聚合物驱后活性高分子提高采收率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对聚合物驱后剩余油饱和度低、剩余油分布零散的特点,根据聚合物驱后进一步提高采收率的要求,设计了活性高分子的基本结构。以分子量为指标优化了活性高分子的合成条件,并以优化的实验条件制得的活性高分子样品,其分子量为355万。通过红外光谱、核磁共振等分析测试方法对合成的活性高分子样品进行了表征。
     室内实验结果表明:活性高分子在水中27分钟基本完全溶解,水溶性好于普通HPAM。活性高分子质量浓度为1500mg/L时的水溶液黏度达26.9mPa.s,增黏效果略逊于HPAM;同HPAM相比较,活性高分子水溶液的黏度受温度、矿化度、剪切的影响更小些。1500mg/L活性高分子水溶液表面张力为46.03 mN/m,界面活性优于普通HPAM。活性高分子的耐温性能优于HPAM,其水溶液在70℃放置98d,黏度降低10.1%,油水界面张力变化不大。
     通过耗散颗粒动力学模拟、原子力显微镜、冷冻刻蚀透射电子显微镜、扫描电镜等方法研究,表明活性高分子浓度逐渐增加时分别形成球状胶束、管状胶束、以及由管状胶束形成的立体网络结构聚集体。通过显微镜观察表明活性高分子溶液通过将原油从孔喉表面剥离下来,进而通过所形成胶束的毛细管作用、增溶作用将原油分散在活性高分子溶液中。
     物理模拟驱油实验表明,HPAM驱后活性高分子水溶液的最佳注入量为0.3PV,活性高分子的质量浓度为1500mg/L。室内实验条件下,聚合物驱后注活性高分子水溶液可提高采收率10%以上,高于聚驱后二次聚合物驱的效果。
     聚驱后,产出液中HPAM的浓度低于注入浓度,部分HPAM在底下滞留,地下残留HPAM的分子量降低、水解度增加。活性高分子水溶液与地下滞留HPAM溶液混合后,黏度有所降低,但幅度不大,说明活性高分子与HPAM存在相互作用。
To enhance oil recovery after polymer flooding, an active polymer was designed based on the characters of low remaining oil saturation and scattered remaining oil distribution. The synthesis conditions of active macromolecule were optimized with the molecular weight of product as index. The active polymer with 355×104 molecular weight was synthesized and characterized by IR and NMR.
     The experiment results in doors indicate that the 27 minutes solution time of active polymer is less than HPAM’s solution time at the same situation. The viscosity of active polymer aqueous solution is 26.9 mPa.s and lower a little than HPAM when its mass concentration is 1500 mg/L. Compared with HPAM, the viscosity of active polymer aqueous solution can be effected more little by temperature, mineralization of water and shearing. The surface tension of active polymer aqueous solution is 46.03 mN/m and lower than HPAM when its mass concentration is 1500 mg/L. The temperature resistance of the active polymer is more excellent than HPAM. The viscosity of active polymer aqueous solution only reduces 10.1% during 98 days at 70℃.
     The microstructure of active polymer in water was studied by dissipative particle dynamics simulation, atomic force microscopy, freezing corrosion transmission electron microscopy and scanning electrical microscopy. The results show that the spherical micelle, the tubal micelle and the tridimensional network structure were foamed in turn with the gradually increasing of active polymer concentration. It is clearly that the oil is peeled from bore throat surface by aqueous solution and dispersed in active polymer solution by capillarity and solublization of micelles formed by active polymer molecules.
     The results of physical simulation flooding experiments indicate that the oil recovery can be increased more than 10% by injecting 0.3PV 1500 mg/L active polymer after HPAM flooding. The scope of EOR by active polymer is more than the second HPAM flooding.
     After polymer flooding, partial HPAM is resorted in reservoir. The molecular of these HPAM is decreasing with the increasing of residence time. At the same time, its degree of hydrolysis is increasing. The viscosity of solution composed with active polymer solution and HPAM solution is less little than the viscosity of active polymer solution. It indicates that the interaction between active polymer molecule and HPAM molecule is existent.
引文
Anita Suresh Kumar, Kalpana Mody, Bhavanath Jha. Evaluation of bio-surfactant/ bio-emulsifier production by a marine bacterium. J Bull. Environ. Contam. Tox icol., 2007, 6 (32): 65-70
    A. Zaitoun , R. Rahbarl , N. Kohler.Thin Polyacrylamide Gels for Water Control in High-Permeability Production Wells. SPE 22785, 1991.
    Bai Baojun, 1i liangxiong, l,iu Yuzhang, et a1. Preformed particle gel for conformance control: factors affecting its properties and applications. SPE 89389,2004
    Bai Baojun, Liu Yuzhang, Coste J-P, et a1. Preformed particle gel for conformance control: transport mechanism through porous media. SPE89468,2004
    Butler R M , Stephens D J. The g rav ity drainage of steam-heavy oil to parallel horizontal wells. JCPT, 1981, 20( 2): 90-96
    Butler R M. A new approach to themodelling of steam-assisted gravity drainage. JCPT, 1985, 24(3): 42-51
    Cao Y, Li H L. Interfacial activity of a novel family of polymeric surfactants. Euro Polymer J, 2002, 38 (7): 1457-1463
    D.Shan, W.R.Rosson, Optimal injection strategies for foam IOR. SPE 88811, 2004
    Da-Kuang Han, Cheng-Zhi Yang, Zheng-Qing Zhang, et al. Recent development of enhanced oil recovery in China. Journal of Petroleum Science and Engineering, 1999,V22: 181-188
    Dawson C Jeffrey,Le H V,et a1. Compositions and methods for modifying the permeability of subterranean formations[P].U.S.Patent 5735349, 1998, 04-07.
    Dawson C Jeffrey,Le H V,et a1.Method of controlling production of excess water in oil and gas wells[P].U.S.Patent 5465792,1995, 11-14
    Desai J D, Banat I M. Microbial production of surfactants and their commercial potential J.Microbiology and Molecular Biology Reviews, 1997, 61: 47-64
    Dong F L, Li Y Zhang P. Mesoscopic simulation study on the orientation of surfactants adsorbed at the liquid/liquid interface. Chem Phy Letters, 2004, 399: 215
    Dongxing Du, Pacelli L.J.Zitha, Matthijs G.H.Uijttenhout. Carbon dioxide foam rheology in porous media: a CT scan study. SPE 97552, 2007
    F.Farshbaf Zinati, R.Farajzadeh, P.L.J.Zitha. Foam modeling in heterogeneous reservoirs using stochastic bubble production approach. SPE 113358, 2008
    Fernandez I J. Evaluation of cationic water-soluble polymer with improved thermal stability. SPE 93103, 2005
    Gon M C. Atomic force microscopy of polymer films. Advances in chenmical physics, 1995, 91: 1-83
    Guoyin Zhang, R.S.Seright. Conformance and mobility control: foams vs.polymers. SPE 105907, 2007
    H. T. Dovan,R. D. Hutchins.Development of a New Aluminum-Polymer Gel System for Permeability Adjustment. SPE 12641,1984.
    Harry Frampton. Downhole fluid control processes[P].U.S.Patent 5701955,1997, 12-30
    Hitzman O D.Enhanced oil recovery process using microorganisms. US 4450908, 1984-5-29
    Hoogerbrugge P. J. , Koelman J. M. V. A. . Europhys. Lett., 1992, 19: 155-160
    J. E. Smith,J. C. Mack. Gels Correct In-Depth Reservoir Permeability Variation. Oil & Gas J.,1997,Jan. 6:33-39.
    J. E. Smith. Performance of 18 Polymers in Aluminum Citrate Colloidal Dispersion Gels.SPE 28989,1995.
    J.C.Mack,J.E.Smith.In Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency. SPE 27780,1994.
    J.D.Purkaple, L.E.Summers. Evaluation of Commercial Crosslinked Polyacrylamide Gel Systems for Injection Profile Modification. SPE/DOE 17331, 1988
    J.P.Coste, Y.Liu, B.Bai, et al. In-Depth Field Diversion by Pre-Gelled Particlea. Laboratory Study and Pilot Testing. SPE59362, 2000
    Jian Hou. Network modeling of residual oil displacement after polymer flooding. Journal of Petroleum Science and Engineering, 2007,V59:321-332
    Jirui Hou, Zhongchun Liu, Shufen Zhang, et al. The role of viscoelasticity of alkali /surfactant / polymer solutions in enhanced oil recovery. Journal of Petroleum Science and Engineering, 2005,V47: 219-235
    Koelman J. M. V. A. , Hoogerbrugge P. J. . Europhys. Lett., 1993, 21: 363-368 Laura Romero-Zeron, F.Manalo, A.Kantzas. Characterization of Crosslinked Gel Kinetics andGel Strength Using NMR.SPE 86548, 2004
    M. Bartosek,A. Mennella,T. P. Lockhart,et al.Polymer Gels for Conformance Treatments: Propagation of Cr(Ⅲ) Crosslinking Complexes in Porous Media.SPE/DOE 27828,1994.
    Magonov S N,Reneker D H. Characterization of polymer surfaces with atomic force microscopy. Ann Rev Mater Sci, 1997, 27: 175-222.
    Prabir Daripa, G. Pa?a. An optimal viscosity profile in enhanced oil recovery by polymer flooding. International Journal of Engineering Science, 2004,V42: 2029-2039
    Puchun Zhao, Huating Zhao, Baojun Bai, et al. Improve Injection Profile by Combining Plugging Agent Treatment and Acid Stimulation. SPE89394, 2004
    R. C. Fielding,D. H. Glbbons,F. P. Legrand.In-depth Drive Fluid Diversion Using an Evolution of Colloidal Dispersion Gels and New Bulk Gels: An Operational Case History of North Rainbow Ranch Unit. SPE 27773,1994.
    Rosenberg E, Ron E Z. High and low*molecular-mass microbial surfactants. J.Applied Microbiology and Biotechnology, 1999, 52: 154-162
    R. Ranganathan,et al.An Experimental Study of the In Situ Gelation Behavior of a Polyacrylamide/Aluminum Citrate“Colloidal Dispersion”Gel in a Porous Medium and its Aggregate Growth During Gelation Reaction. SPE 37220,1997.
    Shedid A. Shedid. Influences of fracture orientation on oil recovery by water and polymer flooding processes: An experimental approach. Journal of Petroleum Science and Engineering, 2006, V50: 285-292
    Siddiq M ,Tam K C. Jenkins R D. Dissolution behaviour of model alkaliOsoluble emulsion polymers: effects of molecular weight and ionic strength. Colloid Polym Sci.,1999, 277: 1172
    Svante Nilsson, Arild Lohne, Kirsti Veggeland. Effect of polymer on surfactant floodings of oil reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, V127: 241-247
    W.R.Rosson, J.Bruining. Foam displacements with multiple steady states. SPE 89397, 2004
    Wang HongGuan, Guo WanKui, Jiang HongFu. Study and Application of Weak Gel System Prepared by Complex Polymer Used for Depth Profile Modification. SPE 65379, 2001
    Wang Xuezhong,Wang Jianyong,Wang Chuanfei. Quantitative description of characteristics of high-capacity channels in unconsolidated sandstone reservoirs using in situ production data.Petroleum Science,2010,7 ( 1) : 106-111
    Xia T X, GreavesM. Upgrad ing athabasca tar sand using toe-to-heel air injection. SPE 65524, 2000.
    Xia T X, G reavesM, Turta A T. In jection well- producer well combinations in THAI“toe-to-heel air injection”. SPE 75137, 2002.
    Xia T X, G reavesM. Dow nho le conversion o flloydm inster heavy oil using THAI-CAPRI process. SPE 78998.2002.
    Y.Liu, B. Bai, P.J.Shuler. Application and Development of Chemical-Based Conformance Control Treatments in China Oil Fields. SPE99641, 2006
    Y.Liu, R.B.Gring, R.K.Svec. Foam mobility and adsorption in carbonate core. SPE 99756, 2008
    Yi Liu, Reid B.Gring, Baojun Bai.. Salinity,pH,and surfactant concentration on CO2-foam. SPE 93095, 2005
    Zhongmao Wang, Bo Dong. Delayed Polymer Crosslinking Technique Used for Profile Control in Deep Fractured Reservoir with Low-Permeability. SPE50892, 1998.
    Zhu Jing-ling, Zhang Xian-zheng,Cheng Han, et al. Synthesis and characterization of well-difined, amphiphilicpoly (N-isopropylacrylamide) -b-[2-hydroxyethyl methacrylate-poly (e-caprolactone)]n graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci A Polym Chem, 2007, 45(22): 5354-5363
    曹绪龙.低浓度表面活性剂-聚合物二元复合驱油体系的分子模拟与配方设计.石油学报(石油加工),2008,24(6):682-688
    陈顺清,杨亚江.疏水改性聚电解质的荧光探针光谱.物理化学学报,1998,14(4):380-384
    戴彩丽,赵福麟,肖建洪,等.聚合物驱后地层残留聚合物再利用技术研究.西安石油大学学报(自然科学版),2006,21(6):56-60
    樊文玲,陆晓峰.原子力显微镜在聚合物膜研究中的应用.核技术,2003,26(3):233-238.
    付美龙,刘杰.梳形聚合物comb-1的结构表征.西安石油大学学报(自然科学版),2009,24(2):67-70
    高峰.喇嘛甸油田泡沫复合驱油效果室内研究.大庆石油地质与开发,2007,26(4):109-113
    葛广章,王勇进,王彦玲,等.聚合物驱及相关化学驱进展.油田化学,2001,18(3):282-284
    郭焱,马素德,倪炳华,等.驱油用磺化聚丙烯酰胺的合成及其性能研究.西安石油大学学报(自然科学版),2004,19(3):29-31
    韩利娟,罗平亚,叶仲斌,等.疏水缔合聚丙烯酰胺的微观结构研究.天然气工业,2004,24(12):119-121
    韩培慧,赵群,穆爽书,等.聚合物驱后进一步提高采收率途径的研究.大庆石油地质与开发,2006,25(5):81-84
    韩秀贞,李明远,林梅钦,等.交联聚合物微球体系溶胀性能分析.油田化学,2006,23(2):162 -165.
    候吉瑞,刘中春,张淑芬,等.碱对聚丙烯酰胺的分子形态及其流变性的影响.物理化学学报,2003,19(3):256-259
    景艳,吕鑫.延缓交联水基凝胶的制备、性能及溶液微观结构.石油学报(石油加工),2009,25(1):124-127
    雷光伦,郑家朋.孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究.中国石油大学学报(自然科学版),2007,31(1):87-90)
    雷光伦.亚微米聚合物活性微球调剖驱油剂.cn1594493,2005-3-16
    李爱芬,郭海滨,陈辉,等.聚驱后阳离子聚合物HCP提高采收率机理研究.油田化学,2006,23(3):256-259,268
    李爱芬,衣艳静,陶军.聚合物驱后提高采收率方式实验研究.西安石油大学学报(自然科学版),2006,21(5):55-58
    李建阁,谢朝阳,王贤君,等.聚驱后铝交联胶态分散凝胶调驱技术在大庆油田的应用.江汉石油学院学报,2004,26(2):112-113
    李克友,张菊华,向福如.高分子合成原理及工艺学.北京:科学出版社,1999:67
    李振泉,何秀娟,李英,等.烷基苯磺酸盐在油水界面行为的介观模拟.化学学报,2007,65(24):2803-2808
    李振泉.孤岛油田中一区特高含水期聚合物驱工业试验[J].石油勘探与开发,2004,31(2):119-121
    刘和.大庆油田聚合物驱后采油技术现状及展望.石油钻采工艺,2008,30(3):1-6
    刘晓平,王洪运,张鹏,等.三元共聚阳离子聚丙烯酰胺的合成及性能评价.山东大学学报(工学版),2009,39(3):71-76
    卢祥国,王凤兰,包亚臣.聚合物驱后三元复合驱油效果评价.油田化学,2000,17(2):159-163,180
    马海霞,林梅钦,李明远,等.交联聚合物微球体系性质研究.应用化工,2006,35(6):454 -457
    马世煜,陈智宇,刘金峰,等.大港油田港西四区微生物驱先导试验.油气采收率技术,1997,4(3):7-12
    任文化,牛井岗,张宇,等.杏二区西部三元复合驱试验效果与认识.大庆石油地质与开发,2001,20(2):117-118
    石梅.聚合物驱后利用微生物进一步提高采收率的可行性.大庆石油地质与开发,2004,23(2):56-58
    宋岱锋,贾艳平,于丽,等.孤岛油田聚驱后聚合物微球调驱提高采收率研究.油田化学,2008,25(2):165-169,185
    孙琳,蒲万芬,辛军,等.碱/聚合物复合驱体系粘度影响因素分子.精细石油化工进展,2007,8(4):11-13,16
    孙灵辉,代素绢,吴文祥.低碱三元复合体系用于聚驱后进一步提高采收率.油田化学,2006,23(1):88-91
    王克亮,廖广志,杨振宇,等.三元复合和聚合物驱油液黏度对驱油效果影响实验研究.油田化学,2001,18(4):354-357
    王其伟,宋新旺,周国华,等.聚合物驱后泡沫驱提高采收率技术试验研究.江汉石油学院学报,2004,26(1):105-107
    王鑫,王清发,卢军.体膨颗粒深部调驱技术及其在大庆油田的应用.油田化学,2004,21(2):150-153
    王业飞,熊伟,焦翠,等.聚合物驱后地层残留聚合物絮凝再利用技术研究.大庆石油地质与开发,2006,25(3):79-81
    吴志红,吴静,刘国胜,等.预交联颗粒调剖剂在文南油田的应用.内蒙古石油化工,2005,2:106-107
    肖建洪,姜娜,马辉,等.聚合物驱后凝胶复合体系调驱技术及应用.油气地质与采收率,2006,13(5):78-80
    熊生春,王业飞,何英,等.孤岛油田聚合物驱后提高采收率实验研究.断块油气田,2005,12(3):38-40
    熊生春,王业飞,何英.聚合物驱后交联聚合物深部调剖技术室内试验研究.油气地质与采收率,2005,12(6):77-80)
    徐德军,陈辉,毛为荣,等.注聚后低浓度交联聚合物驱提高原油采收率.油田化学,2002,19(3):265-267
    徐婷,李秀生,张学洪,等.聚合物驱后地下聚合物的固定技术研究.钻采工艺,2003,26(3):72-76,81
    徐婷,李秀生,张学洪,等.聚合物驱后地下聚合物再利用技术室内试验研究.江汉石油学院学报,2004,26(2):114-117
    由庆,穆丽娜,何龙,等.聚合物驱后地层残留聚合物相对分子质量和水解度变化对其再利用效果的影响.钻采工艺,2007,30(5):121-122,138
    由庆,赵福麟,王业飞,等.聚合物驱注入与产出聚丙烯酰胺的对比研究.北京化工大学学报,2007,34(4):414-417
    袁敏,贾忠伟,袁纯玉.聚合物溶液黏弹性影响因素研究.大庆石油地质与开发,2005,24(5):74-76
    张继成,李朦,穆文志,等.聚合物驱后宏观和微观剩余油分布规律.齐齐哈尔大学学报,2008,24(1):31-36
    赵怀珍,吴肇亮,郑晓宇,等.水溶性交联聚合物微球的制备及性能.精细化工,2005,22(1):62-65.
    赵修太,王增宝,邱广敏,等.部分水解聚丙烯酰胺水溶液初始黏度的影响因素.石油与天然气化工,2009,38(3):231-234,237
    钟传蓉,黄荣华,张熙,等.AM-STD-NaAMPS三元疏水缔合共聚物的表征及耐热性能.高分子材料科学与工程,2003,19(6):126-130
    钟传蓉,黄荣华,张熙,等.AM-STD-NaAMPS三元疏水缔合共聚物的表征及耐热性能.高分子材料科学与工程,2003,19(6):126-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700