含物理缺陷薄壁钢构件的稳定性理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用局部—整体相结合的方法,建立了一套分析含裂纹薄壁钢构件的稳定性理论,并系统地研究了裂纹对受压薄壁钢构件的弹性屈曲行为和极限承载力的影响。其中整体受压柱按一维问题分析,裂纹所在的局部按三维问题分析。本文获得的一系列非常有用的理论结果,为推动含物理缺陷钢结构的安全性和耐久性评估奠定了必要的理论基础。
     本文首先回顾和分析了近代薄壁结构非线性稳定性理论的发展历史和现状,阐明了本研究的理论意义和应用前景。然后,采用面场近似分析方法(CSSF)求得了含中心裂纹薄壁构件应力强度因子的解析表达式。再采用Rayleigh-Ritz能量变分法,分别按照平面裂纹模型和空间裂纹模型计算得到了含裂纹偏心受压柱的弹性挠度的级数解和最大挠度的通用解析解。最后,利用以上最大挠度解析解,推导了含裂纹受压柱平衡路径的控制方程,提出了一个带裂纹轴压柱弹性屈曲全过程的平衡路径模型,并进一步推导了利用双参数准则确定极限承载力的完备方程。本文还研究了利用位移引伸计测定薄板材料单轴损伤演化曲线的试验方法,提出了一种标定材料非线性塑性损伤参数的数值迭代拟合方法,并探讨了损伤力学在钢结构弹塑性稳定性分析中的应用问题。本文的主要工作和成果包括:
     (1)首次提出了求解薄壁构件的应力强度因子的裂纹面场近似分析方法(CSSF),并取得了常见薄壁构件无量纲应力强度因子的两个通用解析表达式。CSSF方法的要点是,先基于三维有限元计算分析的结果和无限大中心裂纹板的全场或近场应力解析公式,构建薄壁构件沿裂纹所在截面正应力的分布模型;然后利用构件的平衡条件确定无量纲应力强度因子。与现有的数值结果比较表明,这些解析解不仅形式简单,而且结果可靠。
     (2)首次采用Rayleigh-Ritz能量变分法,分别按照平面裂纹模型和空间裂纹模型计算获得了含裂纹偏心受压柱的弹性挠度的级数解,特别是,取得了最大挠度的通用解析解。这对于解析研究受压构件弹性屈曲行为、确定极限承载力是非常重要的基础。与现有转动弹簧模型和等效截面刚度方法相比,该解的主要优点是可以考虑柱在轴向压力作用下裂纹的闭合效应。
     (3)利用偏心柱最大挠度解析解,推导了含裂纹偏心柱平衡路径的控制方程,首次提出了一个带裂纹轴压柱弹性屈曲全过程的平衡路径模型。该模型首次揭示了裂纹对轴心受压柱稳定性的影响机理:当横向干扰位移大于一定程度时,裂纹才对轴压柱临界荷载有影响;当横向干扰位移小于一定程度时,裂纹只对轴压柱的屈曲后过程有作用,而对临界荷载无影响。从而指出了现有文献的一些错误结论。
     (4)在建立含裂纹偏心柱的屈服荷载方程和断裂极限荷载方程后,进一步推导了利用屈服—断裂双参数准则确定结构极限承载力的完备方程,并研究了各种因素对由边缘屈服破坏向裂纹扩展破坏转变的临界长细比、裂纹相对长度和偏心度的影响规律。
     (5)针对含边裂纹T形截面柱和带多个边裂纹矩形截面阶梯柱两种复杂情况,本研究求得了弹性挠度解,并建立了相应的屈曲平衡路径的控制方程和计算程序。
     (6)系统地建立了一套利用位移引伸计测定薄板材料单轴损伤演化曲线的试验方法,首次提出了一种标定材料非线性塑性损伤参数的数值迭代拟合方法。文中就试样形状尺寸的确定、主损伤区弹塑性大应变的测控和卸载弹性模量的稳定性与精确测量等关键测试技术问题进行了深入细致的分析和实验研究,并从多角度对该试验方法的正确性进行了实验验证。针对LY12-CZ薄板材料的实验研究和分析表明,该损伤测试和数值拟合方法是切实可行的。
     (7)本文还将幂强化材料模型和塑性损伤的非线性模型同时引入Shanley双模量理论,改进了弹塑性屈曲荷载的计算方法,推导了求解弹塑性屈曲荷载的迭代方程,并采用算例进行了分析讨论。
     (8)系统分析了裂纹对薄壁截面柱弹性挠度和极限承载力的影响规律和程度,考查了平面裂纹模型和空间裂纹模型各自的特点和应用范围。文中还给出了许多数值计算结果的图表和相应的分析。
The effects of crack on the elastic deflection and the ultimate bearing capacity of thin-walled columns under both axially and eccentrically load were studied systematically by use of a local-global approach, where the local analysis for crack was according to one-dimensional model and the global analysis for column was according to three-dimensional model. And the stability theory and the method for determining ultimate bearing capacity of cracked steel-column were established. Thus a series of useful theoretical results were obtained, which are essential to evaluating the safety and durability of a damaged steel structure.
     Firstly, the development in nonlinear theories of stability for thin-walled structures was reviewed and a systematic exposition of the theoretical significance and application prospect of this study was made. Secondly, in order to take account of the effects of the cracks in structures, the expression of the stress intensity factor (SIF) of center cracked thin-walled members was achieved by means of the crack-section stress field (CSSF) method. Then, the elastic deflection of an eccentric thin-walled column with a model-I crack were calculated by mean of Rayleigh-Ritz energy method, where the plane crack model and spatial crack model where employed respectively. Furthermore, the control equations of the equilibrium path of the elastic buckling were derived for cracked columns subjected to both axial and eccentric compressive load. And an analytical model of the equilibrium path of both before and post buckling was suggested for the cracked column under axial load, where the crack closure and fracture condition are considered. Finally, the two-criteria approach to analyze the failure of thin-walled columns has been suggested and the analytical equations for determinate the ultimate bearing capacity were given. In addition, a simple test method for determining the uniaxial ductile damage curves of thin-slab was studied systematically and a numerical iterative-fit method was suggested for determining the material damage constants of the non-linear equations of Lemaiter-Chaboche's damage model. Based on above damage test results, the application of the theory of elastic-plastic damage in stability analysis of the steel structures was discussed preliminarily. The main works and achievements of this dissertation are as follows:
     (1) The crack-section stress field (CSSF) method for determining the stress intensity factor (SIF) of center cracked thin-walled bars was proposed and a universal expression of the dimensionless stress intensity factors for thin-walled and center-cracked members with unequal-thickness sections was acquired by use of the equilibrium condition of semi cracked member. The key to CSSF method is to establish a normal stress distribution model on the cracked cross section according to the numerical results of the finite element analysis and expression of the local or global stress field of an infinite center cracked plate. In comparison with the existing finite SIF results of thin-walled members, the simple formula given in this paper are simple and reliable to evaluate the residual bearing capacity or working life of engineering cracked thin-walled structures.
     (2) A method for determining the elastic deflection of the eccentric thin-walled column with model-I crack has been developed according to the plane crack model and spatial crack model respectively and a trigonometric series solution of the elastic deflection equation was obtained by mean of Rayleigh-Ritz energy method, where the change in elastic energy caused by introducing the crack was considered. Especially, A universal analytical-solution of the maximum deflection for cracked columns with various cross-sections was developed, that is useful to examine analytically the elastic buckling behavior and to estimate the ultimate bearing capacity. By comparison with the current rotational spring model and the equivalent stiffness method, the main advantage of the present solution is that the effect of axial compression on crack closure is considered.
     (3) The governing equation for whole process of an eccentric compressive column with model I crack was established, based on above analytical expression of the maximum deflection and an analytical model of the equilibrium path of both before and post buckling was suggested for the a cracked axial column, where the crack closure and fracture condition are considered. The equilibrium path model shows that when an excessive lateral interfering deflection appears the cracks will have the critical load decreased, while when the lateral interfering deflection is small the cracks will have no effects on critical load but post-buckling process. Thus the unreasonable conclusions in some references that cracks have certainly effects on critical load were corrected.
     (4) After the equations of ultimate yielding and fracture load were established for cracked eccentric column, the perfect equations for determining the stability factors were derived according to the two-failure criteria, i.e., yielding and fracture criteria. And effects of some factors on the critical transition crack-length, slenderness and eccentricity from yielding failure to fracture failure were investigated respectively.
     (5) For the two complex cases of a T-section column with a single-side crack and a multi-step compressive rectangular column with arbitrary number of cracks, thel expressions of the elastic deflections were obtained. And hence the governing equation for the buckling equilibrium path and the computational programs were established.
     (6) A simple test technique by use of clip gage for determining the uniaxial ductile damage curves of thin-slab was studied systematically and a numerical iterative-fit method was suggested for fitting the non-linear damage equation of Lemaiter-Chaboche's model. Some special techniques for measuring damage parameters of materials, such as the specimen size requirements, gauge length, the stability of the repeated-unloading elastic modulus and measuring and controlling of large strain, were proposed and discussed. The results tested from the thin-slabs of LY12-CZ aluminum alloys showed that the test method suggested for determining the uniaxial ductile damage curves of thin-slabs is feasible and effective.
     (7) The calculation method for determining the elastic-plastic buckling load was improved by introducing the material model of exponential strengthening and nonlinear plastic damage model into Shanley's theory. The interactive equation for finding the elastic-plastic stability coefficients was derived and an example of its application was gived and analyzed.
     (8) For some sections of columns, the influence of crack on the elastic deflection and ultimate bearing capacity of thin-walled columns was studied. And the differences between plane crack model and spatial crack model and their application limitation were discussed. A number of curves and tables of numerical results were given and analyzed in this dissertation.
引文
[1] 杜启端(2002).现代薄壳非线性稳定性理论的发展和应用[J],强度与环境,29(1):41—51
    [2] 沈惠申(2002).板壳后屈曲行为[M],上海科学技术出版社
    [3] Hutchinson,J. W.(1974), (in) Advances in Applied Mechanics, Vol.14, Academic Press. New York, p67
    [4] Su Xu Ming etal.(1990), Postbuckling and Imperfection Sensitivity Analysis of Structures in the Plastic Range. Part 1:Model Analysis[J]. Thin-Walled Structures, 10:263-275
    [5] 周承倜(1979).薄壳弹塑性稳定性理论[M],国防工业出版社
    [6] Teng, J.G. and Rotter J.M.(1992). Buckling of pressurized axisymmetrieally imperfect cylinders under axial loads[J]. Journal of Engineering Mechanics,ASCE, 118(2):229-247
    [7] Berry, P. A., Rotter, J.M. and Bridge, R.Q.(2000). Compression tests on cylinders with circumferential weld depressions[J]. Journal of Engineering Mechanics, ASCE, 126(4): 405-413
    [8] Holst, J.M.F.G., Rotter, J.M. and Calladine C.R.(2000). Imperfections and buckling in cylindrical shells with consistent residual stresses [J]. Journal of Constructional Steel Research,54:265-282
    [9] Rotter, J.M. (1990). Local inelastic collapse of pressurized thin cylindrical steel shells under axial compression [J]. Journal of Structural Engineering, ASCE,116(47):1955-1970
    [10] Rotter, J.M.(1988). Calculated buckling strengths for the cylindrical wall of 10,000tonnes silos at Port Kembla[R]. Investigation Report S663, School of Civil. and Mining Engineering, University of Sydney
    [11] Teng, J,G.(1994). Plastic collapse at lap-joints in pressurized cylinders under axial load[J]. Journal f Engineering Mechanics, ASCE, 120(1):23-45
    [12] ENV 1993-1-6 (1999). Eurocode 3: Design of Steel Structures, Part 1-6: General Rules: Supplementary Rules for Shell Structures[S]. European Committee for Standardizations, Brussels
    [13] 赵阳,滕锦光(2003).轴压圆柱钢壳稳定设计综述[J].工程力学,20(6):116-126
    [14] Vlasov V Z (1961). Thin-walled elastic beams. 2nd ed [M]. Jerusalem: lsrael Program for Scientific Translation,
    [15] Timeshenko S P, Gere J M (1961). Theory of elastic stability. 2nd ed [M]. Newyork: Me Graw-Hill Book Co.
    [16] Benscoter S U (1954). A theory of torsion bending for multi-cell beans. J. of Applied Mechanics[J]. ASME, 21(1): 25-34
    [17] Reissner E (1946). Analysis of shear lag in box beams by the Principle of minimum potential energy [J].Q.Appl. Math., (4):268-278
    [18] Coull A, Bose B (1976).Torsion of framed-tube structure[J]. ASCE, 102(ST12):2366-2370.
    [19] 龙驭球,辛克贵.多边形截面框筒结构的能量解法[J].建筑结构学报,1985,6(3):10-16
    [20] Laudiero F, Savoia M (1990). Shear Strain effects in flexure and torsion of thin-walled beams with open or closed cross-section[J], J. of Thin-walled Structures, 10(2):87-119.
    [21] Koo K K, Cheung Y K (1989). Mixed variational formulation for thin-walled beams with shear lag. J. of Engineering Mechanics[J].ASCE, 115(10):2271-2286.
    [22] 钱基宏(2003),薄壳失稳机理浅析[J].计算力学学报,20(3):365—371
    [23] Yang, H.T.Y., Saigal, S., Liaw, D.G(1990), Advances of thin shell finite element and some application—version I[J]. Computers and Structures, 35(4): 481-504
    [24] Yang, T.Y.H., Saigal, S., Masud, A. & Kapania, R.K. (2000). A survey of recent shell finite elements[J]. Int. J. for Numerical Methods in Engineering,, 47:101-127
    [25] 高光藩,丁信伟.薄壳结构分析有限元方法[J].石油化工设备,2002,31(5):28-32
    [26] Sze, K.Y.(2002). Three-dimensional continuum finite element models for plate/shell analysis[J]. Prog. Strut. Engng. Mater., 4:400-407
    [27] Simo,J.C., Fox,D.D.(1989), On the stress resultant geometrically exact shell model. Part Ⅰ: formulation and optimal parametrization[J]. Comp. Meth. App. Mech. Eng., 72:267-304
    [28] Peric, D., Owen, D.R.J., Honnor, M.E.(1992), A method for finite strain elasto-plasticity based on logarithmic strains: Computational issues. Comp[J]. Meth. App. Mech. Eng., 94:35-61
    [29] Dvorkin,E.N., Pantuso,D., Repetto,E.A.(1994), A finite element formulation for finite strain elastio-plastic analysis based on mixed interpolation of tensile components. Comp. Meth. App. Mech. Eng., 114:35-54
    [30] Gabriel,G, Bathe,K-J.(1995), Some computational issues in large strain elastio-plastie analysis[J]. Computrs and Structures, 56:249-267
    [31] Simo,J.C., Taylor, R.L., Pister, K.S..(1985), Variational and projection method for the volume constraint in finite deformation elasto-plasticity[J]. Comp. Meth. App. Mech. Eng., 51:177-208
    [32] Simo,J.C.(1992), Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory[J]. Comp. Meth.App. Mech. Eng., 99:61-3-112
    [33] Eterovic,A.L., Bathe K-J..(1990), A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures[J]. Int. J. Num. Meth. Eng., 30:1099-1114
    [34] Basar, Y., Ding,Y.(1995), Finite element analysis of hyperelastic thin shell with large strain[J]. Comp. Mech, 18:200-214
    [35] Kratzig, W.B., Jun, D. (2003), On 'best' shell models---From classical shells, degenerated and multi—layered concepts to 3D[J], Archive of Applied Mechanics, 73:1-25
    [36] Basar, Y., Itskov, M. (1999), Constitutive model and finite element formulation for large strain elasto-plastic analysis of shells[J]. Computational Mechanics, 23:466-481
    [37] Liu, W.K., Guo,Y., Tang, S., Belytschko,T.(1998), A multiple-quadrature eight-node hexahedral finite element for large deformation dastoplastic analysis[J]. Comp. Meth. App. Mech. Eng., 154:69-132
    [38] Liu, W.K., Hu, Y.K., Belytschko, T.(1994), Multiple quadrature underintegrated finite elements[J]. Int. J. Num. Meth. Eng., 37:3263-3290
    [39] Hughes,T.J.R., Liu, W.K.(1981), Nonlinear finite element analysis of shells: Part Ⅰ. Three-dimensional shells[J]. Comp. Meth. App. Mech. Eng., 26:331-362
    [40] Hughes,T.J.R., Liu, W.K.(1981), Nonlinear finite element analysis of shells: Part Ⅱ. Two-dimensional shells[J]. Comp. Meth. App. Mech. Eng., 27:167-181
    [41] Stolarski,H., Belytschko,T.(1983), Shear and membrane locking in curve shell dements[J]. Comp. Meth. App. Mech. Eng., 41:279-296
    [42] Li, S., Liu, W.K. (2000), Numerical simulations of large deformation of thin shell structures using mesh free methods[J]. Computational Mechanics, 25:102-116
    [43] Chen,J.S., Pan,C., Wu,C.T., Liu, W.K. (1997), Reproducing kernel particle methods for large deformation analysis of nonlinear structures[J]. Comp. Meth. App. Mech. Eng., 139:195-229
    [44] Gould, P. L., Ravichandran,R.V., Sridharan, S. (1998). A local-global FE model for nonlinear analysis of column-supported shells of revolution[J] Engineering Structures, 20(10): 915-919
    [45] Gould, P.L., Hara,T.(2002), Recent Advances in Local-Global FE Analysis of Shells of revolution[J]. Thin-Walled Structures, 40(7-8): 641-649
    [46] Wohlever, J. C.1999). Some computational aspects of a group theoretic finite element approach to the buckling and postbuckling analyses of plates and shells-of-revolution[J].Computer Methods in Applied Mechanics and Engineering, 170(3-4): 373-406
    [47] Sansour, C., Kollmann, F.G. (2000), Families of 4-node and 9-node finite elements for a finite deformation shell theory-An assessment of hybrid stress, hybrid strain and enhanced strain elements[J]. Computational Mechanics, 24:435-447
    [48] El Damatty, A.A., Nassef, A.O. (2001), A finite dement optimization technique to determine critical imperfections of shell structures[J]. Struct Mutidisc Optim, 23:75-87
    [49] Won Jae Lee, Byung Chai Lee(2001), An effective finite rotation formulation for geometrical non-linear shell structures[J]. Computational Mechanics, 27: 360-368
    [50] Laurent, H., Rio G. (2001), Formulation of a thin shell finite element with continuity CO and convened material frame notion[J]. Computational Mechanics, 27:218-232
    [51] Kolahi, A.S. & Crisfield, M.A. (2001). A large-strain elasto-plastic shell formulation using the Morley triangle[J]. Int. J. for Numerical Methods in Engineering, 52:829-849
    [52] Ladeveze, P.(2001). Constitutive relation error for F.E. analysis considering (visco-)plasticity and damage[J]. Int. J. for Numerical Methods in Engineering, 52:527-542
    [53] Krajcinovic, D.(1996), Damage Mechanics[M], Elsevier Science Publishers, North-Holland, Amsterdam
    [54] Rabotnov, Y. N.(1963). On the equations of state for creep[J]. Progress in Applied Mechanics, 307-315
    [55] McClintock,RA.(1968), A criterion for ductile fracture by the growth of holes[J]. J,of App.Mech., 35:363-371
    [56] Rice, J.R., Tracy, D.M.(1969), On the ductile enlargement of voids in triaxial stress fields[J].J.of Mech. Phys. Solids, 17:201-217
    [57] Gourson,A.L.(1977), Continuum theory of ductile rupture by void nucleation and growth:Part I-yield criterion and flow rules for porous ductile media[J]. J.Eng.Mat.and Tech, 99:2-25
    
    [58] Tvergaard,V.(1981), Influence of voids on shear band instability under plane strain conditions[J]. Int. J.of Frcture, 17(4):389-407
    [59] Lemaitre,J.(1985), A continuous damage mechanics model for ductile fracture[J]. J.Eng.Mat.and Tech, 107:83-89
    [60] Chaboche,J.L.(1981), Continuum damage mechanics-a tool to describe phenomena before crack initiation[J]. Nuclear Engineering and Design, 64:233-247
    [61] Rousselier,G.(1981), Finite deformation constitutive relations including ductile fracture damage[A]. Three-Dimensional Constitutive Relations and Ductile Fracture[C], Nemat-Nasser S (ed.).North-Holland Publishing Company: Amsterdam, 97-111
    [62] Bammann, DJ., Aifantis,E.C.(1989), A damage model for ductile metals[J]. Nuclear Engineering and Design, 116:355-362
    [63] Simo, J.C., Ju, J.W.(1989), On continuum damage-elastoplasticity at finite strains[J]. Comp. Mech., 5:375-400
    [64] Steinmann,P., Miehe,C., Stein, E.(1994), Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials[J]. Comp. Mech., 13:458-474
    [65] Zohdi, T., Feucht, M., Gross, D. & Wriggers, P. (1998). A description of macroscopic damage through microstructural relaxation[J]. Int. J. for Numerical Methods in Engineering, 43:493-506
    [66] Kratzig, W. B., Petryna, Y.S., Stangenberg, F. (2000). Measures of structural damage for global failure analysis. Int. J. of Solids and Structures, 37(48-50): 7393-7407
    [67] Kratzig, W. B., Petryna, Y.S. (2001), Assessment of structural damage and failure[J]. Archive of Applied Mechanics, 71:1-15
    [68] Eckstein, A. & Basar, Y. (2000). Ductile damage analysis of elasto-plastic shells at large inelastic strains[J]. Int. J. for Numerical Methods in Engineering, 47:1663-1687
    [69] Kreja, I., Schmidt, R., Weichert, D. (2001), Modeling and FE-simulation of plastic ductile damage evolution in plates and shells[J]. Archive of Applied Mechanics, 72:146-163
    [70] Altenbach, H., Morachkovsky, O., Naumenko, K., Sychov, A.. Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions[J]. Archive of Applied Mechanics, 67(1997):339-352
    [71] Knowles J.K., Wang,N.M.(1960), On the bending of an elastic plate containing a crack[J]. J, Math.Phys, 39:223-236
    [72] Williams,M.L.(1961), The bending stress distribution at the base of a stationary crack[J]. J.Appl.Mech, 28:78-82
    [73] Sih,G.C., Paris,P.C., Erdogan,F.(1962), Crack-tip stress-intensity factors for plane extension and plate bending problems[J]. J.Appl.Mech, 29:306-312
    [74] Hartranft,R.J., Sih,G.C.(1968), Effect of plate thickness on the bending stress distribution around through crack[J]. J.MathPhys., 47:276-291
    
    [75] Wang,N.M.(1970), Twisting of an elastic plate containing a crack[J]. Int.Fract.Mech., 6:367-378
    [76] Viz,M.J., Zehnder,A.A., bamford, J.D.(1955), Fatigue fracture of thin plate under tensile and transverse shear stresses[A]. Fracture Mechanics:26th Volume, ASTM STP 1256 (edited by Reuter etal.) [C], Philadelphia,PA
    [77] Zehnder,A.T., Hui,C.Y. (1994), Stress intensity factors for plate bending and shearing problems[J]. J.Appl.Mech. 61:719-722
    [78] Hui,C.Y., Zehnder,A.T.(1993), A theory for the fracture of thin plate subjected to bending and twisting moments[J]. Int. Fract. Mech., 61:211-219
    [79] Pagano,N.J., Sih,G.C.(1968), Stress singularities around a crack in a cosserat plate[J]. Int. J. Solids Struct, 4:531-553
    [80] Hartranft,R.J., Sih,G.C.(1970), An approximate three-dimensional theory of plates with application to cracl problems[J]. Int. J. Eng. Sci., 8:711-729
    [81] Fujimoto.T., Sumi,S.(1987), Bucking of center cracked plates under tension[A]. Role of Fractute Mechanics in Modern Technology (edited by Sih etal)[C], Elsevier Science Publishers B.V., 747-759
    [82] Folias,E.S.(1965), An axial crack in a pressurized cylindrical shell[J]. Int. Fract. Mech., 1:104-113
    [83] Folias,E.S.(1967), A circumferential crack in a pressurized cylindrical shell[J]. Int. Fract. Mech., 3:1-11
    [84] Copley,L.G., Sanders,J.L.(1969), A longitudinal crack in a cylindrical shell under internal pressure[J]. Int. Fract. Mech., 5:117-131
    [85] Duncan-Fama,M.E., Sanders J.L. (1972), A circumferential crack in a cylindrical shell under tension[J]. Int. Fract. Mech., 8:15-20
    
    [86]柳春图,蒋持平(2000),板壳断裂力学[M],北京:国防工业出版社
    
    [87] Huang, N. C. Li,Y. C.and Russell, S. G. (1997). Fracture mechanics of plates and shells applied to fail-safe analysis of fuselage Part I: Theory[J]. Theoretical and Applied Fracture Mechanics ,27(3): 221-236
    [88] Riks, E. & Rankin, C.C.(2001). Tools for the evaluation of the residual of cracked pressurized fuselage shells[A]. Proc of The Fifth Joint NASA/FAA/DoD Aging Aircraft Conference[C]
    [89] Nguyen Dang Hung and Tran Thanh Ngoc(2004). Analysis of cracked plates and shells using "metis" finite element model[J]. Finite Elements in Analysis and Design 40(8): 855-878
    [90] Carpinteri, A., Brighenti, R. & Spagnoli, A.(2000). External surface cracks in shells under cyclic internal pressure[J]. Fatigue Fract. Engng. Mater. Struct. 23:467-476
    [91] Vafai, A. and Estekanchi, H. E. (1999). A parametric finite element study of cracked plates and shells[J]. Thin-Walled Structures, 33(3): 211-229
    [92] Huang, N. C. Li,Y. C.and Russell, S. G. (1997). Fracture mechanics of plates and shells applied to fail-safe analysis of fuselage Part Ⅱ: Computational results[J]. Theoretical and Applied Fracture Mechanics,27(3): 237-253
    [93] Ching-long Hsu, James Lo, Jin Yu, Xiao-gong Lee and Paul Tan (2003). Residual strength analysis using CTOA criteria for fuselage structures containing multiple site damage[J]., Engineering Fracture Mechanics, 70(3-4): 525-545
    [94] Baaser, H. and Gross, D. (2000). Crack analysis in ductile cylindrical shells using Gurson's model[J]. Int. J. of Solids and Structures, 37(46-47): 7093-7104
    [95] El Naschie,M.S.(1974), Branching solution for local buckling of a circumferentially cracked cylindrical shell[J]. Int. J. Mech. Sci., 16:689-697
    [96] Dyshel, M.S.H.(1989),Stability of a cracked cylindrical shell in tension[J]. Soviet Applied Mechanics, 25:542-548
    [97] Starnes Jr.,J.H., Rose,C.A.(1998), Buckling and stable tearing response of unsfiffened aluminum shells with long cracks[A]. Collection of Technical paper AIAA/ASME/ASCE/SHS/ASC Structures. Structural Dynamics and Materials Conference 1998 [C],3:2389-2402
    [98] Estekanchi, H. E.and Vafai, A. (1999). On the buckling of cylindrical shells with through cracks under axial load[J]. Thin-Walled Structures, 35(4): 255-274
    [99] Javidruzi, M., Vafai, A., Chen, J.F. and Chilto, J. C.(2004), Vibration, buckling and dynamic stability of cracked cylindrical shells[J]. Thin-Walled Structures, 42(1): 79-99
    [100] 周利(2000).用Rayleigh-Ritz法求含裂纹偏心柱的弹性挠度.工程力学,17(4):109-116
    [101] 周利(2001).Ⅰ型裂纹对薄壁偏心柱弹性挠度的影响.计算力学学报,18(5):216-220
    [102] Zhou Li and Huang Yi (2005), The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns[J]. Structural Engineering and Mechanics, 19(4):401-411
    [103] Zhou L. and Huang Y (2006). Crack Effect on the Elastic Buckling Behavior of Axially and Eccentrically Loaded Columns[J]. Structural Engineering and Mechanics, 22(2): 169-184
    [104] 陈国华(2002),结构完整性评估,科学出版社
    [105] Dowling A.R.,Townley C.H.A.(1975), Int. J. Ves. & Piping, Vol.3:77-107
    [106] Harrison R.P., Loosemore K. & Milne I.(1977), CEGB Report R/J/R6,Rev. 1
    [107] V.库默等著(周洪范译)(1985),弹塑性断裂分析工程方法,国防工业出版社
    [108] 中国航空研究院(1993).应力强度因子手册(修订版)[M].北京:科学出版社
    [109] 张行(1992).断裂力学中应力强度因子的解法[M].北京:国防工业出版社,1992
    [110] Bowie, O.L. (1973). Solutions of Plane Crack Problems by Mapping Techniques, in Methods of Analysis and Solutions of Crack Problems (ed.G.C. Shi[M]. Leiden: Noordhoof Int.
    [111] 黄维扬(1986).型材中裂纹应力强度因子计算方法[J].工程力学,3(3):1-5
    [112] 易志坚(1991).求解应力强度因子的一种新方法[J].重庆交通学院学报,10(3):37-41
    [113] 王启智(1995).两种简便的应力强度因子表达式[J].力学与实践,17(6):35-37
    [114] Wang QZ(1993). The crack-line stress field method for analyzing SIFs of Strips-illustrated with an eccentrically cracked tension strip[J]. Int. J. of Fracture, 59(2): R39-43
    [115] Ewalds, H. L. and.Wanhill, R. J. H. (1984). Fracture Mechanics[M]. London: Edward Arnold Ltd
    [116] Xie YJ, Wang XH and Lin YC (2004). Stress intensity for cracked rectangular cross-section thin-walled tubes[J]. Engineering Fracture Mechanics, 71:1501-1513
    [117] 王铁梦(1997).工程结构裂缝控制[M].北京:中国建筑工业出版社
    [118] 冈村弘之(李顺林译)(1981).线弹性断裂力学入门[M].南京:江苏科技出版社
    [119] Okamura, H., Liu, H. W., Chu, C. S. and Liebowitz, H. A. (1969). A cracked column under compression[J]. Engng. Fract. Mech., 1:547-564
    [120] 周利(1998).含裂纹偏心受压铜柱的整体稳定性分析[J].铁道学报,20(增):140-145
    [121] 周利(1998).用双参数准则确定含裂纹偏心柱的极限承载力[J].五邑大学学报,12(4):48-54
    [122] 陈骥(2001).钢结构稳定理论与设计[M].北京:科学出版社
    [123] 编写组(1979).数学手册[M].北京:高等教育出版社
    [124] Liebowitz, H., Vanderveldt, H., and Harris, D.W.(1967). Carrying capacity of notched column [J]. International Journal of Solids and Structures, 3:489-500
    [125] Liebowitz, H., and Claus, W.D.(1968). Failure of notched columns[J]. Engineering Fracture Mechanics, 1:379-383
    [126] Christides, S, and Barr, A. D.S. (1984). One dimensional theory of cracked Bernoulli-Euler beams[J]. Int. J. of Mechanical science, 26:639-648
    [127] Wang, Q. & Chase, J. G.(2003). Buckling analysis of cracked, column structures and piezoelectric-based repair and enhancement of axial load capacity[J]. Int. J. of Structural Stability and Dynamics, 3(1):17-33
    [128] Li, Q. S. (2003). Class of exact solutions for buckling of multistep nonuniform columns with an arbitrary number of crocks subjected to concentrated and distributed axial loads[J]. Int. J. Eng. Sci., 41:569-586
    [129] Dimarogonas, A. D.(1996). Vibration of crocked structures-a state of the art review[J]. Eng. Fract. Mech., 55:831-857
    [130] Ismail, F., Ibrahim, A. and Martin, H. R. (1990). Identification of fatigue cracks from vibration testing. J. of Sound and Vibration, 211:729-734
    [131] Krawczuk, M., Ostachowicz, W. and Zak, A. (1997). Dynamic of cracked composite material structures[J]. Computational Mechanics, 20;79-83
    [132] Takahashi, H. (1999). Vibration and stability of non-uniform cracked Timoshenko beam subjected to follower force[J]. Comput. Struct., 71:585-591
    [133] Anifantis, A. and Dimarogonas, A. D. (1983). Stability of columns with a single crack subjected to follower and vertical loads. Int. J. of Solids and Structures, 19:282-291
    [134] Nikpour, K. (1990). Buckling of cracked composite columns[J]. Int. J. Solids and Structures, 26:1377-1386
    [135] Shifrin,E.I., and Ruotolo,R.(1999). Nature frequencies of a beam with an arbitrary number of cracks. J. Sound and Vibration, 22:409-423
    [136] Li, Q. S. (2003). Vibration characteristics of Timoshenko beam with an arbitrary number of cracks[J]. J. Eng. Mech., 129:1355-1359
    [137] Gounaris, G. and Dimaragonas, A. D.(1998). A finite element of a cracked prismatic beam for structural analysis[J]. Comput. Struet., 28(3): 309-313
    [138] Viola, E., Nobile, L. and Federici, L. (2002). Formulation of cracked beam element for structural analysis[J]. J. of Engineering Mechanics, 128(2): 220-230
    [139] 余寿文,冯西桥(1997).损伤力学,北京:清华大学出版社
    [140] Lemaitre J(1985). A continuous damage mechanics model for ductile fracture[J], J. of Engng. Materials and Technology, 107:83-89
    [141] 赵银燕,周利(1998).用变截面试样测量损伤变量D(E)[J],航空学报,19(2):164—168
    [142] GB3075-82:金属轴向疲劳试验方法
    [143] Zhou Li. The damage states and tensile failure behavior of torsional prestrained steels[J]. Acta Mechanica Solida Sinica (English Edition), 1994; 7(3):229-234
    [144] 吴鸿遥.损伤力学[M],北京:国防工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700