996),155-270.
    [103]D.C.Youla,Mathematical theory of image restoration by the method of con-vex projections, in:Image Recovery:Theory and Applications, H.Stark, ed., Academic Press,Orlando,Florida,USA(1987),29-77.
    [104]G.T. Herman,Image Reconstruction From Projections:The Fundamentals of Computerized Tomography,Academic Press,New York. NY,USA.1980.
    [105]L.D.Marks,W. Sinkler and E.Landree,A feasible set approach to the crystal-lographic phase problem,Acta Crystallographica 55(1999),601-612.
    [106]M.L.Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math.Math.Phys.7(1967),200-217.
    [107]Q.Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems,20 (2004),1261-1266.
    [108]Q.Yang, On variable-step relaxed projection algorithm for variational inequal-ities,Journal of Mathematical Analysis and Applications 302 (2005),166-179.
    [109]J.Zhao and Q.Yang, Several solution methods for the split feasibility problem, Inverse Problems 21(2005),1791-1799.
    [110]Q.Yang and J.Zhao, The projection-type methods for solving the split feasibility problem (in Chinese),Mathematica numerica sinica 28 (2006),121-132.
    [111]A. Shapiro, D.Dentcheva. and A.Ruszczynski,Lectures on Stochastic Program-ming:Modeling and Theory. SIAM, Philadelphia, PA.2009.
    [112]D.Butnariu and S.D.Flam,Strong convergence of expected projection methods in Hilbert spaces, Numer. Funct. Anal.Optim.16(1995),601-636.
    [113]D.Butnariu, Y.Censor and S.Reich, Iterative Averaging of Entropic Projections for Solving Stochastic Convex Feasibility Problems, Computational Optimiza-tion and Applications.8,(1997),21-39.
    [114]D.Butnariu, A.N.lusem and R. S.Burachik, Iterative Methods of Solving Stochastic Convex Feasibility Problems and Applications, Computational Op-timization and Applications.15 (2000),269-307.
    [115]B.Verweij,S.Ahmed, A.J.Kleywegt, G.Nemhauser and A. Shapiro.The Sam-ple Average Approximation Method Applied to Stochastic Routing Problems:A Computational Study,Computational Optimization and Applications.24 (2003), 289-333.
    [116]H.Xu and D.Zhang, Smooth Sample Average Approximation of Stationary Points in Nonsmooth Stochastic Optimization and Applications, Math.Program.,Ser. A 119(2009),371-401.
    [117]A.Shapiro,Stochastic programming approach to optimization under uncer-tainty,Math.Program.,Ser. B 112 (2008),183-220.
    [118]A. J.King and R. T. Rockafellar, Asymptotic theory for solutions in statistical estimation and stochastic programming, Math.Oper. Res.,18(1993),148-162.
    [119]S.M.Robinson, Analysis of sample-path optimization, Math. Oper. Res.,21 (1996),513-528.
    [120]A. Shapiro, Asymptotic behavior of optimal solutions in stochastic programming, Math.Oper. Res.,18(1993),829-845.
    [121]L. Dai,C.Chen and J. R. Birge, Convergence properties of two-stage stochastic programming, J.Optim.Theory Appl.,106 (2000),489-509.
    [122]Y. M.Kaniovski, A.J.King and R. J.-B.Wets Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems, Ann.Oper. Res.,56(1995),189-208.
    [123]A.Shapiro and T. Homem-de-Mello,On the rate of convergence of optimal so-lutions of Monte Carlo approximations of stochastic programs,SIAM J.Optim., 11(2000),70-86.
    [124]A.Shapiro,On complexity of multistage stochastic programs, Oper. Res.Lett., 34(2006),1-8.
    [125]A. Shapiro,Asymptotic analysis of stochastic programs, Ann.Oper. Res.,30 (1991)169-186.
    [126]A.Shapiro,Monte Carlo sampling methods, in Handbook of Stochastic Opti-mization, A.Ruszczynski and A. Shapiro,eds.,Elsevier Science Publishers B.V., Amsterdam,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700