自适应声学回声抑制算法研究及其VLSI芯片设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应滤波器由于具有在未知环境下良好运行并跟踪输入数据统计量随时间变化的能力,被广泛应用于通信、雷达、声纳以及生物医学工程等领域。在语音通信过程中,声学反馈的存在严重影响语音质量,采用自适应滤波器进行声音反馈抑制是非常有效的方法。
     本文给出了声音反馈抑制的数学模型,并针对声音反馈抑制中的两个典型应用——远距离声学回声消除和近距离声反馈抑制这两个问题的各自特点,给出解决各自问题的算法设计,并根据近距离声反馈抑制要求实时性强的特点,进行了声反馈抑制算法芯片设计的研究。
     本文主要研究内容包括以下几个方面:
     首先,提出远距离声学回声消除算法。在远距离声学回声消除过程中,双方对讲和模型噪声同时存在,严重干扰回声消除算法。目前,单独克服其中一种干扰的研究已经较为成功,而同时克服上述两种干扰的回声消除算法尽我们所知只有一篇文献报道,且该文献将双方对讲的时间限制在2秒钟以内,不能满足实际需要。本文在充分研究现有文献的基础上,对现有算法进行改进,提出了能够同时克服双方对讲与模型噪声干扰的远距离声学回声消除算法——VSS-NLMS-UMDT算法。该算法对双方对讲时间没有长度限制,具有很强的实用价值。
     其次,提出高收敛精度高收敛速度的最小均方误差(Least Mean Square, LMS)算法。现有文献中报道的LMS类算法均采用瞬时梯度,在对LMS类算法进行改进的过程中都集中在对算法步长的改进。本文在首先构造了物理含义明确的极值为零的目标函数基础上,提出了零极值目标函数系统辨识算法的理论迭代表达式。在实际应用转化过程中采用对算法梯度进行在线求平均值的方式,减小了梯度噪声的影响。算法获得较高收敛精度和收敛速度。此外,算法对输入数据存储量很少,计算过程中数据流规整,并行性高,只包含有加法和乘法操作,便于超大规模集成电路实现,为近距离声反馈抑制算法的提出从理论与实践两方面奠定了基础。
     最后,通过对零极值目标函数系统辨识算法进行进一步改进,提出声反馈抑制算法,并对声反馈抑制算法进行了VLSI芯片设计,得到芯片的版图设计结果。声反馈抑制算法继承了零极值目标函数系统辨识算法高收敛精度高收敛速度的优点,并且具有更强的并行性。在VLSI芯片设计过程中,在充分挖掘算法内在并行性的基础上,对其中的固定系数乘法转化为移位操作,充分挖掘和利用算法中的数据可重用性。VLSI芯片设计结果显示,所获得的VLSI芯片设计性能完全可以满足实际应用中的吞吐率要求,具有实际应用价值。
The ability of an adaptive filter to operate satisfactorily in an unknown environment and track time variations of input statistics makes the adaptive filter widely used in communications, radar, sonar, seismology and biomedical engineering. In the speech communications, acoustic feedback makes bad influence to the quality of voice. The adaptive filter is always used to give solutions to acoustic feedback.
     The mathematical model of acoustic feedback reduction with adaptive filter is given. And according to the characteristics of long distance acoustic echo cancellation (AEC) and short distance acoustic feedback reduction (AFR), which are the typical application of acoustic feedback, the solution to the problem of their own is proposed. In addition, the very characteristic of AFR is running in real time. To solve the problem, the corresponding circuit implementation is made.
     The dissertation mainly focuses on the following aspects:
     Firstly, an AEC algorithm is proposed. During AEC process, the presence of double-talk and under-modeling noise affects the algorithm behavior seriously. At the present time, it's successful to overcome one of the two noises separately. There is only one paper reported which claimed that it can overcome the two noise at the same time. But the double-talk time is limited in two seconds, which can not meet the requirements in practice. Based on the researching for the reference, an AEC algorithm which can overcome both double-talk and under-modeling noise at the same time is proposed by making modification to the algorithm existed, and the algorithm is called VSS-NLMS-UMDT algorithm. The double-talk time is not limited for the algorithm proposed, which makes it practical.
     Secondly, one of least mean square (LMS) algorithms with high convergence precision and fast convergence speed is proposed. The LMS algorithms reported all adopt instantaneous gradient, and the modification to LMS algorithm is always made to the step size. A target function with obviously physical meaning and zero-minimum is given first, and a theoretical math expression of zero-minimum target function system identification (ZMTFSI) algorithm is derived. The gradient of the algorithm proposed adopts online-averaging-gradient in practical, which can reduce the gradient noise. The algorithm proposed has high convergence precision and fast convergence speed. In addition, the amount of data storage needed is small, and the data flow is regular during calculation. The algorithm proposed has high parallelism, and includes only summation and multiplication, which makes it very convenient to be realized by VLSI. The ZMTFSI algorithm makes good preparation for AFR algorithm in both theory and practice.
     Lastly, an AFR algorithm is proposed by modifying the ZMTFSI algorithm, the AFR algorithm is realized by VLSI implementation and the layout of the circuit chip is obtained. The AFR algorithm inherits the characteristics of high convergence precision and high convergence speed in the ZMTFSI algorithm, and has much stronger parallelism than the later one. During the VLSI implementation, the parallelism in the algorithm is mined sufficiently, the reusable data is mined and reused, and translates the multiplication with constant factor into shift operation. The results of VLSI implementation demonstrate that the VLSI implementation can meet the throughput in real application very well, and it's practical very much.
引文
1 S. Haykin. Adaptive Filter Theory. Pearson Education, 4th edition. 2002.
    2 J. Benesty, T. Gaeasler, D.R. Morgan, M.M. Sondhi, and S.L. Gay. Advances in Network and acoustic Echo Cancellation. Berlin, Germany: Springer-Verlag. 2001.
    3 M. E. Windrow B. Adaptive switching circuits. IRE WESCON Conv. Rec.. 1960: 96~104
    4 B. Widrow and S. D. Steams. Adaptive Signal Processing. Prentice-Hall. 1985.
    5 Hongbing Li and Hailin Tian. A New VSS-LMS Adaptive Filtering Algorithm and Its Application in Adaptive Noise Jamming Cancellation System. IEEE Circuits and Systems International Conference on Testing and Diagnosis. Chengdu, Apri. 28-29, 2009: 1-4
    6 Fu-Cai Liu, Yan-Xin Zhang and Ya-Jing Wand, A Variable Step Size LMS Adaptive Filtering Algorithm Based on the Number of Computing Mechanisms. Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 12-15 July 2009:1904~1908
    7 Sun En-chang, Li Yu-heng, Zhang Dong-ying and Yi Ke-chu. Adaptive variable-step size LMS filtering algorithm and its analysis. Journal of System Simulation 2007, 19(14): 3172~3174
    8 Li Xiao-bo, FAN Yang-yu and Peng Ke. A Variable Step-size LMS Adaptive Filtering Algorithm. 5th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing, 24-26 Sept., 2009: 1-4
    9覃景繁,欧阳景正.一种新的变步长自适应滤波算法.数据采集与处理. 1997, 12(3): 171~174.
    10覃景繁,韦岗.基于S型函数的变步长LMS自适应滤波算法.无线电工程. 1996, 26(4): 44~47.
    11罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法.电子学报. 2006, 34(6): 1123~1126.
    12 V. John Mathews, Zhenhua Xie. A Stochastic Gradient Adaptive Filter withGradient Adaptive Step Size. IEEE Trans. on Signal Proc.. 1993, 41(6): 2075~2087
    13吕振肃,黄石.一种改进的变步长ELMS算法.电子与信息学报. 2005, 27(10): 1524~1526.
    14 Yu Xiao, Wang Qicai. An extended LMS algorithm in ANC. ICNNSP’95, Nanjing, China, 1995: 737~740.
    15 Gitlin R. D. And Weinstein S. B.. The effects of large interference on the tracking capability of digitally implemented echo cancellers. IEEE Trans. on COM.. 1978, (6): 833~839.
    16 Clark G. A., Mitra S. K., Parker S. R., et al. Block implementation of adaptive digital filters. IEEE Trans. on Acoustics, Speech and Signal Processing. 1981, 29(3): 744~752.
    17 H. C. Shin, A. H. Sayed, and W. J. Song. Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett.. Feb., 2004, 11: 132~135
    18 L. Rey Vega, H. Rey, J. Benesty, and S. Tressens. A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process.. May, 2008, 56(5): 1878~1893
    19 J. Benesty, H. Rey, L. R. Vega, and S. Tressens. A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett.. Oct. 2006, 13(10): 581~584,
    20 C. Paleologu, S. Ciochina, and J. Benesty. Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Process. Lett.. Jan., 2008, (15): 5~8.
    21 J. Benesty, T. Gaeasler, D.R. Morgan, M.M. Sondhi, and S.L. Gay, Advances in Network and acoustic Echo Cancellation. Berlin, Germany: Springer-Verlag, 2001.
    22 Hua Ye and Bo-Xiu Wu. A new double-talk detection algorithm based on the orthogonality theorem. IEEE Trans. on Comm.. Nov., 1991, 39: 1542~1545
    23 J. H. Cho, D. R. Morgan, and J. Benesty. An objective technique for evaluating doubletalk detectors in acoustic echo cancellers. IEEE Trans. Speech Audio Processing. 1999, 7: 718~724
    24 Jacob Benesty, Dennis R. Morgan, and Juan H. Cho. A new class ofdoubletalk detectors based on cross-correlation. IEEE Trans. on Speech and Audio Processing. Mar., 2000, 8:168~172
    25 T. Gansler and J. Benesty. A frequency-domain doubletalk detector based on a normalized cross-correlation vector. Signal Process.. Aug. 2001, 81:1783~1787
    26 M. A. Iqbal, Jack W. Stokes and Steven L. Grant. A new doubletalk detector based on cross-correlation. Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Process.. Hawaii, Apr., 2007: 1~4
    27 M. A. Iqbal, Steven L. Grant and Jack W. Stokes . A Frequency Domain Doubletalk Detector Based On Cross-Correlation and Extension To Multi-Channel Case. Asilomar 2009:638-641
    28 T. Gaensler, S. L. Gay, M. M. Sondhi and J. Benesty. Double-talk robust fast converging algorithms for network echo cancellation. IEEE Trans. Speech and Audio Processing. Nov., 2000, 8(6): 656~663
    29 T. van Waterschoot, G. Rombouts, P. Verhoeve and M. Moonen. Double-talk-robust prediction error identification algorithms for acoustic echo cancellation. IEEE Trans. Signal Process.. Mar. 2007, 55(3): 846~858,
    30 M.A. Iqbal and S.L. Grant. Novel variable step size nlms algorithm for echo cancellation. ICASSP2008, Las Vegas, NV, U.S.A., 30 Mar.- 4 Apr., 2008: 241~244,
    31 C. Paleologu, S. Ciochina, and J. Benesty. Double-talk robust VSS-NLMS algorithm for under-modeling acoustic echo cancellation. ICASSP2008, Las Vegas, NV, U.S.A., 30 Mar.- 4 Apr., 2008: 245~248.
    32 W. Edmonson, J. Principe, K. Srinivasan, and C. Wang. A Global Least Mean Square Algorithm for Adaptive IIR Filtering. IEEE Trans. on circuits an systemsII: Analog and digital signal processing. Mar., 1998, 45(3): 379~384
    33 G.-O. Glentis, K. Berberidis and S. Theodoridis. Efficient Least Squares Adaptive Algorithms for FIR Transversal Filtering. IEEE Signal processing magazine. Jul., 1999: 13~41
    34 J. E. Greenberg. Modified LMS algorithms for speech processing with an adaptive noise canceller. IEEE Trans. Speech Audio Process.. Jul. 1998,6(4): 338~351
    35 Somwang T. and Chedsada C.. Variable step-size of the least-mean-square algorithm for reducing acoustic feedback in hearing aids. The 2000 IEEE Asia-Pacific Conference on Circuits and Systems, Tianjin, 2000:407-410
    36 M. M. Yasmin and M. B. Jose Carlos. Mean weight behavior of coupled lms adaptive systems applied to acoustic feedback cancellation in hearing aids. in Proc. ICISP, 2008: 527~535.
    37 Raul V.-B., Almudena M.-L., Roberto G.-P. and Manuel R.-Z.. Modified LMS-Based Feedback-Reduction Subsystems in Digital Hearing Aids Based on WOLA Filter Bank. IEEE Trans. on Instrumentation and Measurement. Sep., 2009, 58(9): 3177~3190
    38 M. G. Siqueira and A. Alwan. Steady-State Analysis of Continuous Adaptation in Acoustic Feedback Reduction Systems for Hearing-Aids. IEEE Trans. on Speech and Audio Processing. Jul., 2000, 8(4): 443~453
    39 Vicen-Bueno R., Martinez-Leira A., Gil-Pita R. and Rosa-Zurera M. Acoustic feedback reduction based on Filtered-X LMS and Normalized Filtered-X LMS algorithms in digital hearing aids based on WOLA filterbank. IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, 3-5 Oct., 2007: 1~6
    40王青云,赵力,乔杰,邹采荣.基于加权次梯度投影算法的数字助听器自适应声反馈抑制.信号处理. 2009, 25(4): 519-525
    41 J.R.Treichler., C.R.Johnson and M.G.Larimore. Theory and Design of Adaptive Filter. Prentice Hall, 2001.
    42 P. Petrus. Robust Huber adaptive filter. IEEE Trans. Signal Process.. Apr., 1999, 47(4): 1129~1133
    43 J. Benesty and T. Gaensler. A robust fast recursive least squares adaptive algorithm. In Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Salt Lake City, UT, 2001: 3785~3788.
    44 Bhouri, M. Parallel Implementations with Low-Complexity of Rotation-Based Adaptive Filters. IEEE Workshop on Signal Processing Systems Design and Implementation. 2-4 Nov., 2005: 597~602
    45 A. H. Sayed and T. Kailath. A state-space approach to adaptive RLS filtering. IEEE Signal Process. Mag.. 1994, 11(3): 18~60
    46 L. R. Vega, H. Rey, J. Benesty and S. Tressens, A Fast Robust Recursive Least-Squares Algorithm. IEEE Trans. on Signal Process.. Mar., 2009, 57(3): 1209~1216
    47 J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed. Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process.. 2006, 54: 1078~1090
    48 Y. Zhang and J. Chambers. Convex combination of adaptive filters for a variable tap-length LMS algorithm. IEEE Signal Process. Lett.. 2006, 13: 628~631
    49 N. J. Bershad, J. C. M. Bermudez, and J.-Y. Tourneret. An affine combination of two LMS adaptive filters—transient mean-square analysis. IEEE Trans. Signal Process.. 2008, 56: 1853~1864
    50 M. T.M. Silva and V. H. Nascimento. Improving the tracking capability of adaptive filters via convex combination. IEEE Trans. Signal Process.. 2008, 56: 3137~3149
    51 A. T. Erdogan, S. S. Kozat, and A. C. Singer. Comparison of convex combination and affine combination of adaptive filters. In Proc. ICASSP, Taipei, Taiwan, 2009: 3089~3092.
    52 Akihiro Hirano and Kenji Nakayama. Computationally Efficient Implementation of Sparse-Tap FIR Adaptive Filters with Tap-Position Control on Intel IA-32 Processors. 2008 International Symposium on Intelligent Signal Processing and Communication Systems. Bangkok, Thailand, 8~11 Feb., 2009: 1~4
    53 D. Messerschmidt, D. Hedberg, C. Cole, A. Haoui and P. Winship. Digital voice echo canceller with a TMS320C30. Digital Signal Processing Applications. 1986, 1: 415~454
    54 P. Marques, F. Sousa and J. Leitao. A DSP based long distance echo canceller using short length centered adaptive filters. in IEEE International Conference on Acoustics, Speech, and Signal Processing - ICASSP’97, Munich, Apr., 1997, 21-24 Apr., 1997, 3: 1885~1888
    55 F. Nagi, J. Low S.K and S. Li. Active noise cancellation with TMS320C5402 DSP starter kit. IEEE Proceedings on TENCON International Conference Region 10. 2004, A: 653~656
    56 G. Avalos, D. Espinobarro, J. Velazquez, Juan C. and Sanchez. Adaptive Noise Canceller using LMS algorithm with codified error in a DSP. 52nd IEEE International Midwest Symposium on Circuits and Systems. Cancun, 2~5 Aug., 2009: 657~ 662
    57 A. Ferreira and P. Marques. An Efficient Long Distance Echo Canceller. International Conference on Signal and Electronic systems. Krakow, Sep., 14~17, 2008: 331~334
    58 Y. Mollaei Hardware implementation of adaptive filters. Proceedings of 2009 IEEE student conference on research and development. UPM Serdang, Malaysia, Nov. 16-18, 2009: 45~48
    59 X. C. Guan, X. J. Chen and G. C Wu. QX-LMS Adaptive FIR Filters For System Identification. 2nd International Congress on Image and Signal Processing, Tianjin , 17~19 Oct., 2009: 1~5
    60 J. Velazquez, J. G. avalos, D. Espinobarro and J. C. Sanchez. Analysis and Implementation of LMS Algorithm with Coding Error in the DSP TMS320C6713. 18th International Conference on Electronics, Comm. and Computers. 18th International Conference on Electronics, Communications and Computers. Puebla, 3~5 Mar., 2008: 165~170
    61 Vazquez Burgos L. S., Garcia Infante J. C. and Sanchez Garcia J. C., Description of adaptive Fuzzy Filtering Using the DSP TMS320C6713.
    52nd IEEE International Midwest Symposium on Circuits and Systems. Cancun, 2-5 Aug., 2009: 1086 - 1090
    62 H. Sadoghi Yazdi, M. Lotfizad and M. Fathy. Car tracking by quantised input LMS, QX-LMS algorithm in traffic scenes. IEE Proc.-Vis. Image Signal Process. Feb., 2006, 153(1): 37~45
    63 D. J. Allred, W. Huang, V. Krishnan, H. Yoo, and D. V. Anderson. An fpga implementation for a high throughput adaptive filter using distributed arithmetic. In Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines. Apr., 2004: 324~325
    64 A. D. Stefano, A. Scaglione, and C. Giaconia. Efficient fpga implementation of an adaptive noise canceller. In Proceedings of Seventh International Workshop on Computer Architecturefor Machine Perception. Jul. 2005: 87~89
    65 Y Yi, R. Woods, L. K. Ting, and C. F. N. Cowan. High speed fpga-based implementations of delayed-lms filters. J VLSI Signal Process. Syst.. 2005, 39(1-2): 113~131
    66 R. Mustafa, M.A. Mohd Ali, C. Umat and D.A. Al-Asady, Design and implementation of least mean square adaptive filter on Altera Cyclone II Field Programmable Gate Array for active noise control. IEEE Symposium on Industrial Electronics and Applications (ISIEA 2009), Kuala Lumpur, Malaysia, Oct. 4-6, 2009: 479~484
    67 M. Bahoura and H. Ezzaidi, FPGA-implementation of a sequential adaptive noise canceller using Xilinx System Generator. 2009 International Conference on Microelectronics. Marrakech, 2009: 213~216
    68朱亮,韩方景,张尔扬等.基于FPGA的定点LMS算法实现.国防科技大学学报. 2005, 27(4): 62~65.
    69袁江南,汤碧玉,陈辉煌.基于AccelDSP的自适应滤波器设计.厦门大学学报(自然科学版). 2010, 49(2): 205~209
    70 A. Elhossini, S. Areibi and R. Dony. An FPGA implementation of the LMS Adaptive Filter for Audio Processing. Proceedings of IEEE International Conference on Reconfigurable Computing and FPGA's. 2006: 168~175,
    71 T. Lan and J. Zhang. FPGA implementation of an adaptive noise canceller. Proceedings of International Symposium on Information Processing. 2008: 553~558
    72 A. Jalali, Sh. G. Boroujeny and M. Eshghi. Design and Implementation of a Fast Active Noise Control System on FPGA. Mediterranean Conference on Control and Automation. Mediterranean Conference on Control & Automation. Athens, 27-29 Jun., 2007: 1~4
    73杨之廉.申明.超大规模集成电路设计方法学导论(第二版).北京清华大学出版社,1999.
    74 R.Haimi-Cohen, H.Herzberg, and Y. Bery. Delayed adaptive LMS filtering: current results. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing. Apr., 1990: 1273~1276.
    75 M. D. Meyer and D.P.Agrawal. A Modular pipelined implementations of a delayed LMS transversal adaptive filter. In Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA), May 1990: 1943~1946
    76 M. D. Meyer and D. P. Agrawal. A high sampling rate delayed LMS filter architecture. IEEE Trans., Circuits Syst. II, Analog Digit. Signal Process.. Nov. 1993, 40: 727~729.
    77 C.-L.Wang. Bit-serial VLSI implementation of delayed LMS adaptive FIR filters. IEEE Trans. Signal Process.. Aug., 1994, 42: 2169~2175.
    78 V.Visvnathan and S.Ramanathan. A modular systolic architecture for delayed least mean square adaptive filtering. in Proc. IEEE International Conference on VLSI Design, Bangalore, 1995: 332~337
    79 R.D.Poltmann. Conversion of the delayed LMS algorithm into the LMS algorithm. IEEE Signal Process. Lett.. Dec., 1995, 2: 223
    80 S.C.Douglas, Q.Zhu, and K.F.Smith. A pipelined LMS adaptive FIR filter architecture without adaptive delay. IEEE Trans. Signal Process.. Mar., 1998, 46: 775~779
    81 L.D. Van and W.S. Feng. Efficient systolic Architectures for 1-D and 2-D DLMS adaptive digital filters. in Proc. IEEE Asia Pacific Conf. Circuits Syst.. Tianjin, China, Dec. 2000: 399~402.
    82 L.D. Van and W.S. Feng. An efficient architecture for the DLMS adaptive filters and its applications. IEEE Trans. Circuits Syst.. Apr., 2001, 48(4): 359~366
    83邹谋炎.反卷积和信号复原. 2001年3月第1版,国防工业出版社.北京: 2004.
    84 Widrow B. and Mccool J. A comparison of adaptive algorithms based on the methods of steepest descent and random search. IEEE Trans. on Antennas and Propagation. 1976, 24(5): 615~637
    85 K. K. Parhi. VLSI Digital Signal Processing Systems—Design and Implementation. New Jork: John-Wiley Press, 1999
    86陈国良,陈峻. VLSI计算理论与并行算法.中国科学技术大学出版社. 1991: 81~88
    87 K. Hwang. Advanced Computer Architecture: Parallelism Scalability and Programmability. NY: McGraw-Hill. 1993
    88 M. A. Sid-Ahmed. Systolic and semi-systolic realizations of three dimensional filters. IEEE Trans. Consum. Electron. 1994, 40(2): 107~113
    89 C. M. Rader. VLSI systolic arrays for adaptive nulling. IEEE SignalProcess. Mag.. Jul., 1996, 13(4): 29~49
    90 P. K. Meher. Design of a fully-pipelined systolic array for flexible transposition-free VLSI of 2-D DFT. IEEE Trans. Circuits Syst. II, Exp. Briefs. Feb., 2005, 52(2): 85~89
    91 C. Cheng and K. K. Parhi. A novel systolic array structure for DCT. IEEE Trans. Circuits Syst. II, Exp. Briefs. Jul., 2005, 52(7): 366~369
    92 C. T. Rodenbeck, K. Sang-Gyu, T. Wen-Hua, M. R. Coutant, H. Seungpyo, L. Mingyi, and C. Kai. Ultra-wideband low-cost phased-array radars. IEEE Trans. Microw. Theory Tech.. Dec., 2005, 53(12): 3697~3703
    93 S. Sevskiy and W. Wiesbeck. Ultra-Broadband Omnidirectional Printed Dipole Arrays. Jul., 2005, 3A: 545~548.
    94 J.-J. Lee and G.-Y. Song. Implementations of the super-systolic array for convolution. IEEE Asia South Pacific—Design Autom. Conf.. Jan. 2003: 491~494.
    95 P. K. Meher. Systolic designs for DCT using a low-complexity concurrent convolutional formulation. IEEE Trans. Circuits Syst. Video Technol.. Sep., 2006, 16(9): 1041~1050
    96 P. K. Meher. Hardware-efficient systolization of DA-based calculation of finite digital convolution. IEEE Trans. Circuits Syst. II, Exp. Briefs. Aug., 2006, 53(8): 707~711
    97 H. L. P. A. Madanayake and L. T. Bruton, A Systolic-Array Architecture for First-Order 3-D IIR Frequency-Planar Filters.IEEE Trans. on Circuits and Systems—I: Regular Papers. July, 2008, 55(6): 1546~1559
    98 H. T. Kung and C. E. Leiserson. Systolic Arrays. In Sparse Matrix Symposium,Knoxville. Tennessee, 1978:256~282
    99贡三元. VLSI阵列处理.东南大学出版社,1992:12~160
    100 R. Magnificus and V. D. Woude. Hyper-Systolic Parrallel Computing Theory and Application. Thomas Adolf Lippert. Germany. 1999
    101 D. I. Modlovan and J. B. Fortes. Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays. IEEE Trans. Comput..1985, 35(1): 1~12
    102 H. T. Kung, W. T. Lin. An Algebra for VLSI Algorithm Design. Proc. of Conf. Elliptic Problem Solvers, Pacific, Grove, 1983:1~32
    103 P. R. Cappello, K. Steiglitz. Unifying VLSI Array Designs with GeometricTransformations. Proceedings of the 1983 International Conference on Parallel Processing, Bellaire, Mich, USA, 1983: 448~457
    104 M. T. Okeefe and A. B. Fortes. On the Relationship Between Two Systolic array Design Methodologies. IEEE Trans. on Computers. 1992, 4(12):569~575
    105 Gorniewicz L, Marano S A, and Slosarski M. Fixed points of contractive multivalued maps. Proceedings of the American Mathematical Society. 1996, 124(9): 2675-2683
    106 Asharif M. R., Rezapour A., and Ochi H.. Correlation LMS algorithm for double-talk echo canceller. Proc. of IEICE national conference, Japan, 1998, A-4-13: 122~124
    107 Asharif M. R., Hayashi T. and Yamashita K.. Correlation LMS algorithm and its application to double-talk echo cancelling. Electronics Letters, 1999, 41(3): 194-195
    108 Asharif M. R., Hayashi T.. Correlation LMS for double-talk echo cancelling. Proc. of the IASTED International Conference, Modeling and Simulation, Philadelphia, USA, 1999: 249-253
    109 Asharif M. R., Shimabukuro A., Hayashi T.and Ymashita K.. Expanded CLMS algorithm for double-talk echo cancelling. IEEE SMC Conference Proc. System, Man and Cybernetics, Tokyo, 1999, 1: 998-1002
    110 Se Bin Im, Hyung Jin Choi. Iterative channel estimation with moving average filter in OFDM packet transmission system. 2006 Asia-Pacific Conference on Communication, Busan, 2006: 1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700