甲基丙烯酸甲酯和苯乙烯在微波辐射及常规加热作用下的原子转移自由基聚合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次尝试将脉冲微波辐射(PMI)及微波辐射(MI)技术应用于甲基丙烯酸甲酯(MMA)的原子转移自由基聚合(atom transfer radical polymerization, ATRP),系统地研究了在69℃下,以N,N-二甲基甲酰胺(DMF)为溶剂的MMA均相ATRP。PMI下:(1)偶氮二异丁腈(AIBN)/CuBr_2/N,N,N′,N′-四甲基乙二胺(TMEDA)为引发体系的MMA均相反向ATRP(reverse atom transfer radical polymerization,RATRP);(2)以N,N,N′,N″,N″-五甲基二乙烯基三胺(PMDETA)为配位剂,EBB为引发剂,CuCl为催化剂的MMA均相ATRP。MI下:(1)低引发剂浓度下,EBB/CuCl/PMDETA为引发剂体系的MMA均相ATRP;(2)AIBN/FeCl_3/三苯基膦(PPh_3)为引发体系的MMA均相RATRP。另外还采用常规加热(CH)方式:(1)系统地研究了在CuCl_2.2H_2O/2,2′-联吡啶(bpy)存在下苯乙烯(St)热引发活性/可控自由基聚合;(2)以PMDETA为配位剂,AIBN为引发剂,CuBr_2为催化剂,DMF为溶剂,在69℃下MMA均相RATRP;(3)以双官能团的α,α′-二氯对二甲苯(α,α′-DCl-xylene)为引发剂,CuBr/bpy为催化体系,St和丙烯酸丁酯(BA)为单体,采用全ATRP法合成了双官能团PS、PBA-b-PS-b-PBA、PS-b-PBA-b-PS大分子引发剂,进而以二乙烯基苯(DVB)为单体(交联剂)合成了相应的聚合物凝胶。
     通过对PMI及MI作用下的MMA的均相ATRP或RATRP动力学研究发现:聚合反应对单体呈现一级反应动力学关系,所得聚合物的数均分子量(M_n)随转化率的增大而线性增长;扩链反应以及对聚合物的端基分析、立构规整性的表征等表明,PMI及MI并没有改变MMA的活性/可控自由基聚合的特征。在其它实验条件相同的情况下,在PMI或MI作用下,MMA的ATRP或RATRP的聚合速率比CH方式下有显著的提高,在PMI或MI作用下的k_p~(app)是CH下的1.5~12.8倍。而且,在PMI或MI作用下,引发剂的引发效率也有大幅的提高,表明在PMI或MI作用下,反应体系对聚合物分子量的控制能力加强,聚合物的分子量分布(PDI或M_w/M_n)仍维持较窄,一般在1.1<PDI<1.5之间。若保持和CH下相同的聚合速率,则在PMI或MI作用下,可以大大降低聚合体系中催化剂的用量和聚合反应温度。例如,在PMI作用方式下,以PMDETA为配位剂,EBB为引发剂,CuCl为催化剂,DMF为溶剂进行
    
    中文摘要苏州大学博士学位论文刚A和St在微波辐射及常规加热作用下的ATRP
    MMA的ATRP,在[MMA]夕[EBB]。/LCuCI]0/[pMDETA]。=400/l加0.89n(n=l,3);
    MMA/DMF=2/1(v/v);69℃:脉冲功率=80kw,平均功率=12W的聚合条件下,
    当n=1时,在cH方式下:称aPP二1.15X10一ss-,;而在PMI作用方式下:称娜=8.20
    xlo一5s一,为前者的7.1倍。此值比CH作用方式下,催化剂(CuCI)用量加大3倍时
    的值(称聊=4.42 X10一55一,)还要大将近1倍。另外,当
    [MMA10/[EBB]o/[CuCIF[PMDETA]o=400/l/1/1 .78时,即使在69oC的较低温度下,在
    pMI作用下,其梅aPP值(30.03 X 10”s”)比在CH方式下1 10oC时的值(25.90Xlo”s一,)
    还要高出16%。
     CH方式下:(l)在69oC,用AIBN/CuBrZ爪MDETA为引发体系,在25%的DMF
    溶液中,很容易实现MMA的反应体系的均相化,所进行的聚合反应为均相R产IRP。
    该体系具有很好的ATRP基本特征—in([M」夕【M」)随聚合时间线性增加,数均分
    子量随转化率直线增长以及PDI<1 .5,但引发剂的引发效率较低(一般小于0.5),表
    明体系对分子量的控制能力较差。动力学研究表明,该聚合反应速率与CuBrZ的浓度
    成反一级的动力学关系,但对引发剂(AIBN)则偏离了一级动力学关系(0.84次方);
     (2)在CuC12出py存在下,于110℃、130℃成功地进行了St本体热聚合。实验发现,
    当LSt」夕【CuClz10/「bpy]0=54/1/2 .5时,所得的聚合物M。随转化率的提高而线性增长,
    且PDI较窄(小于1 .5),因而所进行的热聚合为活性/可控自由基聚合。聚合速率随
    聚合温度的升高而加快。增大[St」。/【CuC12]o/[bpy]。的比例(如129/1/2.5,259/l/2.5,
    386/1/2 .5)会导致反应的可控性下降,甚至失控(643/1/2 .5)。通过‘H NMR对聚合物
    的末端基分析,发现St自引发产生的自由基为Mayo类型自由基,且这一活性/可控
    聚合经历了RAI,即历程;(3)采用全ATRP法,以Q,。’一DCI一xylene/CuB而Py为引发
    体系,在110一130’C可很好地合成出(CI)PS(CI),(CI)ps一b一pBA一b一ps(CI)及(CI)
    PBA一b一Ps一b一PBA(Cl)双官能团均聚物及ABA型三嵌段共聚物,采用IR、‘H NMR
    和GPC等对三嵌段共聚物进行了表征。同时以CuCI用MDEI’A为催化剂,DMF或DMF/
    甲苯(1/2,v/v)为溶剂,DVB为单体(交联剂),以(CI)PS(CI),(CI)ps一b一PBA一b一ps
     (Cl)及(Cl)PBA一b一PS一b一PBA(Cl)双官能团大分子作为引发剂可合成出相应的凝
    胶材料,此凝胶材料的吸液性能与所采用的双官能团大分子引发剂的分子量及DVB
     的用量有密切的关系:在实验范围内分子量增大吸苯率提高;DVB用量增大,凝胶
    
    四几和St在徽波辐射及常规加热作用下的At即
    苏州大学协士学位论文
    中文摘要
    的吸苯率先增后减呈现一峰值。
In this thesis, we first tried to use pulsed microwave irradiation (PMI) and microwave irradiation (MI) in atom transfer radical polymerization (AIKP) of methyl methacrylate (MMA) . The following homogeneous solution ATRPs of MMA in N, N-dimethylformamide (DMF) were successfully carried out under PMI and MI at 69@, respectively. For PMI: (1) the reverse ATRP (RATRP) of MMA with the initiating system of azobisisobutyroaitrile (AIBN)/CuBr2/tetramethylethylenediamine (TMEDA); (2) the ATRP of MMA with the initiating system of ethyl 2-bromobutyrate (EBB)/CuCl/ N,N,N', N" , N" -pentamethyldiethylenetriamine (PMDETA). For MI: (1) the ATRP of MMA with low concentration of initiating system of EBB/CuCl/PMDETA; (2) the RATRP of MMA with the initiating system of AIBN/FeCl3/triphenylphosphine (PPh3). In addition, the following systems were also successfully carried out under conventional heating (CH) process. (1) the living/controlled radical autopolymerization of styrene in the presence of CuCl2and 2, 2' -bipyridine (b
    py); (2) the RATRP of MMA with the initiating system of AIBN/CuBr2/PMDETA; (3) the synthesis of difunctional ABA-type triblock copolymers and gels of PBA-b-PS-b-PBA and PS-b-PBA-b-PS with a , a '-dichloride-xylene/CuBr/bpy as an initiating system.
    It was found that plots of ln ([M]o/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence by the kinetic studies of (R)ATRPs of MMA under PMI and MI, respectively, and that the "living'Vcontrolled characters of the polymerization systems were not changed under PMI or MI by a series of characterizations for polymers
    obtained (i.e., chain extension, analysis of end-groups and stereochemistry of PMMA). Under identical polymerization conditions, the apparent constant of propagation (kpapp) under PMI or MI were 1.5-12.8 times larger than that under CH, indicating a significantly increase of the polymerization rates whether under PMI or under MI. Furthermore, the apparent initiator efficiencies under PMI or MI were improved but the molecular weight distributions kept quite narrow (1.1 ~ 1.5), indicating that the control over molecular weights whether under PMI or under MI were also improved. It was noted that PMI or MI could greatly lower the polymerization temperature as well as the amount of catalyst if the same polymerization rate as CH was kept. For example, for the ATRPs of MMA under PMI
    
    
    and CH with the initiating system of EBB/CuCl/PMDETA (Conditions: MMA/DMF = 2/l(v/v); pulse power = 80kW, mean power = 12W; polymerization temperature = 69℃; [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0 = 400/1/n/0.89n (n = 1, 3).), kpapp under CH was 1.15 x 10-5s-1 (n = 1); while the one under PMI was 8.20X 10-5s-1 (n = 1), being 7.1 times larger than that of the former, and almost double that (4.42 X 10-5s-1 for n = 3) under CH using three times concentration of catalyst. Furthermore, when [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0 = 400/1/1/1.78, even if the polymerization temperature was as low as 69@, the kpapp (30.03 X 10-5s-1) under PMI increased by 16% than that (25.90x10-5s-1) under CH at 110@.
    The homogeneous RATRP of MMA, using AIBN/CuBr2/PMDETA as initiation system, could be easily carried out in DMF (25%, v/v) under CH at 69@. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. The molecular weight distributions kept quite narrow (1.07-1.5), but the initiator efficiencies were very low (generally below 0.5), indicative of a poor control of molecular weight. RATRP exhibited inverse first-order kinetics with respect to the initial copper(II) concentration, however, the polymerization kinetics were not first-order (0.84) with respect to the initial initiator concentration.
    The bulk autopolymerization of styrene (St) was successfully conducted in the presence of CuCl2 and bpy at 110@ and 130@, respectively. It was found that this polymerization was a "living"/controlled radical polymerization. The resulting Mns linearly increased with conversion, and PDIs were very narrow (below 1.5). The polymeriza
引文
[1] Szwarc, M.; Levy, M.; Milkovich, R. Polymerization Initated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers. J. Am. Chem. Soc. 1956, 78, 2656-2657.
    [2] Miyamoto, M.; Sawamoto, M.; Higashimura T. Living Polymerization of Isobutyl Vinyl Ether with Hydrogen Iodide/Iodine Initiating System. MacromoIecules 1984,17, 265-268.
    [3] Faust, R.; Kennedy, J.P. Living Carbocationic Polymerization Demonstration of the Living Polymerization of Isobutylene. Polym. Bull. 1986, 15(4), 317-323.
    [4] Aida, T.; Inoue, S. Living Polymerization of Epoxides with Metalloporphyrin and Synthesis of Block Copolymers with Controlled Chain Lengths. Macromolecules 1981, 14, 1162-1166.
    [5] Webster, O.W.; Hertler, W.R.; Sogah, D.Y. Group-Transfer Polymerization. 1. A New Concept for Addition Polymerization with Organosilicon Initiators. J. Am. Chem. Soc. 1983, 105, 5706-5708.
    [6] Fayt, R.; Forte, R.; Teyssie, P. New Initiator System for the Living Anionic Polymerization of Tert-alkyl Acrylates. Macromolecules 1987, 20(6), 1442-1444.
    [7] Reetz, M.T. New Method for the Anionic Polymerization of α-Ofolefins. Angew. Chem. 1988, 100(7), 1026-1030.
    [8] Odian, G. Principles of polymerization. 2nd. New York: John Wiley&Sons Inc, 1981, 179.
    [9] Greszta, D.; Mardare, D.; Matyjaszewski, K. "Living" Radical Polymerization. 1. Possibilities and limitations. Macromolecules 1994, 27, 638-644.
    [10] Hawker, C. J.; Bosman, A.W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev, 2001, 101, 3661-3688.
    [11] Wayland, B.B.; Poszmik, G; Mukerjee, S.L.; Fryd, M. Living radical polymerization of acrylates by organocobalt porphyrin complexes. J. Am. Chem. Soc. 1994, 116(17), 7943-7944.
    [12] Mardare, D.; Matyjaszewski, K. "Living" radical polymerization of vinyl acetate. Macromolecules 1994, 27(3), 645-649.
    
    
    [13] Mardare, D.; Matyjaszewski, K. New Initiators for Controlled Radical Polymerization of Acrylic Monomers. Polym. Prepr. 1994, 35(2), 555-556.
    [14] Lansalot, M.; Farcet, C.; Charleux, B.; Vairon, J.-P.; Pirri, R. Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules 1999, 32(22), 7354-7360.
    [15] Wang, J.S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
    [16] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(Ⅱ)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
    [17] Percec, V.; Narboiu, B. "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and Cul~I(bpy)_nCl. Macromolecules 1995, 28, 7970-7972.
    [18] Matyjaszewski,K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001,101, 2921-2990.
    [19] John, C.Y.K.; Frances, E.; Julia, K.; Jeffery, J.; Le, T.P.; Rizzardo, E.; Thang, S.H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559-5562.
    [20] Otsu, T.; Yoshida, M. Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iiniferters. Makromol. Chem. Rapid Comrnun. 1982, 3(2), 127-132.
    [21] Otsu, T; Yoshida, M.; Tazaki, T. A Model for Living Radical Polymerization. Makromol. Chem. Rapid Commun. 1982, 3(2), 133-140.
    [22] Werrington, T. E.; Tobolsky, A. V. Organic Disulfides as Initiators of Polymerization: Tetramethylthiuram Disulfide. J. Am. Chem. Soc. 1955, 77, 4510.
    [23] Otsu, T.; Yoshida, M.; Kuriyama, A. Living Radical Polymerization through the Use of Iniferters: Controlled Synthesis of Polymers. Eur Polym. J. 1989, 25(7&8), 643-650.
    [24] Otsu, T; Matsumoto, A. In Macromolecular Design, Concept and Practice(ed. Mishra, M.K.). Polymer Fronties International, New York, Chapter 12, 1994.
    
    
    [25] Otsu, T.; Matsumoto, A. Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. Adv. Polym. Sci. 1998, 136, 75-137.
    [26] Bledzki, A.; Braun, D. Polymerisationsausl(?)sung mit Substituierten Ethanen, 1. Polymerisation von Methylmethacrylat mit 1,1,2,2-Tetraphenyl-1,2-diphenoxyethan. Makrormol. Chem. 1981, 182(4), 1047-1056.
    [27] Bledzki, A.; Braun, D. Titzachkau, K. Polymerisationsausl(?)sung mit Substituierten Ethanen, 6. Polymerisation von Methylmethacrylat mit Verschiedenen Tetraphenylethanen. Makrornol. Chem. 1983, 184(4), 745-754.
    [28] Qin, S.H.; Qiu, K.Y. Swift, G; Westmoreland, D.G:; Wu, S. "Living" Radical Polymerization of Methyl Methacrylate with Diethyl 2,3-dicyano-2,3-diphenylsuccinate as a Thermal Iniferter. J. Polym. Sci. Part A: Polym. Chem. 1999, 37(24), 4610-4615.
    [29] Chen, X.P.; Qiu, K.Y.; Swift, G.; Westmoreland, D.G.; Wu, S. A Novel Thermal Iniferter for Radical Polymerization. Eur. Polym. J. 2000, 36(8), 1547-1554.
    [30] Nair, C.P.R.; Clouet, G. Functionalization of Vinyl Polymers Through Polymeric Iniferters: Synthesis of Poly(methyl methacrylate-b-phosphonamide) and Poly(styrene-b-phosphonamide). Polymer 1988,29(10), 1909-1917.
    [31] Nair, C.P.R.; Clouet, G. Block Copolymers via Thermal Polymeric Iniferters. Synthesis of Silicone-Vinyl Block Copolymers. Macromolecules 1990,23(5), 1361-1369.
    [32] Tharanikkarasu, K.; Radhakrishan G. A Novel Polyurethane Macroinitiator for Free Rdical Polymerization. Eur. Polym. J. 1994, 30(12), 1351-1355.
    [33] Tharanikkarasu, K.; Radhakrishan G: "Living" Radical Polymerization of Styrene Using Diphenylmethane Diisocyanate-Based Polyurethane Iniferter. J. Macromol. Sci.-Pure Appl. Chem. 1997, A34(4), 559-571.
    [34] Yang, X.M.; Qiu, K.Y. Radical Polymerization of Styrene Initiated with Alkyl N,N-Diethyldithiocarbamylacetate Photoiniferters. J. Macromol. Sci.-Pure Appl. Chem. 1997, A34(2), 315-325.
    [35] Yang, X.M.; Qiu, K.Y. Polymerization of Styrene Using N-(p-tolyl)-N',N' -Diethyldithiocarbamoylacetamide as Photoiniferter. J. Appl. Polym. Sci. 1996, 61(3), 513-518.
    [36] 田士英,董建华,邱坤元.2-(N,N-二乙基二硫代氨基甲酰氧基)乙酸苄酯存在下苯
    
    乙烯光聚合.高分子学报 1999,5,571-575.
    [37] Nakayama, Y.; Sudo, M.; Uchida, K.; Matsuda, T. Spatio-Resolved Hyperbranched Graft Polymerized Surfaces by Iniferter-Based Photograft Copolymerization. Langmuir 2002, 18(7), 2601-2606.
    [38] Qin, S.H.; Qiu, K.Y. Radical Polymerization of Styrene Initiate with a New Multifunctional Iniferter. Polym. Bull. 2000, 44(2), 123-128.
    [39] Qin, S.H.; Qiu, K.Y. Polymerization of Vinyl Monomers Using a Novel Trifunctional Iniferter. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 2115-2120.
    [40] Keoshkerian, B.; Georges, M.K.; Boilboissier, D. Living Free-Radical Aqueous Polymerization. Macromolecules 1995, 28(8), 6381-6382.
    [41] Gabaston, L.I.; Jackson, R.A.; Armes, S.P. Living Free-Radical Aqueous Polymerization. Macromolecules 1998,31(9),2883-2888.
    [42] Moad, G.; Rizzardo, E.; Solomon, D.H. Selectivity of the Reaction of Free Radicals with Styrene. Macromolecules 1982, 15,909-914.
    [43] Solomom, D.H.; Rizzardo, E.; Cacili, P. Free Radical Polymerization and the Produced Polymers. US4581429, 1985.
    [44] Georges, M.K.; Vergin, R.P.N.; Kazmaier, P.M.; Harmer, G.K. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process. Macromolecules 1993, 26(11), 2987-2988.
    [45] Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C.J. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations. J. Am. Chem. Soc. 1999,121,3904-3920.
    [46] Benoit, D.; Grimaldi,S.; Robin, S.; Finer, J.P.; Tordo, P.; Cnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide. J. Am. Chem. Soc. 2000,122,5929-5939.
    [47] Harth, E.; Hawker, C.J.; Fan, W.; Waymouth, R.M. Chain End Functionalization in Nitroxide-Mediated "Living" Free Radical Polymerizations. Macromolecules 2001, 34, 3856-3862.
    [48] Morgan, A. M.; Pollack, S. K.; Beshah, K. Synthesis and Multidimensional NMR Characterization of PDMS-b-PS Prepared by Combined Anionic Ring-Opening and Nitroxide-Mediated Radical Polymerization. Macromolecules 2002, 35(11),
    
    4238-4246.
    [49] Miwa, Y.; Yamamoto, K.; Sakaguchi, M.; Shimada, S. Well-Defined Polystyrene Grafted to Polypropylene Backbone by "Living" Radical Polymerization with TEMPO. Macromolecules 2001, 34(7), 2089-2094.
    [50] Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations. J. Am. Chem. Soc. 1999, 121, 3904-3920.
    [51] Butz, S.; Baethge, H.; Schmidt-Naake, G. N-oxyl Mediated Free Radical Donor-Acceptor co- and Terpolymerization of Styrene, Cyclic Maleimide Monomers and n-Butyl Methacrylate. Macromol. Chem. Phys. 2000, 201 (16), 2143-2151.
    [52] Narumi, A.; Satoh, T.; Kaga, H.; Kakuchi, T. Glycoconjugated Polymer. 3. Synthesis and Amphiphilic Property of Core-Glycoconjugated Star-Shaped Polystyrene. Macromolecules 2002, 35(3), 699-705.
    [53] Viklund, C.; Nordstrom, A.; Irgum, K.; Svec, F.; Frechet, J. M. J. Preparation of Porous Poly(styrene-co-divinylbenzene) Monoliths with Controlled Pore Size Distributions Initiated by Stable Free Radicals and Their Pore Surface Functionalization by Grafting. Macromolecules 2001, 34(13), 4361-4369.
    [54] Goto, A.; Sato, K.; Fukuda, T.; Moad, G; Rizzardo, E.; Thang, S.H. Mechanism and Kinetics of RAFT (Reversible Addition-Fragmentation Chain Transfer)-Based Controlled Radical Polymerization of Styrene. Polym. Prepr. 1999, 40(2), 397-398.
    [55] Mayadunne, R.T.A.; Rizzardo, E.; Chiefari, J.; Chong, Y.K.; Moad, G.; Thang, S.H. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents. Macromolecules 1999, 32, 6977-6980.
    [56] Laus, M.; Papa, R.; Sparnacci, K. Controlled Radical Polymerization of Styrene with Phosphoryl- and (Thiophosphoryl)Dithioformates as RAFT Agents. Macromolecules 2001, 34, 7269-7275.
    [57] Bai, R.K.; You, Y.Z.; Pan, C.Y. Study on Controlled Free-Radical Polymerization in the Presence of Dithiobenzoic Acid (DTBA). Polym. Int. 2000, 49, 898-902.
    [58] Lai, J.T.; Filla, D.; Shea, R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules 2002, 35, 6754-6756.
    
    
    [59] Farmer, S.C.; Patten, T.E. (Thiocarbonyl-α-thio)Carboxylic Acid Derivatives as Transfer Agents in Reversible Addition-Fragmentation Chain-Transfer Polymerizations. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 555-563.
    [60] Mayadunne, R.T.A.; Rizzardo, E.; Chiefari, J.; Kristina, J.; Moad, G.; Postma, A.; Thang, S.H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules 2000, 33,243-245.
    [61 Mitsukami,Y.; Donavon, M.S.; Lowe, A.B.; McCormick, C.L. Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT. Macromolecules 2001, 34, 2248-2256.
    [62] Sumerlin, B.S.; Donavon, M.S.; Mitsukami, Y.; Lowe, A.B.; McCormick, C.J. Water-Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT. Macromolecules 2001, 34, 6561-6564.
    [63] Thomas, D. B.; Sumerlin, B. S.; Lowe, A. B.; McCormick, C.L. Conditions for Facile, Controlled RAFT Polymerization of Acrylamide in Water. Macromolecules 2003, 36(5), 1436-1439.
    [64] Donovan, M. S.; Sumerlin, B. S.; Lowe, A. B.; McCormick, C. L. Controlled/"Living" Polymerization of Sulfobetaine Monomers Directly in Aqueous Media via RAFT. Macromolecules 2002, 35(23), 8663-8666.
    [65] Lansalot, M.; Davis, T. P.; Heuts, J. P. A. RAFT Miniemulsion Polymerization: Influence of the Structure of the RAFT Agent. Macromolecules 2002, 35(20), 7582-7591.
    [66] Prescott, S. W.; Ballard, M. J.; Rizzardo, E.; Gilbert, R. G. Successful Use of RAFT Techniques in Seeded Emulsion Polymerization of Styrene: Living Character, RAFT Agent Transport, and Rate of Polymerization. Macromolecules 2002, 35(14), 5417-5425.
    [67] Vosloo, J. J.; De Wet-Roos, D.; Tonge, M. P.; Sanderson, R.D. Controlled Free Radical Polymerization in Water-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer. Macromolecules 2002, 35(13), 4894-4902.
    [68] Donovan, M. S.; Sanford, T. A.; Lowe, A. B.; Sumerlin, B. S.; Mitsukami, Y.; McCormick, C. L. RAFT Polymerization of N,N-Dimethylacrytamide in Water. Macromolecules 2002, 35(12), 4570-4572.
    
    
    [69] Butte, A.; Storti, G.; Morbidelli, M. Miniemulsion Living Free Radical Polymerization by RAFT. Macromolecules 2001, 34(17), 5885-5896.
    [70] Tsavalas, J. G.; Schork, F. J.; de Brouwer, H.; Monteiro, M.J. Living Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer in Ionically Stabilized Miniemulsions. Macromolecules 2001, 34(12), 3938-3946.
    [71] Chong, Y.K.; Le, T.P.; Moad, E.R.; Thang, S.H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: the RAFT Process. Macromolecules 1999, 32, 2071-2074.
    [72] Shi, L.; Chapman, T. M.; Beckman, E. J. Poly(ethylene glycol)-Block-Poly(N-vinylformamide) Copolymers Synthesized by the RAFT Methodology. Macromolecules 2003, 36(7), 2563-2567.
    [73] Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules 2003, 36(5), 1505-1513.
    [74] Feng, X.-S.; Pan, C.-Y. Synthesis of Amphiphilic Miktoarm ABC Star Copolymers by RAFT Mechanism Using Maleic Anhydride as Linking Agent. Macromolecules 2002, 35(13), 4888-4893.
    [75] Petersen, H.; Fechner, P. M.; Fischer, D.; Kissel, T. Synthesis, Characterization, and Biocompatibility of Polyethylenimine-graft-Poly(ethylene glycol) Block Copolymers. Macromolecules 2002, 35(18), 6867-6874.
    [76] Kamigaito, M.; Ando, T.; Sawamoto, M..Metal-Catalyzed Living Radical Polymerization. Chem. Rev. 2001, 101(12), 3689-3746.
    [77] Wang, J.S.; Matyjaszewski, K. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. MacromoIecules 1995, 28, 7572-7573.
    [78] Wang, J.S.; Matyjaszewski, K. Controlled/"living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(Ⅱ) Redox Process. Macromolecules 1995, 28, 7901-7910.
    [79] Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M. Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate~1. Macromolecules 1997, 30, 2249-2253.
    [80] Nishikawa, T.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization in Water
    
    and Alcohols: Suspension Polymerization of Methyl Methacrylate with RuCl_2(PPh_3)_3 Complex~1. Macromolecules 1999, 32, 2204-2209.
    [81] Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M. NiBr_2(Pn-Bu_3)_2-Mediated Living Radical Polymerization of Methacrylates and Acrylates and their Block or Random Copolymerizations~1. Macromolecules 1998, 31, 6756-6761.
    [82] Uegaki, H.; Kamigato, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with a Zerovalent Nickel Complex, Ni(PPh_3)_4~1 J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3003-3009.
    [83] Ando, T.; Kamigaito, M.; Sawamoto, M. Design of Initiators for Living Radical Polymerization of Methyl Methacrylate Mediated by Ruthenium(Ⅱ) Complex. Tetrahedron 1997, 53, 15445-15457.
    [84] Matyjaszewski, K.; Wang, J.-L.; Grimaud, T.; Shipp, D. A. Controlled/"Living" Atom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. Macromolecules 1998, 31, 1527-1534.
    [85] Matyjaszewski, K.; Shipp, D. A.; Wang, J.-L.; Grimaud, T.; Patten, T. E. Utilizing Halide Exchange to Improve Control of Atom Transfer Radical Polymerization. Macromolecules 1998, 31, 6836-6840.
    [86] Neumann, A.; Keul, H.; Hocker, H. Atom Transfer Radical Polymerization (ATRP) of Styrene and Methyl Methacrylate with α,α-Dichlorotoluene as Initiator; a Kinetic Study. Macromol. Chem. Phys. 2000, 201,980-984
    [87] Wang, J.L.; Grimaud, T.; Matyjaszewski, K. Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 1997, 30, 6507-6512.
    [88] Moineau, G.; Minet, M.; Dubois, P.; Teyssie', P.; Senninger, T.; Je'rome, R. Controlled Radical Polymerization of (Meth)acrylates by ATRP with NiBr_2(PPh_3)_2 as Catalyst. Macromolecules 1999, 32, 27-35.
    [89] Carlmark, A.; Vestberg, R. Jonsson, E.M. Atom Transfer Radical Polymerization of Methyl Acrylate from a Multifunctional Initiator at Ambient Temperature. Polymer 2002, 43(15), 4237-4242.
    [90] Zhang, X.; Matyjaszewski, K. Synthesis of Functional Polystyrenes by Atom Transfer Radical Polymerization Using Protected and Unprotected Carboxylic Acid Initiators. Macromolecules 1999, 32, 7349-7353.
    
    
    [91] Brown, H. C.; Fletcher, R. S. Chemical Effects of Steric Strains. I. the Effect of Structure upon the Hydrolysis of Tertiary Aliphatic Chlorides. J. Am. Chem. Soc. 1949, 71, 1845-1854.
    [92] Mayr, H.; Roth, M.; Faust, R. Examination of Models for Carbocationic Polymerization: Influence of Chain Length on Carbocation Reactivifies. Macromolecules 1996, 29, 6110-6113.
    [93] Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M. Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene~1. Macromolecules 1999, 32, 3820-3823.
    [94] Haddleton, D. M.; Waterson, C.; Derrick, P. J. Monohydroxy Terminally Functionalised Poly(methyl methacrylate) from Atom Transfer Radical Polymerization. Chem. Commun. 1997, 683-684.
    [95] Zeng, F.; Shen, Y.; Zhu, S.; Pelton, R. Atom Transfer Radical Polymerization of 2-(Dimethylamino)Ethyl Methacrylate in Aqueous Media. J. Polym. Sci., Part A:Polym. Chem. 2000, 38, 3821-3827.
    [96] Granel, C.; Dubois, P.; Je'rome, R.; Teyssie', P. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(Ⅱ) Complex and Different Activated Alkyl Halides. Macromolecules 1996, 29, 8576-8582.
    [97] Ando, T.; Kato, M.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions~1. Macromolecules 1996, 29, 1070-1072.
    [98] Nishikawa, T.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evidence for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Effects of Protic and Radical Compounds and Reinitiation from the Recovered Polymers~1. Macromolecules 1997, 30, 2244-2248.
    [99] Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Controlled/"Living" Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes~1. Macromolecules 1997, 30, 8161-8164.
    [100] Matyjaszewski, K.; Jo, S. M.; Paik, H.-j.; Gaynor, S. G. Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules 1997, 30,
    
    6398-6400.
    [101] Percec, V.; Barboiu, B.; Kim, H.-J. Arenesulfonyl Halides: A Universal Class of Functional Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene(s), Methacrylates, and Acrylates. J.. Am. Chem. Soc. 1998, 120, 305-316.
    [102] Percec, V.; Kim, H. J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene and Methacrylates. Macromolecules 1997, 30, 8526-8528.
    [103] Percec, V.; Barboiu, B.; Bera, T. K.; van der Sluis, M.; Grubbs, R. B.; Frechet, J. M. J. Designing Functional Aromatic Multisulfonyl Chloride Initiators for Complex Organic Synthesis by Living Radical Polymerization. J. Polym. Sci., Part A: Polym, Chem. 2000, 38, 4776-4791.
    [104] Matsuyama, M.; Kamigato, M.; Sawamoto, M. Sulfonyl Chlorides as Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate. J. Polym. Sci.,Part A: Polym. Chem. 1996, 34, 3585-3589.
    [105] Degirmenci, M.; Cianga, I. ; Yagci, Y. Synthesis of Well-Defined Polystyrene Macrophotoinitiators by Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2002, 203, 1279-1284.
    [106] Hue, J.; Chen, D.; Jing, X.; Xu, L.; Yu, Y.; Zhang, Y. Preparation and Photoconducting Property of C_(60)Cl_n-m-Bonded Poly(N-vinylcarbazole) with C_(60)Cl_n/CuCl/Bpy Catalyst System. J. Appl. Polym. Sci. 2003, 87, 606-609.
    [107] Petten T.E.; Xia J.H.; Abernathy T.; Matyjaszewski, K. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization. Science 1996, 272, 866-868.
    [108] Matyjaszewski, K.; Patten, T.E.; Xia, J. Controlled/"Living" Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. J. Am. Chem. Soc. 1997, 119, 674-680.
    [109] Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator. Macromolecules 1997, 30, 7692-7696.
    [110] Davis, K.A.; Paik, H.J.; Matyjaszewaki, K. Kinetic Investigation of the Atom Transfer Radical Polymerization of Methyl Acrylate. Macromolecules 1999, 32, 1767-1776.
    
    
    [111] Xia, J. H.; Matyjaszewski, K. Homogeneous Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Peroxides. Macromolecules 1999, 32, 5199-5202.
    [112] Amass, A.J.; Wyres, C.A.; Colclough, E.; Marcia Hohn, I. N-alkyl-2-Pyridinemethanimine Mediated Atom Transfer Radical Polymerisation of Styrene: the Transition from Heterogeneous to Homogeneous Catalysis. Polymer 2000, 41(5), 1697-1702.
    [113] Zhang, H.; Klumperman, B.; Ming, W.; Fisher, H.; Van der Linde, R. Effect of Cu(Ⅱ) on the Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 2001, 34, 6169-6173.
    [114] Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. Macromolecules 1997, 30, 7697-7700.
    [115] Beers, K. L.;Boo, S.; Gaynor, S.G.; Matyjaszewski, K. Atom Transfer Radical Polymerization of 2-Hydroxyethyl Methacrylate. Macromolecules 1999, 32(18), 5772-5776.
    [116] Pasccual, S.; Coutin, B.; Tardi, M.; Polton, A.; Vairon, J.P. Homogeneous Atom Transfer Radical Polymerization of Styrene Initiated by 1-Chloro-1-Phenylethane/copper(Ⅰ) Chloride/Bipyridine in the Presence of Dimethylformamide. Macromolecules 1999, 32, 1432-1437.
    [117] Pascual, S.; Coutin, B.; Tardi, M.; Polton, A.; Vairon, J.-P.; Chiarelli, R. Kinetic and Mechanistic Study of Copper Chloride-Mediated Atom Transfer Polymerization of Styrene in the Presence of N, N-Dimethylformamide. Macromolecules 2001, 34(17), 5752-5758.
    [118] 王晓松,罗宁,应圣康.CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合.功能高分子学报 1998,11(1),1-8.
    [119] Percec, V.; Barboiu, B.; Neumann, A.; Andreas Neumann, A.; Ronda, J.C.; Zhao, M. Metal-Catalyzed "Living" Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneous to Homogeneous Catalysis. Macromolecules 1996, 29, 3665-3668.
    [120] Sawamoto, M.; Kamigaito, M. Transition Metal-Mediated Living Radical Polymerization: Recent Advances. Polym. Prepr. 1997, 38(1), 740-741.
    
    
    [121] Shell, Y.; Zhu, S.; Pelton, R. Soluble and Recoverable Support for Copper Bromide-Mediated Living Radical Polymerization. Macromolecules 2001, 34(10), 3182-3185.
    [122] Opstal, T., Couchez, K.; Verpoort, F. Easily Accessible Ring Opening Metathesis and Atom Transfer Radical Polymerization Catalysts Based on Arene, Norbornadiene and Cyclooctadiene Ruthenium Complexes Bearing Schiff Base Ligands. Adv. Synth. Catal. 2003, 345, 393 - 401.
    [123] Matyjaszewski, K.; Coca, S.; Gaynor, S.G; Mingli Wei, M.; Woodworth, B.E. Zerovalent Metals in Controlled/"Living" Radical Polymerization. Macromolecules 1997, 30, 7348-7350.
    [124] Guan, Z.; Smart, B..A Remarkable Visible Light Effect on Atom-Transfer Radical Polymerization. Macromolecules 2000, 33 (18), 6904-6906.
    [125] 潘才元,楼旭东,王颖莉,吴承佩.a-溴丁酸乙酯/CuBr/联吡啶体系引发的活性自由基聚合反应.高分子学报 1998,(3),311-316.
    [126] Zeng, F.; Shen, Y.; Zhu, S.; Pelton,R. Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules 2000, 33(5), 1628-1635.
    [127] 郭建华,吴平平,韩哲文.溴化铜对异丙醇铝存在下原子转移自由基聚合的影响.高等学校化学学报 1999,20(8),1303-1306.
    [128] McDonald, S.; Rannard, S. P. Room Temperature Waterborne ATRP of n-Butyl Methacrylate in Homogeneous Alcoholic Media. Macromolecules 2001, 34(25), 8600-8602.
    [129] Ramakrishnan, A.; Dhamodharan, R. Facile Synthesis of ABC and CBABC Multiblock Copolymers of Styrene, Tert-Butyl Acrylate, and Methyl Methacrylate via Room Temperature ATRP of MMA. Macromolecules 2003, 36(4), 1039-1046.
    [130] Krishnan, R.; Srinivasan, K. S. V. Controlled/"Living" Radical Polymerization of Glycidyl Methacrylate at Ambient Temperature. Macromolecules 2003, 36(6), 1769-1771.
    [131] Save, M.; Weaver, J. V. M.; Armes, S. P.; McKenna, P. Atom Transfer Radical Polymerization of Hydroxy-Functional Methacrylates at Ambient Temperature:
    
    Comparison of Glycerol Monomethacrylate with 2-Hydroxypropyl Methacrylate. Macromolecules 2002, 35(4), 1152-1159.
    [132] Qiu, J.; Charleux, B.; Matyjaszewski, K. Controlled/Living Radical Polymerization in Aqueous Media: Homogeneous and Heterogeneous Systems. Prog. Polym. Sci. 2001, 26, 2083-2134.
    [133] Lobb, E. J.; Ma, I.; Billingham, N. C.; Armes, S. P.; Lewis, A. L. Facile Synthesis of Well-Defined, Biocompatible Phosphorylcholine-Based Methacrylate Copolymers via Atom Transfer Radical Polymerization at 20℃. J. Am. Chem. Soc. 2001, 123(32), 7913-7914.
    [134] Lecomte, Ph.; Dra pier, I.; Dubois, Ph.; Teyssi(?), Ph.; J(?)r(?)me, R. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride. Macromolecules 1997, 30, 7631-7633.
    [135] Qiu J., Pintauer, T.; Gaynor, S.G.; Matyjaszewski, K.; Charleux, B.; Vairon, J.-P. Mechanistic Aspect of Reverse Atom Transfer Radical Polymerization of n-Butyl Methacrylate in Aqueous Dispersed System. Macromolecules 2000, 33(20), 7310-7320.
    [136] Qiu, J.; Gaynor, S.G; Matyjaszewski, K. Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 2872-2875.
    [137] Gaynor, S. G.; Qiu, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization Applied to Water-Borne Systems. Macromolecules 1998, 31, 5951-5954.
    [138] Jousset, S.; Qiu, J.; Matyjaszewski, K.; Granel, C. Atom Transfer Radical Polymerization of Methyl Methacrylate in Water-Borne System. Macromolecules 2001, 34(19), 6641-6648.
    [139] Burgui(?)re, C.; Chassenieux, C.; Charleux, B. Characterization of Aqueous Micellar Solutions of Amphiphilic Block Copolymers of Poly(acrylic acid) and Polystyrene Prepared via ATRP. Toward the Control of the Number of Particles in Emulsion Polymerization. Polymer 2003, 44(3), 509-518.
    [140] Yoo, S. H.; Lee, J. H.; Lee, J.-C.; Jho, J. Y. Synthesis of Hyperbranched Polyacrylates in Emulsion by Atom Transfer Radical Polymerization. Macromolecules 2002, 35(4), 1146-1148.
    
    
    [141] Cunningham, M.F. Living/Controlled Radical Polymerization in Dispersed Phase System. Prog. Polym. Sci. 2002, 27, 1039-1067.
    [142] Chen, X.; Qiu, K. Controlled/'Living' Radical Polymerization of MMA via in situ ATRP Process. Chem. Commun. 2000, 233-234.
    [143] Chen, X.; Qiu, K. A novel ATRP Initiating System Fe(dtc)_3/FeCl_3/PPh_3 for MMA Polymerization. Chem. Commun. 2000, 1403-1404.
    [144] Acar, A.E.; Yagci, M.B.; Mathias, L.J. Adventitious Effect of Air in Atom Transfer Radical Polymerization: Air-Induced (Reverse) Atom Transfer Radical Polymerization of Methacrylates in the Absence of an Added Initiator. Macromolecules 2000, 33 (21), 7700-7706.
    [145] Johnson, R.M.; Corbin, P.S.; Ng, C.; Fraser, C.L. Poly(methyl methacrylates) with Ruthenium Tris(bipyridine) Cores via NiBr_2(PR_3)_2-Catalyzed.Atom Transfer Radical Polymerization (ATRP). Macromolecules 2000, 33 (20), 7404-7412.
    [146] Li, P.; Qiu, K. Cu(S_2CNEt_2)Cl-Catalyzed Reverse Atom-Transfer Radical Polymerization of Vinyl Monomers. Macromol. Rapid Commun, 2002, 23, 1124-1129.
    [147] Zhu, S.; Yan, D. Atom Transfer Radical Polymerization of Methyl Methacrylate Catalyzed by Iron~Ⅱ Chloride/Isophthalic Acid System. Macromolecules 2000, 33, 8233-8238.
    [148] Chen, X.; Qiu, K. Synthesis of Well-Defined Poly(methyl methacrylate) by Radical Polymerization with a New Initiation System TPED/FeCl_3/PPh_3. Macromolecules 1999, 32, 8711-8715.
    [149] Qin, D.; Qin, S.; Qiu, K. Living/Controlled Radical Polymerization of Styrene with a New Initiating System: DCDPS/FeCl_3/PPh_3 . J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 101-107.
    [150] Wei, M.L.; Xia, J.; Medermott, N.E. Atom transfer radical polymerization of styrene in the presence of iron complexes. Polym. Prepr. 1997, 38(2), 231-232.
    [151] 程广楼,胡春圃,应圣康.苯乙烯的原子转移自由基聚合新引发体系.合成橡胶工业.1997,20(2),116-116.
    [152] Li, P.; Qiu, K. Synthesis of Well-Defined Poly(methyl methacrylate) by a Normal Atom-Transfer Radical Polymerization Procedure with a New Catalyst, Cuprous N,N-Diethyldithiocarbamate. Macromol. Chem. Phys. 2002, 203, 2305-2311.
    [153] Zhang, X.; Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization of
    
    2-(Dimethylamino)ethyl Methacrylate. Macromolecules 1998, 31(15), 5167-5169.
    [154] Rademacher, J.T.; Baum, M.; Pallack, M.E.; Brittain, W.J.; Simonsick, W.J.Jr. Atom Transfer Radical Polymerization of N,N-Dimethylacrylamide. Macromolecules 2000, 33 (2), 284-288.
    [155] Teodorescu, M.; Matyjaszewski, K. .Atom Transfer Radical Polymerization of (Meth)acrylamides. Macromolecules 1999, 32 (15), 4826-4831.
    [156] Wang, X.-S.; Jackson, R.A.; Armes, S.P. Facile Synthesis of Acidic Copolymers via Atom Transfer Radical Polymerization in Aqueous Media at Ambient Temperature. Macromolecules 2000, 33 (2), 255-257.
    [157] Ashford, E.J.; Naldi,V.; D'Dell, R.; Billingham, N.C.; Armes, S.P. First Example of the Atom Transfer Radical Polymerisation of an Acidic Monomer: Direct Synthesis of Methacrylic Acid Copolymers in Aqueous Media. Chem. Commun. 1999,1285-1286.
    [158] Kops, J.;Chen, X.; Jankova, K.; Truelsen, J.H.; Batsberg, W. Atom Transfer Radical Polymerization of p-Acetoxystyrene for the Synthesis of Amphiphilic Block Copolymers. Polym. Prepr. 1999, 40 (2), 374-375.
    [159] Chen, X.P.; Qiu, K.Y. 'Living' Radical Polymerization of Styrene with AIBN/FeCl_3/PPh_3 Initiating System via a Reverse Atom Transfer Radical Polymerization Process. Polym. Int. 2000, 49, 1529-1533.
    [160] Sedjo, R.A.; Mirous, B.K., brittain, W.J. Synthesis of Polystyrene-block-Poly(methyl methacrylate) Brushes by Reverse Atom Transfer Radical Polymerization. Macromolecules 2000, 33(5), 1492-1493.
    [161] Chen, X,; Qiu K. Synthesis of Well-Defined Polystyrene by Radical Polymerization Using 1,1,2,2-Tetraphenyl-1,2-Ethanediol/FeCl_3/PPh_3 Initiation System. J. Appl. Polym. Sci. 2000, 77(7), 1607-1613.
    [162] Qin, D.; Qin, S.; Qiu, K. A Reverse ATRP Process with a Hexasubstituted Ethane Thermal Iniferter Diethyl 2,3-Dicyano-2,3-di(p-tolyl)succinate as the Initiator. Macromolecules 2000, 33 (19), 6987-6992.
    [163] Teodorescu, M.; Gaynor, S.G.; Matyjaszewski, K. Halide Anions as Ligands in Iron-Mediated Atom Transfer Radical Polymerization. Macromolecules 2000, 33(7), 2335-2339.
    [164] Matyjaszewski, K. Radical Nature of Cu-Catalyzed Controlled Radical Polymerizations (Atom Transfer Radical Polymerization). Macromolecules 1998, 31,
    
    4710-4717.
    [165] Moineau, G.; Dubois, P.; Jerome, R.; Senninger, T.; Teyssie, P. Alternative Atom Transfer Radical Polymerization for MMA Using FeCl_3 and AIBN in the Presence of Triphenylphosphine: An Easy Way to Well-Controlled PMMA. Macromolecules 1998, 31,545-547.
    [166] Zhu, S.; Yan, D.; Zhang, G; Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate with a New Catalytic System, FeCl_3/isophthalic Acid. J. Polym. Sci. Part A: Polym. Chem. 2001, 39(6), 765-774.
    [167] Wang, W.; Tu, W.; Zhang, B.; Yan, D.; Tai, bi. Reverse Atom Transfer Radical Polymerization Using BPO as the Initiator. Hecheng Xiangjiao Gongye 1999, 22, 1000-1255.
    [168] Wang, W. X.; Yan, D. Y.; Jiang, X. L.; Detrembleur, C.; Lecomte, P.; J(?)ro(?)me, R. Reverse Atom-Transfer Radical Polymerization at Room Temperature. Macromol. Rapid Commun. 2001, 22, 439-443.
    [169] Li, P.; Qiu, K.-Y. Copper(Ⅱ) compound catalyzed living radical polymerization of methyl methacrylate in the presence of benzoyl peroxide. Macromolecules 2002, 35(23), 8906-8908.
    [170] Matyjaszewski, K.; Jo, S.M.; Paik, H.; Shipp, D.A. An Investigation into the CuX/2,2'-Bipyridine (X = Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. Macromolecules 1999, 32(20), 6431-6438.
    [171] Jo, S.M.; Gaynor, S.G.; Matyjaszewski, K. Homo-and ABA Block Polymerization of Acrylonitrile, n-Butyl Acrylate, and 2-Ethylhexyl Acrylate Using ATRP. Polym. Prepr. 1996, 37(2), 272-273.
    [172] Mu, J.S.; Paik, H.; Matyjaszewski, K. Polyacrylonitrile with Low Polydispersities by Atom Transfer Radical Polymerization. Polym. Prepr. 1997, 38(1), 697-698.
    [173] Xia, J.; Zhang, X.; Matyjaszewski, K. Atom Transfer Radical Polymerization of 4-Vinylpyridine. Macromolecules 1999, 32, 3531-3533.
    [174] Zeng, F.; Shen, Y.; Zhu, S. Atom-Transfer Radical Polymerization of 2-(N,N-Dimethylamino)ethyl Acrylate. Macromol. Rapid Commun. 2002, 23, 1113-1117.
    [175] Saikia, P. J.; Goswami, A.; Baruah, S. D. Transition Metal-Catalyzed Atom Transfer Radical Polymerization of Stearyl Methacrylate in the Presence of Carbon
    
    Tetrabromide and a Conventional Radical Initiator. J. Appl. Polym. Sci. 2002, 86,386-394.
    [176] Cui, L.; Lattermarm, G. Synthesis and Characterization of New Acrylate and Methacrylate Monomers with Pendant Pyridine Groups. Macromol. Chem. Phys. 2002, 203, 2432-2437.
    [177] Ma, I. Y.; Lobb, E. J4 Billingham, N. C.; Armes, S. P.; Lewis, A. L.; Lloyd, A. W.; Salvage, J. Synthesis of Biocompatible Polymers. 1. Homopolymerization of 2-Methacryloyloxyethyl Phosphorylcholine via ATRP in Protic Solvents: An Optimization Study. Macromolecules 2002, 35(25), 9306-9314.
    [178] Otazaghine, B.; Boutevin, B.; Lacroix-Desmazes, P. Controlled Radical Polymerization of n-Butyl a-Fluoroacrylate. 1 - Use of Atom Transfer Radical Polymerization as the Polymerization Method. Macromolecules 2002, 35(20), 7634-7641.
    [179] Kasko, A. M.; Grunwald, S. R.; Pugh, C. Effect of End Groups on the Thermotropic Behavior of Linear Poly[11-(4 Prime-Cyanophenyl-4 Double Prime -Phenoxy)undecyl Acrylate]s Prepared by ATRP and Their Topological Blends. Macromolecules 2002, 35(14), 5466-5474.
    [180] Matyjaszewski, K.; Wang, J. S. Atom- or Group- Transfer Polymerization and Polymers Produced by the Process. WO Pat. 9630421, U.S. Pat. 5,763,548.
    [181] Yu, Q.; Zeng, F.; Zhu, S. Atom Transfer Radical Polymerization of Poly(ethylene glycol) Dimethacrylate. Macromolecules 2001, 34, 1612-1618.
    [182] Patten, T.; Matyjaszewski, K. Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. Adv. Mater. 1998,10, 901-915.
    [183] 陈广强,吴志强.N-取代马来酰亚胺和苯乙烯的原子转移自由基共聚合.高分子学报 1999,(4),506-508.
    [184] Chen, G.-Q.; Wu, Z.-Q.; Wu, J.-R.; Li, Z.-C.; Li, F.-M. Synthesis of Alternating Copolymers of N-Substituted Maleimides with Styrene via Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 232-234.
    [185] Jiang, X.; Xia, P.; Liu, W.; Yan, D. Atom Transfer Radical Copolymerization of Styrene and N-cyclohexylmaleimide. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 1203-1209.
    [186] Jiang, X.; Yan, D.; Zhong, Y.; Liu, W. Atom Transfer Radical Copolymerization of
    
    Methyl Methacrylate and N-cyclohexylmaleimide. Polym. Prepr. 2000, 41(1), 442-443.
    [187] Chen, X.-P.; Sufi, B. A.; Padias, A. B.; Hall, H. K., Jr. Controlled/"living" Reverse Atom Transfer Radical Polymerization of a Monocyclic Olefin, Methyl 1-Cyclobutenecarboxylate. Macromolecules 2002, 35(11), 4277-4281.
    [188] 刘青,应圣康,万小龙.原子转移自由基聚合所制备的聚合物中催化剂的除去方法.CN:1210111A,1999-03-10.
    [189] 万小龙,应圣康,刘青.原子转移自由基聚合体系催化剂的脱除与2,2'-联二吡啶的回收.石油化工 2000,29(8),565-574.
    [190] Shen, Y.; Zhu, S. Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper Bromide-Tetraethyldiethylenetriamine Grafted on Soluble and Recoverable Poly(ethylene-b-ethylene glycol) Supports. Macromolecules 2001, 34(25), 8603-8609.
    [191] Shen, Y.; Zhu, S.; Zeng, F.; Pelton, R. H. Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. Macromolecules 2000, 33(15), 5427-5431.
    [192] Shen, Y.; Zhu, S.; Pelton, R. Effect of Ligand Spacer on Silica Gel Supported Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 2001, 34(17), 5812-5818.
    [193] Hong, S. C.; Lutz, J.-F.; Inoue, Y.; Strissel, C.; Nuyken, O.; Matyjaszewski, K. Use of an Immobilized/Soluble Hybrid ATRP Catalyst System for the Preparation of Block Copolymers, Random Copolymers, and Polymers with High Degree of Chain End Functionality. Macromolecules 2003, 36(4), 1075-1082.
    [194] Kickelbick, G.; Paik, H.-j.; Matyjaszewski, K. Immobilization of the Copper Catalyst in Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 2941-2947.
    [195] Honigfort, M.E.; Brittain, W.J.; Bosanac, T.; Wilcox, C.S. Use of Precipitons for Copper Removal in Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 4849-4851.
    [196] Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional Polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2001, 26, 337-377.
    [197] Ambade, A.V.; Kumar, A. Controlling the Degree of Branching in Vinyl
    
    Polymerization. Prog. Polym. Sci. 2000, 25, 1141-1170.
    [198] Wang, J.S.; Matyjaszewski, K. Controlled/"living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
    [199] Ying, S.K.; Zhang, Z.B.; Wang, S.R.; Shi, Z.Q. Novel Fluorinated Block Copolymers for the Construction of Low Energy Surfaces. Polym. Prepr. 1999, 40(2), 1501-1502.
    [200] 邹友思,邱志平,庄荣传,林东海,戴李宗.甲基丙烯酸丁酯和苯乙烯的原子转移自由基共聚.高分子学报 1999,(2),146~149.
    [201] Tsarevsky, N. V.; Sarbu, T.; Gobelt, B.; Matyjaszewski, K. Synthesis of Styrene-Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules 2002, 35(16), 6142-6148.
    [202] BIEDRON, T.; KUBISA P. Atom Transfer Radical Polymerization of Acrylates in an Ionic Liquid: Synthesis of Block Copolymers. Jpolym. Sci. Part A: Polym. Chem. 2002, 40, 2799-2809.
    [203] Elyashiv-Barad, S.; Greinert, N.; Sen, A. Copolymerization of Methyl Acrylate with Norbornene Derivatives by Atom Transfer Radical Polymerization. Macromolecules 2002, 35(19), 7521-7526.
    [204] Liu, S.; Elyashiv, S.; Sen, A. Copper-Mediated Controlled Copolymerization of Methyl Acrylate with 1-Alkenes under Mild Conditions. J.. Am. Chem. Soc. 2001, 123(50), 12738-12739.
    [205] Liu, Y.; Wang, L.; Pan, C. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 8301~8305.
    [206] Zhang, X.; Matyjaszewski K. Synthesis of Well-Defined Amphiphilic Block Copolymers with 2-(Dimethylamino)ethyl Methacrylate by Controlled Radical Polymerization. Macromolecules 1999, 32, 1763~1766.
    [207] 傅志峰,石艳,焦书科,黄明智.原子转移自由基聚合制备聚(甲基丙烯酸甲酯-b-苯乙烯)时单体聚合顺序对嵌段效率的影响.高分子学报 1999,(6),692-696.
    [208] Shipp, D.A.; Wang, J.L.; Matyjaszewski, K. Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer Radical Polymerization. Macromolecules 1998, 31, 8005-8008.
    
    
    [209] Smith, A. P.; Fraser, C.L. Luminescent Polymeric Ruthenium Complexes with Polystyrene-b-Poly(methyl methacrylate) Macroligands: The Sequential Activation of Initiator Sites for Blocks Generated by Parallel Polymerization Mechanisms. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4250-4255.
    [210] Kotani, Y.; Kato, M.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers~1. Macromolecules 1996, 29, 6979-6982.
    [211] ZHANG, Z.B.; YING; S.K.; HU,Q.H.;XU, X.D. Semifluorinated ABA Triblock Copolymers: Synthesis, Characterization, and Amphiphilic Properties. J. Appl. Polym. Sci. 2002, 83, 2625-2633.
    [212] Moineau, C.; Millet, M.; Teyssi(?), P.; J(?)r(?)me, R. Synthesis and Characterization of Poly(methyl methacrylate)-block-Poly(n-butyl acrylate)-block-Poly(methyl methacrylate) Copolymers by Two-Step Controlled Radical Polymerization (ATRP) Catalyzed by NiBr_2(PPh_3)_2. Macromolecules 1999, 32, 8277-8282.
    [213] 傅志峰,刘海涛,庄荣传,林东海,戴李宗.α,α-二溴乙酸乙酯作双官能引发剂ABA型嵌段共聚物的合成.高等学校化学学报 2000,21(6),980~982.
    [214] Karanam, S.; Goossens, H.; Klumperman, B.; Lemstra, P. "Controlled" Synthesis and Characterization of Model Methyl Methacrylate/tert-Butyl Methacrylate Triblock Copolymers via ATRP. Macromolecules 2003, 36(9), 3051-3060.
    [215] Jankova, K.; Hvilsted, S. Preparation of Poly(2,3,4,5,6-pentafluorostyrene) and Block Copolymers with Styrene by ATRP. Macromolecules 2003, 36(5), 1753-1758.
    [216] Nakagawa, Y.; Matyjaszewski, K. Development of Novel Attachable Initiator for 'Living' Radical Polymerization and Synthesis of Polysiloxane Block Copolymer. Polym. Prepr. 1996, 37(2), 270-271.
    [217] Nakagawa, Y.; Miller, P.J.; Matyjaszewski, K. Development of Novel Attachable Initiators for Atom Transfer Radical Polymerization. Synthesis of Block and Graft Copolymers from Poly(dimethylsiloxane) Macroinitiators. Polymer 1998, 39, 5163-5170.
    [218] Gaynor, S.G.; Matyjaszewski, K. Step-Growth Polymers as Macroinitators for "Living" Radical Polymerization: Synthesis of ABA Block Copolymers. Macromolecules 1997, 30, 4241-4245.
    
    
    [219] Jankova, K.; kops, J.; Chen, X.; Batsberg, W. Synthesis and Characterization of Polymeric Derivatives Containing Grafted Triorganotin Cinnamates with Electrochemical Chloride Response. Macromol. Rapid Commun. 1999, 20, 219-223.
    [220] Bednarre, K.M.; Biedron, T.; Kubisa, P. A New Titanium Complex Having Two Phenoxy-Imine Chelate Ligands for Ethylene Polymerization. Macromol. Rapid Commun. 1999, 20, 59-65.
    [221] Truelsen, J. H.; Kops, J.; Batsberg, W.; Armes S. P. Novel Polymeric Surfactants: Synthesis of Semi-Branched, Non-Ionic Triblock Copolymers Using ATRP. Macromol. Chem. Phys. 2002, 203, 2124-2131.
    [222] Hussain, H.; Budde, H.; Ho(?)ring, S.; Busse, K.; Kressler, J. Synthesis and Characterization of Poly(ethylene oxide) and Poly(perfluorohexylethyl methacrylate) Containing Triblock Copolymers. Macromol. Chem. Phys. 2002, 203, 2103-2112.
    [223] Tesolaki, P.K.; Koulouri, E.G; Kallitsis, J.K. Synthesis of Rigid-Flexible Triblock Copolymers Using Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 9054-9058.
    [224] Paik, H.J.; Teodorescu, M.; Xia, J. Matyjaszewski, K. Block Copolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 7023-7031.
    [225] Leduc, M.R.; Hayes, W., Fr(?)chet, J.M.J. Controlling Surfaces and Interfaces with Functional Polymers: Preparation and Functionalization of Dendritic-Linear Block Copolymers via Metal Catalyzed "Living" Free Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1-10.
    [226] Leduc, M.R.; Hawker, C.J. Dao, J.; Fr(?)chet, J.M.J. Dendritic Initiators for "Living" Radical Polymerizations: A Versatile Approach to the Synthesis of Dendritic-Linear Block Copolymers. J. Am. Chem. Soc. 1996, 118, 11111-11118.
    [227] Tunca, U.; Erdogan, T.; Hizal, G. Synthesis and Characterization of Well-Defined ABC-Type Triblock Copolymers via Atom Transfer Radical Polymerization and Stable Free-Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2025-2032.
    [228] Meyer, U.; Palmans, A. R. A.; Loontjens, T.; Heise, A. Enzymatic Ring-Opening Polymerization and Atom Transfer Radical Polymerization from a Bifunctional Initiator. Macromolecules 2002, 35(8), 2873-2875.
    
    
    [229] Katayama, H.; Yonezawa, F.; Nagao, M.; Ozawa, F. Ring-Opening Metathesis Polymerization of Norbomene Using Vinylic Ethers as Chain-transfer Agents: Highly Selective Synthesis of Monofunctional Macroinitiators for Atom Transfer Radical Polymerization. Macromolecules 2002, 35(3), 1133-1136.
    [230] Fang, Z.; Kennedy, J. P. Novel Block Ionomers. Ⅰ. Synthesis and Characterization of Polyisobutylene-Based Block Anionomers. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3662-3678.
    [231] Fang, Z.; Kennedy, J. P. Novel Block Ionomers Ⅱ. Synthesis and Characterization of Polyisobutylene-Based Block Cationomers. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3679-3691.
    [232] Cianga, I.; Hepuzer, Y.; Serhatli, E.; Yangci, Y. Synthesis of Block Copolymers by the Transformation of Cationic Polymerization into Reversible Atom Transfer Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2199-2208.
    [233] Zhao,Y.L.; Jiang, J.; Chen, C.F.; Xi, F. Synthesis of Diblock and Triblock Copolymers Containing Dendrons via Living Controlled Radical Polymerization. Polym. Int. 2002, 51, 1334-1339.
    [234] Tang, C.; Kowalewski, T.; Matyjaszewski, K. Preparation of Polyacrylonitrile-block-Poly(n-butyl acrylate) Copolymers Using Atom Transfer Radical Polymerization and Nitroxide Mediated Polymerization Processes. Macromolecules 2003, 36(5), 1465-1473.
    [235] Kim, C.S.; Seung, M.O.; Kim, S.; Cho, C.G. Preparation of Anthracene-Labelled Poly(methyl methacrylate) via Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 1998, 19, 191-196.
    [236] Wang, J.-S.; Greszta, D.; Matyjaszewski, K. Atom Transfer Polymerization (ATRP): A New Approach Towards Well-Defined (Co)polymers. Polym. Mater. Sci. Eng. 1995, 73, 416-417.
    [237] Matyjaszewski, K.; Ziegler, M. J.; Arehart, S. V.; Greszta, D.; Pakula, T. Gradient Copolymers by Atom Transfer Radical Copolymerization. J. Phys. Org. Chem. 2000, 13, 775-786.
    [238] Chambard, G.; Klumperman, B. Atom Transfer Radical Copolymerisation of Styrene and Butyl Acrylate. Ed. Matyjaszewski K. ACS Symposium Series 768, 2000, 197-210.
    
    
    [239] Arehart, S. V.; Matyjaszewski, K. Atom Transfer Radical Copolymerization of Styrene and n-Butyl Acrylate. Macromolecules 1999, 32, 2221-2231.
    [240] Kotani, Y.; Kamigaito, M.; Sawamoto M. Living Random Copolymerization of Styrene and Methyl Methacrylate with a Ru(Ⅱ) Complex and Synthesis of ABC-Type "Block-Random" Copolymers. Macromolecules 1998, 31, 5582-5587.
    [241] Hawker, C.J.; Barclay, G.G.; Grubbs, R.B.; Frechet, J.M.J. Architectural and Structural Control of Styrene Polymerizations by Novel "Living" Free Radical Procedures. Polym. Prepr. 1996, 37(2), 515-516.
    [242] Paik, H.-J.; Gaynor, S.G.; Matyjaszewski, K. Synthesis and Characterization of Graft Copolymers of Poly(vinyl chloride) with Styrene and (Meth)acrylates by Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 1998, 19(1), 47-52.
    [243] Fonagy, T.; Ivan, B.; Szesztay, M. Poly(isobutylene-g-styrene) Graft Copolymers by Quasilving Atom Transfer Radical Grafting of Styrene. Polym. Mater. Sci. Eng. 1998, 79, 3-4.
    [244] Beers, K.L.; Gaynor, S.G.; Matyjaszewski, K. Use of 'Living' Radical Polymerization to Synthesize Graft Copolymers. Polym. Prepr. 1996, 37(1), 571-572.
    [245] Kallitsis, J.K.; Deimede, V. Synthesis of Alternating Polystyrene/Poly(ethyleneoxide) Branched Polymacromonomers. Chem. Eur. J. 2002, 8, 467 - 473.
    [246] Hong, S. C.; Neugebauer, D.; Inoue, Y.; Lutz, J.-F.; Matyjaszewski, K. Preparation of Segmented Copolymers in the Presence of an Immobilized/Soluble Hybrid ATRP Catalyst System. Macromolecules 2003, 36(1), 27-35.
    [247] D. Bontempo, N. Tirelli, G. Masci, V. Crescenzi, J. A. Hubbell. Thick Coating and Functionalization of Organic Surfaces via ATRP in Water. Macromol. Rapid Commun. 2002, 23, 417-422.
    [248] Kizhakkedathu, J.N.; Brooks, D.E. Synthesis of Poly(N, N-dimethylacrylamide) Brushes from Charged Polymeric Surfaces by Aqueous ATRP: Effect of Surface Initiator Concentration. Macromolecules 2003, 36(3), 591-598.
    [249] Jayachandran, K. N.; Takacs-Cox, A.; Brooks, D. E. Synthesis and Characterization of Polymer Brushes of Poly(N,N-dimethylacrylamide) from Polystyrene Latex by Aqueous Atom Transfer Radical Polymerization. Macromolecules 2002, 35(11), 4247-4257.
    [250] Carlmark; A.; Malmstrom, E. Atom Transfer Radical Polymerization from Cellulose
    
    Fibers at Ambient Temperature. J. Am. Chem. Soc. 2002, 124(6), 900-901.
    [251] Gaynor, S. G.; Edelman, S.; Matyjaszewski, K. Synthesis of Branched and Hyperbranched Polystyrenes. Macromolecules 1996, 29, 1079-1081.
    [252] Weimer, M. W.; Freche't, J. M. J.; Gitsov, I. Importance of Active-Site Reactivity and Reaction Conditions in the Preparation of Hyperbranched Polymers by Self-Condensing Vinyl Polymerization: Highly Branched vs. Linear Poly[4-(chloromethyl)styrene] by Metal-Catalyzed ('Living" Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 955-970.
    [253] Matyjaszewski, K.; Gaynor, S. G.; Kulfan, A. Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 1. Acrylic AB* Monomers in "Living" Radical Polymerizations. Macromolecules 1997, 30, 5192-5194.
    [254] Jing, B.; Yang, Y.; Deng, J.; Fu, S.; Zhu, R.; Hao, J.; Wang, W. Preparation of Hyperbranched Polymers by Atom Transfer Radical Polymerization. J. Appl. Polym. Sci. 2002, 83, 2114-2123.
    [255] Mori, H.; Seng, D. C.; Lechner, H.; Zhang, M.; Muller, A. H. E. Synthesis and Characterization of Branched Polyelectrolytes. 1. Preparation of Hyperbranched Poly(acrylic acid) via Self-Condensing Atom Transfer Radical Copolymerization. Macromolecules 2002, 35(25), 9270-9281.
    [256] Ueda, J.; Matsuyama, M.; Kamigaito, M.; Sawamoto, M. Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate: Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers~1. Macromolecules 1998, 31,557-562.
    [257] Ueda, J.; Kamigaito, M.; Sawamoto, M. Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates~1. Macromolecules 1998, 31, 6762-6768.
    [258] Kasko, A. M.; Heintz, A. M.; Pugh, C. The Effect of Molecular Architecture on the Thermotropic Behavior of Poly[11-(4'-cyanophenyl-4"-phenoxy)undecyl acrylate] and Its Relation to Polydispersity. Macromolecules 1998, 31,256-271.
    [259] Matyjaszewski, K.; Miller, P. J.; Fossum, E.; Nakagawa, Y. Synthesis of Block, Graft and Star Polymers from Inorganic Macroinitiators. Appl. Organomet. Chem. 1998, 12, 667-673.
    [260] Matyjaszewski, K; Miller, P.J.; Pyun, J.; Kichelbick, G.; Diamanti, S. Synthesis and
    
    Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators. Macromolecules 1999, 32, 6526-6535.
    [261] Hedrick, J. L.; Trolls(?)s, M.; Hawker, C. J.; Atthuff, B.; Claesson, H.; Heise, A.; Miller, R. D.; Mecerreyes, D.; J(?)ro(?)me, R.; Dubois, P. Dendrimer-like Star Block and Amphiphilic Copolymers by Combination of Ring Opening and Atom Transfer Radical Polymerization. Macromolecules 1998, 31, 8691-8705.
    [262] Klok, H.A.; Becker, S.; Schuch, F.; Pakula, T.; M(?)llen, K. Fluorescent Star-Shaped Polystyrenes: "Core-First" Synthesis from Perylene-Based ATRP Initiators and Dynamic Mechanical Solid-State Properties. Macromol. Chem. Phys. 2002, 203, 1106-1113.
    [263] Robello, D.R.; Andr(?), A.; McCovick, T.A.; Kraus, A.; Mourey, T.H. Synthesis and Characterization of Star Polymers Made from Simple, Multifunctional Initiators. Macromolecules 2002, 35, 9334-9344.
    [264] Glauser, T.; Stancik, C. M.; Moller, M.; Voytek, S.; Gast, A. P.; Hedrick, J. L. Dendritic-linear Miktoarm Star Polymers from Orthogonal Protected. Macromolecules 2002, 35(15), 5774-5781.
    [265] Moinard, D.; Taton, D.; Gnanou, Y.; Rochas, C.; Borsali, R. SAXS from Four-Arm Polyelectrolyte Stars in Semi-Dilute Solutions. Macromol. Chem. Phys. 2003, 204, 89-97.
    [266] Yoo, M.; Heise, A.; Hedrick, J. L.; Miller, R. D.; Frank, C. W. Photophysical Characterization of Conformational Rearrangements for Amphiphilic 6-Arm Star Block Copolymers in Selective Solvent Mixtures. Macromolecules 2003, 36(1), 268-271.
    [267] Xia, J.; Zhang, X.; Matyjaszewski, K. Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an "Arm First" Approach. Macromolecules 1999, 32, 4482-4484.
    [268] Zhang, X.; Xia, J.; Matyjaszewski, K. End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization. Macromolecules 2000, 33, 2340-2345.
    [269] Francis, R.; Lepoittevin, B.; Taton, D.; Gnanou, Y. Toward an Easy Access to Asymmetric Stars and Miktoarm Stars by Atom Transfer Radical Polymerization.
    
    Macromolecules 2002, 35(24), 9001-9008.
    [270] Feng, X.-S.; Pan, C.-Y. Block and Star Block Copolymers by Mechanism Transformation. 7. Synthesis of Polytetrahydrofuran/poly(1,3-dioxepane)/polystyrene ABC Miktoarm Star Copolymers by Combination of CROP and ATRP. Macromolecules 2002, 35(6), 2084-2089.
    [271] Holzinger, D.; GUIDO Kickelbick, G. Modified Cubic Spherosilicates as Macroinitiators for the Synthesis of Inorganic-Organic Starlike Polymers. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3858-3872.
    [272] Huang, X.; Wirth, M.J. Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity. Macromolecules 1999, 32, 1694-1696.
    [273] Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immarapom, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; Pakula, T. Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator. Macromolecules 1999, 32, 8716-8724.
    [274] Weme T.V.; Patten, T.E. Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living" Radical Polymerizations from Surfaces. J. Am. Chem. Soc. 2001, 123(31), 7497-7505.
    [275] Kim, J.B.; Bruening, M.L.; Baker, G.L. Surface-Initiated Atom Transfer Radical Polymerization on Gold at Ambient Temperature. J..Am. Chem. Soc. 2000, 122, 7616-7617.
    [276] Huang, W.; Kim, J.-B.; Bruening, M. L.; Baker, G. L. Functionalization of Surfaces by Water-Accelerated Atom-Transfer Radical Polymerization of Hydroxyethyl Methacrylate and Subsequent Derivatization. Macromolecules 2002, 35(4), 1175-1179.
    [277] Jones, D.M.; Huck, W.T.S. Controlled Surface-Initiated Polymerizations in Aqueous Media. Adv. Mater. 2001,13, 1256-1259.
    [278] Zhao, B.; Brittain, W. J. Synthesis, Characterization, and Properties of Tethered Polystyrene-b-polyacrylate Brushes on Flat Silicate Substrates. Macromolecules 2000, 33(23), 8813-8820.
    
    
    [279] Kong, X.; Kawai, T.; Abe, J.; Iyoda, T. Amphiphilic Polymer Brushes Grown from the Silicon Surface by Atom Transfer Radical Polymerization. Macromolecules 2001, 34(6), 1837-1844.
    [280] Mori, H.; Boker, A.; Krausch, G.; Muller, A. H. E. Surface-Grafted Hyperbranched Polymers via Self-Condensing Atom Transfer Radical Polymerization from Silicon Surfaces. Macromolecules 2001, 34(20), 6871-6882.
    [281] Kim, J.B.; Huang, W.X.; Miller, M.D.; Baker, G.L.; Bruening, M.L. Kinetics of Surface-Initiated Atom Transfer Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2003, 41,386-394.
    [282] Th(?)ato, P.; Zentel, R.; Schwarz, S. Synthesis of End-Functionalized Lipopolymers and Their Characterization with Regard to Polymer-Supported Lipid Membranes. Macromol. Biosci. 2002, 2, 387-394.
    [283] Gu, B.; Sen, A. Synthesis of Aluminum Oxide/Gradient Copolymer Composites by Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 8913-8916.
    [284] [1] Pyun, J.; Matyjaszewski, K.; Kowalewski, T.; Savin, D.; Patterson, G.; Kickelbick, G; Huesing, N. Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces. J. Am. Chem. Soc. 2001, 123(38), 9445-9446.
    [285] Jeyaprakash, J. D.; Samuel, S.; Dhamodharan, R.; R(?)he, J. Determination of the Nanostmcture of Polymer Materials by Electron Paramagnetic Resonance Spectroscopy. Macromol. Rapid Commun. 2002, 23,277-281.
    [286] Hideharu, M.; Seng, D.S.; Zhang, M.; M(?)ller, A.H.E. Hybrid Nanoparticles with Hyperbranched Polymer Shells via Self-Condensing Atom Transfer Radical Polymerization from Silica Surfaces. Langmuir 2002, 18, 3682-3693.
    [287] Carrot, G.; Diamanti, S.; Manuszak, M.; Charleux, B.; Vairon, J.-P. Atom Transfer Radical Polymerization of n-Butyl Acrylate from Silica Nanoparticles. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 4294-4301.
    [288] Savin, D.A.; Pyun, J.; Patterson, G.D.; Kowalewski, T.; Matyjaszewski, K. Synthesis and Characterization of Silica-graft-Polystyrene Hybrid Nanoparticles: Effect of Constraint on the Glass-Transition Temperature of Spherical Polymer Brushes. J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 2667-2676.
    [289] Kim, J.-B.; Huang, W.; Bruening, M. L.; Baker, G. L. Synthesis of Triblock
    
    Copolymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules 2002, 35(14), 5410-5416.
    [290] Ejaz, M.; Yamamoto, S.; Tsujii, Y.; Fukuda, T. Fabrication of Patterned High-Density Polymer Graft Surfaces. 1. Amplification of Phase-Separated Morphology of Organosilane Blend Monolayer by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules 2002, 35(4), 1412-1418.
    [291] Xiao, D.; Wirth, M. J. Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules 2002, 35(8), 2919-2925.
    [292] Vestal, C. R.; Zhang, Z. J. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe_2O_4/Polystyrene Core/Shell Nanoparticles. J. Am. Chem. Soc. 2002, 124(48), 14312-14313.
    [293] 潘学军,刘会洲,徐永源.微波辅助提取(MAE)研究进展.化学通报 1999,(5),7-14.
    [294] 但德忠.微波溶样技术.化学通报 1989,(10),46-49.
    [295] Gedye, R.; Smith, F.;Westaway, K.; Ali, H.; Baldisera, L; Laberge, L.; Rousell, J. The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Lett. 1986, 27, 279-282.
    [296] Giguere, R.J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Application of Commerical Microwave Ovens to Organic Sythesis. Tetrahedron Lett. 1986, 27, 4945-4951.
    [297] Jacob, J.; Chia, L.H.L.; Boey, F.Y.C. Thermal and Non-thermal Interaction of Microwave Radiation with Materials. J. Mater. Sci. 1995, 30(27), 5321-5327.
    [298] Wan, J.K.S.; Bamwenda. G; Depew, M.C. Microwave Induced Catalytic Reactions of Carbon Dioxide and Water Mimicry of photosynthesis. Res. Chem. Interm. 1991,16, 241-241.
    [299] Cameron, K.I.; Depew, M.C.; Wan, J.K.S. Pulsed Microwave Catalytic Decomposition of Olefins. Res. Chem. Interm. 1991, 16, 57-57.
    [300] Depew, M.C.; Lem, S.; Wan, J.K.S. Microwave Induced Catalytic Decomposition of Some Alberta Oil Sands and Bitumens. Res. Chem. Interm. 1991, 16, 213-213.
    [301] Bamwenda, G..; Moore, E.; Wan, J.K.S. Production of Acetylene by a Microwave Catalytic Reaction of Water and Carbon. Res, Chem. Interm. 1992, 17, 243-243.
    [302] Dias, A.; Ciminelli, V. S. T. Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology. Chem. Mater. 2003, 15, 1344-1352.
    
    
    [303] Liang, J.; Deng, Z.; Jiang, X.; Li, F.; Li, Y. Photoluminescence of Tetragonal ZrO_2 Nanoparticles Synthesized by Microwave Irradiation. Inorg. Chem. 2002, 41(14), 3602-3604.
    [304] Komarneni, S.; Li, D.; Newalkar, B.; Katsuki, H.; Bhalla, A. S. Microwave-Polyol Process for Pt and Ag Nanoparticles. Langmuir 2002, 18, 5959-5962.
    [305] Boxall, D. L.; Deluga, G. A.; Kenik, E. A.; King, W. D.; Lukehart, C. M. Rapid Synthesis of a Pt_1Ru_1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance. Chem. Mater. 2001, 13,891-900.
    [306] Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions. Chem. Mater. 2001, 13,552-557.
    [307] 矫庆泽,郭金福,毛丽秋,蒋大振.微波辐射下LaNaY沸石的水热交换反应.应用化学 1994,11(3),84-85.
    [308] Newalkar, B. L.; Olanrewaju, J.; Komameni, S. Microwave-Hydrothermal Synthesis and Characterization of Zirconium Substituted SBA-15 Mesoporous Silica. J. Phys. Chem. B. 2001, 105, 8356-8360.
    [309] Liu, B.; Qiao M. H; Wang,J.Q.,; Xie,S. H.; Li ,H. X.; Fan K. N. Amorphous Ni-B/SiO_2 Catalyst Prepared by Microwave Heating and Its Catalytic Activityin Acrylonitrile Hydrogenation. Journal of Chemical Technology & Biotechnology 2003, 78, 512-517.
    [310] Zlotorzynski, A. The Application of Microwave Radiation to Analytical and Environmental Chemistry. Critical Reviews in Analytical Chemistry 1995, 25(1), 43 -76.
    [311] Chatterjee, A.; Shibata, Y.; Yoshinaga, J.; Morita, M. Determination of Arsenic Compounds by High-Performance Liquid Chromatography-Ultrasonic Nebulizer-High Power Nitrogen-Microwave-Induced Plasma Mass Spectrometry. Anal. Chem. 2001,73, 134-134.
    [312] Link, D. D.; Kingston, M. H.; Havrilla, G. J.; Colletti, L. P. Development of Microwave-Assisted Drying Methods for Sample Preparation for Dried Spot Micro-X-ray Fluorescence Analysis. Anal. Chem. 2002, 74, 1165-1170.
    [313] Su, Y.; Duan, Y.; Jin, Z. Development and Evaluation of a Glow Discharge Microwave-Induced-Plasma Tandem Source for Time-of-Flight Mass Spectrometry.
    
    Anal. Chem. 2000, 72, 5600-5605.
    [314] 俞世荣,张寒琦,金钦汉.微波等离子体光谱法测定碲的研究.高等学校化学学报 1990,11(1),84-86.
    [315] 于爱民,杨文军,金钦汉.微波诱导等离子体离子化检测器的研究—气相色谱法同时测定甲醇和水.分析化学 1993,21(11),1337-1339.
    [316] Pithier, U.; Haase, A.; Knapp, G; Michaelis, M. Microwave-Enhanced Flow System for High-Temperature Digestion of Resistant Organic Materials. Anal. Chem. 1999, 71, 4050-4055.
    [317] Numata, M.; Yarita, T.; Aoyagi, Y.; Takatsu, A. Microwave-Assisted Steam Distillation for Simple Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Sediments. Anal. Chem. 2003, 75(6), 1450-1457
    [318] Raman, Ge; Gaikar, V. G..Microwave-Assisted Extraction of Pipeline from Piper Nigrum. Ind. Eng. Chem. Res. 2002, 41(10), 2521-2528.
    [319] Hudaib, M.; Gotti R., Pomponio, R.; Cavrini, V. Recovery Evaluation of Lipophilic Markers from Echinacea Purpurea Roots Applying Microwave-Assisted Solvent Extraction versus Conventional Methods. Journal of Separation Science 2003, 26, 97-104.
    [320] Lin, Bing; Rossow, W. B. Observations of Cloud Liquid Water Path Over Oceans: Optical and Microwave Remote Sensing Methods. Journal of Geophysical Reaearch 1994, 99(D10), 20907-20927.
    [321] Njoku, E.G.; Entekhabi, D. Passive Microwave Remote Sensing of Soil Moisture. Journal of Hydrology 1996, 184, 101-129.
    [322] Maskan M. Microwave/Air and Microwave Finish Drying of Banana. Journal of Food Engineering 2000, 44, 71-78.
    [323] Maskan, M. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits During Hot Air and Microwave Drying. Journal of Food Engineering 2001, 48, 177-182.
    [324] Horikoshi, S.; Hidaka, H.; Serpone, N. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO_2 Dispersions. Environ. Sci. Technol. 2002, 36, 1357-1366.
    [325] Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light. CEM
    
    Publishing: Matthews, NC, 2002.
    [326] Barbry, D.; Torchy, S. Accelerated Reduction of Carbonyl Compounds under Microwave Irradiation. Tetrahedron Lett. 1997, 38, 2959-2959.
    [327] Perreux, L.; Loupy, A. A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations. Tetrahedron 2001, 57, 9199-9223
    [328] Lidstr(?)m, P.; Tierney, J.; Wathey, B.; Westman, J. Corrigendum to "Microwave assisted organic synthesis—a review". Tetrahedron 2001, 57, 10229-10229.
    [329] Larhed, M.; Hallberg, A. Microwave-Assisted High-Speed Chemistry: a New Technique in Drug Discovery. Drug Discovery Today 2001, 6, 406-416.
    [330] Shieh, W.-C.; Dell, S.; Repic, O. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and Microwave-Accelerated Green Chemistry in Methylation of Phenols, Indoles, and Benzimidazoles with Dimethyl Carbonate. Org. Lett. 2001, 3,4279-4281.
    [331] de la Hoz, A.; D(?)az-Ortis, A.; Moreno, A.; Langa, F. Cycloadditions under Microwave Irradiation Conditions: Methods and Applications. Eur. J. Org. Chem. 2000, 3659-3673.
    [332] Alterman, M.; Hallberg, A. Fast Microwave-Assisted Preparation of Aryl and Vinyl Nitriles and the Corresponding Tetrazoles from Organo-halides. J. Org. Chem. 2000, 65, 7984-7989.
    [333] Kuslu, S.; Bayramoglu, M. Microwave-Assisted Dissolution of Pyrite in Acidic Ferric Sulfate Solutions. Ind. Eng. Chem. Res. 2002, 41(21), 5145-5150.
    [334] Bram, G.; Loupy, A.; Majdoub, M. Alkylation of Potassium Actate in "Dry Media" Thermal Activation in Commerical Microwave Oven. Tetrahedron 1990, 46, 5167-5176.
    [335] Wang, Y.L.; Jiang, Y.Z. Solid-liquid Phase Transfer Catalytic Synthesis Ⅷ: The Rapid Alkylation of Ethyl Phenyl Sulfonylacetate Under Microwave Irradiation. Synth. Commun. 1992, 22(15), 2287-2291.
    [336] Ding, J.C.; Gu, H.J.; Wen, J.Z.;Lin, C.Z. Dry Reaction Under Microwave: N-Alkylation of Saccharin on Slilcagel. Synth. Commun 1994, 24(3), 301-303.
    [337] Adamek, F.; Hajek, M. Microwave-assisted Catalytic Addition of Halocompounds to Alkenes. Tetrahedron Lett. 1992, 33(15), 2039-2042.
    [338] Abramovitch, R.A.; Abramovitch, D.A.; Iyanar, K. Application of Microwave Energy
    
    to Organic Synthesis: Improved Technology. Tetrahedron Lett. 1991, 32(39), 52515254.
    [339] Villemin, D.; Alloum, A.B. Dry Reaction Under Microwave: Condensation of Sulfones with Aldehydes on Kf-alumina. Synth. Commun. 1991, 21(1), 63-68.
    [340] Zhu, R.S.; Hong, P.J.; Dai, S.S. Study on the "Dry Reaction" Without any Medium under Microwave Irradiation. Synth. Commun. 1994, 24(17), 2417-2421.
    [341] Alvarez, C.; Delgado, F.; Garcia, O. MnO_2/Bentonite: A New Reactive for the Oxidation of Hantzsch's Dihydropyridines Using Microwave Irradiation, In the Absence of Solvent(Ⅰ). Synth. Commun. 1991, 21(5), 619-624.
    [342] Pepit, A.; Loupy, A.; Marllard, P.; Momenteuu, M. Microwave irradiation in Dry Media: A New and Easy Method for synthesis of Tetrapyrrolic ompounds. Synth. Commun. 1992, 22(8), 1137-1142.
    [343] Villemin, D.; Labiad, B. Dihalocyclopropanation of Phenylthio or Butylthiocycloalkenes under Phase Transfer Conditions: Opening of Cyclopropanes under Microwave Irradation. Synth. Commun. 1992, 22(14), 2043-2052.
    [344] Abenhalm, D.; Loupy, A.; Mahieu, C. Ring Opening of a Fatty Epoxide by Dithylacetamido Malonate in Basic Medium by Phase Transfer Catalysis or under Microwave Irradiation. Synth. Commun. 1994, 24(13), 1809-1816.
    [345] Bora, U.; Saikia, A.; Boruah, R. C. A Novel Microwave-Mediated One-Pot Synthesis of Indolizines via a Three-Component Reaction. Org. Lett. 2003, 5, 435-438.
    [346] Giguere, R.J.; Herberich, B. Microwave Heating in Synthesis: Preparation of Allyldiphenyphosphine Oxide. Synth. Commun. 1991, 21(21), 2197-2201.
    [347] Bbaptistella, L.H.; Neto, A.Z.; Onaga, H, Grodoi, E.A.M. An improved synthesis of 2,3- and 3,4-Unsaturated Pyranosides: the Use of Microwave Energy. Tetrahedron Lett. 1993, 34(52), 8407-8410.
    [348] Rissafi, B.; Louzi, A. E.; Loupy, A.; Petit, A.; Soufiaoui, M.; ouani, S. F. T. Solvent-Free Synthesis of Diaryl α-Tetralones via Michael Addition under Microwave Irradiation. Eur. J. Org. Chem. 2002, 2518-2523.
    [349] Chaouchi ,M.; Loupy, A.; Marque, S.; Petit, A. Solvent-Free Microwave-Assisted Aromatic Nucleophilic Substitution - Synthesis of Aromatic Ethers. Eur. J. Org. Chem. 2002, 7, 1278-1283.
    [350] Tanaka, K.; Toda, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100,
    
    1025-1074.
    [351] Katritzky, A. R.; Singh, S. K. Synthesis of C-Carbamoyl-1,2,3-triazoles by Microwave-Induced 1,3-Dipolar Cycloaddition of Organic Azides to Acetylenic Amides. J. Org. Chem. 2002, 67(25), 9077-9079.
    [352] Olivos, H. J.; Alluri, P. G.; Reddy, M. M.; Salony, D.; Kodadek, T. Microwave-Assisted Solid-Phase Synthesis of Peptoids. Org. Lett. 2002, 4(23), 4057-4059.
    [353] Finaru, A.; Berthault, A.; Besson, T.; Guillaumet, G; Berteina-Raboin, S. Microwave-Assisted Solid-Phase Synthesis of 5-Carboxamido-N-acetyltryptamine Derivatives. Org. Lett. 2002, 4(16), 2613-2615.
    [354] Kidwai, M.; Dave, B; Venkataramanan, R. Microwave Assisted Solid Phase Synthesis of Pyrimidine Derivatives. ChemInform 2003, 34, 2002-2002.
    [355] Larhed, M.; Moberg, C.; Hallberg, A. Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry. Acc. Chem. Res. 2002, 35,717-727.
    [356] Carta, R.; Loddo, L. Effect of Microwave Radiation on the Acetate-Catalyzed Hydrolysis of Phenyl Acetate at 25℃. Ind. Eng. Chem. Res. 2002, 41(24), 5912-5917.
    [357] De Meuse, M. T.; Ryan, C. L. The Microwave Processing of Polymeric Materials. Advances in Polymer Technology 1993, 12, 197-203.
    [358] Chia, H.L.; Jacob, J.; Boey, F.Y.C. Microwave Radiation Effect on the Polymerization of Styrene. J. Polym. Sci. Part A: Polym. Chem. 1996, 34(11), 2087-2094.
    [359] Jacob, J.; Chia, L.H.L.; Boey, F.Y.C. Microwave Polymerization of Poly(methyl acrylate): Conversion Studies at Variable Power. J. Appl. Polym. Sci. 1997, 63(6), 787-797.
    [360] 李杰,赵建青,沈家瑞.微波作用下的甲基丙烯酸甲酯的本体聚合.高分子材料科学与工程 1999,15(2),155-156.
    [361] Liao, L. Q.; Liu, L. J.; Zhang, C. ; He, F.; Zhuo, R. X.; Wan, K. Microwave-Assisted Ring-Opening Polymerization of ε-caprolactone. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1749-1755.
    [362] Dmitrienko, S.G.; Goncharova, L.V.; Zhigulev, A.V.; Nosov, R.E.; Kuzmin, N.M.; Zolotov, Yu.A. Sorption-Photometric Determination of Ascorbic Acid Using
    
    Molybdosilicic Heteropolyacid and Polyurethane Foam after Microwave Irradiation. Analytica Chimica Acta 1998, 373, 131-138.
    [363] 李卫华,王静媛,李跃先,刘福安,李玉玮,汤心颐.微波辐照合成互穿聚合物网络及形态性能研究.高分子学报 1994,4,509-512.
    [364] Tang, X.B.; Lu, J.M.; Zhang, Z.B.; Zhu, X.L.; Wang, L.H.; Li, N.J.; Sun, Z.R. Polycondensation of Sodium Tetrazodiphenyl Naphthionate and Pyromellitic Dianhydfide under Microwave Irradiation and the Performance of the Third-Order Nonlinear Optics. J. Appl. Polym. Sci. 2003, 88(5), 1121-1128.
    [365] 朱秀林,顾梅,路建美.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科学与工程 1994,10(6),46-49.
    [366] 顾梅,朱秀林,路建美,范荣.丙烯酰胺的微波聚合研究.高分子材料科学与工程 1997,13(5),36-39.
    [367] 路建美,朱秀林,顾梅.微波法合成聚丙烯酸钠高吸水性树脂.高分子材料科学与工程 1996,12(4),55-58.
    [368] 路建美,朱秀林,王丽华,余俊,朱健.微波法合成两性高吸水性树脂.石油化工 1997,26(3),152-155.
    [369] 路建美,朱秀林,余俊,朱健.微波法合成阳离子高吸水性树脂.高分子材料科学与工程 1998,14(1),28-30.
    [370] 路建美,朱秀林,朱健,余俊.丙烯酸钠与丙烯酰胺微波辐射共聚.高分子材料科学与工程 1998,14(2),38-40.
    [371] 路建美,朱秀林,胡逢吉,李奕,黄志斌.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂.石油化工 1999,28(1),36-39.
    [372] Lu, J.M.; Zhu, X.L.; Zhu, J.; Yu, J. Microwave Radiation Solid-State Copolymerization in Binary Maleic Anhydride - Dibenzyl Maleate Systems. J. Appl. Polym. Sci. 1997, 66, 129-133.
    [373] Lu, J.M.; Zhu, X.L.; Ji, S.J., Zhu, J.; Chen. Z.X. Microwave Radiation Copolymerization in Solid State of Maleic Anhydride and Allylthiourea. J. Appl. Polym. Sci. 1998, 68, 1563-1566.
    [374] 路建美,朱秀林,朱健,余俊.马来酸酐的微波固相聚合研究.高分子材料科学与工程 1999,15(1),158-160.
    
    
    [375] 路建美,姜琦松,朱秀林,王法.顺丁烯二酸二丁基锡与硬脂酸乙烯酯微波辐射共聚合.石油化工 2000,29(10),764-767.
    [376] 路建美,朱秀林,顾梅.微波法合成聚丙烯酸钠高吸水性树脂.高分子材料科学与工程 1996,12(4),55-58.
    [377] 路建美,朱秀林,王丽华,余俊,朱健.微波法合成两性高吸水性树脂石油化工 1997,26(3),152-155.
    [378] Jahngon, E.G.E.; Lentz, R.R.; Sackett, P.H. Hydrolysis of Adenosine Triphosphate by Conventional or Microwave Heating. J. Org. Chem. 1990, 55(10), 3406-3409.
    [379] Bose, A.K.; Manhas, M.S.; Ghosh, M.; Shah,M.; Raju, S.V.; Bari S. S.; Newaz, N. S.; Banik, K.B., Chaudhary, G. A.; Barakat, J. K. Microwave-Induced Organic Reaction Enhancement Chemistry. 2. Simplified Techniques. J. Org. Chem. 1991, 56(25), 6968-6970.
    [380] Sudrik, S. G.; Chavan, S. P.; Chandrakumar, K. R. S.; Pal, S.; Date, S. K.; Chavan, S. P.; Sonawane, H. R. Microwave Specific Wolff Rearrangement of α-Diazoketones and Its Relevance to the Nonthermal and Thermal Effect. J. Org. Chem. 2002, 67(5), 1574-1579.
    [381] Laruent, R.; Laporterie, A.; Dubac, J.; Berlan, J.; Lefeuvre S.; Audhuy, M. Specific Activation by Microwaves: Myth or Reality?. J. Org. Chem. 1992, 57(26), 7099-7102.
    [382] Mijovic, J.; Fishbain, A.; Wijaya, J. Mechanistic Modeling of Epoxy-Amine Kinetics. 2. Comparison of Kinetics in Thermal and Microwave Fields. Macromolecules 1992, 25(2), 986-989.
    [383] Pollington, S.D.; Bond, G.; Moyes, R.B. The Influence of Microwaves on the Rate of Reaction of Propan-l-ol with Ethanoic Acid. J. Org. Chem. 1991, 56, 1313-1314.
    [384] Santagada, V.; Fiorino, F; Perissutti, E.; Severino, B.; De Filippis, V.; Beniamino, V.;Giuseppe, C. Microwave-Enhanced Solution Coupling of the α,α-Dialkyl Amino Acid, Aib. Tetrahedron Lett. 2001, 42, 5171-5173.
    [385] Sasa, L.; Andrej, S.; Time, K. Kinetics of Catalytic Transfer Hydrogenation of Soybean Oil in Microwave and Thermal Field. J. Org. Chem. 1994, 59(24), 7433-7436.
    [386] Villa, C.; Genta, M. T.; Bergogne, A.; Mariani, E.; Loupy, A. Microwave Activation and Solvent-Free Phase Transfer Catalysis for the synthesis of New Benzylidene Cineole Derivatives as Potential UV sunscreens. Green Chem. 2001, 196-200.
    
    
    [387] Chemat, E; Esveld, E. Microwave Super-Heated Boiling of Organic Liquids: Origin, Effect and Application. Chem. Eng. Technol. 2001, 24, 735-744.
    [388] Jahngen, E.G.E.; Lentz, R.R.; Sackett, P.H. Hydrolysis of Adenosine Triphosphate by Conventional or Microwave Heating. J. Org. Chem. 1990, 55(10), 3406-3409.
    [389] Pollington, S.D.; Bond, G.; Moyes, R.B. The Influence of Microwaves on the Rate of Reaction of Propan-l-ol with Ethanoic Acid. J. Org. Chem. 1991, 56, 1313-1314.
    [390] Alloum, A.B.; Labiad, B.; Villemin, D. Application of Microwave Heating Techniques for Dry Organic Reactions. J. Chem. Soc. Chem. Commum,. 1989, 386-387.
    [391] Shibata, C.; Kashima, T; Ohuchi, K. Nonthermal Influence of Microwave Power on Chemical Reactions. Jpn. J. Appl. Phys. 1996, 35(14), 316-319.
    [392] Chen, S.T.; Tseng, P.H.; Yu, H.M. The Studies of Microwave Effects on the Chemical Reactions. J. Chin. Chem. Soc. 1997, 44, 169-182.
    [393] Baghurst, D.R.; Mingos, D.M.P. Application of Microwave Heating Techniques for the Synthesis of Solid State Inorganic Compounds. J. Chem. Soc. Chem. Commum. 1988, 829-830.
    [394] Mallon, F.K.; Ray, W.H. Enhancement of Solid-state Polymerization with Microwave Energy. J. Appl. Polym. Sci. 1998, 69, 1203-1212.
    [395] Matyjaszewski, K.; Wei, M.; Xia, J.; Gaynor, S.G. Atom Transfer Radical Polymerization of Styrene Catalyzed by Copper Carboxylate Complexes. Macromol. Chem. Phys. 1998, 199, 2289-2292.
    [396] Qiu, J.; Matyjaszewski, K. Polymerization of Substituted Styrenes by Atom Transfer Radical Polymerization. Macromolecules 1997, 30, 5643-5648.
    [397] Coca, S.; Jasieczek, C.; Beers; K.L.; Matyjaszewski, K. Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymerization of 2-Hydroxyethyl Acrylate. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1417-1424.
    [398] Matyjaszewski, K.; Coca, S.; Jasieczek, C.B. Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymerization of Glycidyl Acrylate. Macromol. Chem. Phys. 1997, 198, 4011-4017.
    [399] Grmaud, T.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules 1997, 30, 2216-2218.
    [400] Haddleton, D.M; Jasieczek, C.B.; Hannon, M.J.; Shooter, A.J. Atom Transfer Radical
    
    Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(Ⅰ) Complexes. Macromolecules 1997, 30, 2190-2193.
    [401] Senoo, M.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of N,N-Dimethylacrylamide with RuCl_2(PPh_3)_3-Based Initiating Systems~1. Macromolecules 1999, 32, 8005-8009.
    [402] Caddick, S. Microwave Assisted Organic Reactions. Tetrahedron 1995, 51, 10403-10432.
    [403] Larhed, M.; Moberg, C.; Hallberg, A. Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry. Acc Chem. Res. 2002, 35, 717-727.
    [404] Cheng, Z.P.; Zhu, X.L.; Chen, G.J.; Xu, W.J.; Lu, J.M. Reverse Atom Transfer Radical Solution Polymerization of Methyl Methacrylate under Pulsed Microwave Irradiation. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3823-3834.
    [405] Cheng, Z.P.; Zhu, X.L.; Chen, M.; Chen, J.Y.; Zhang, L.F. Atom Transfer Radical Polymerization of Methyl Methacrylate with Low Concentration of Initiating System under Microwave Irradiation. Polymer 2003, 8, 2243-2247.
    [406] Cheng, Z.P.; Zhu, X.L.; Zhang, L.F.; Zhou, N.C.; Xue, X.R. RATRP of MMA in AIBN/Fecl3/PPh3 Initiation System under Microwave Irradiation. Polym. Bull. 2003, 49, 363-369.
    [407] Zhu, X.L.; Zhou, N.C.; He, X.M.; Cheng, Z.P.; Lu, J.M. Atom Transfer Radical Bulk Polymerization of Methyl Methacrylate under Microwave Irradiation. J. Appl. Polym. Sci. 2003, 88(7), 1787-1793.
    [408] Liu, B.; Hu, C. P. The Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in the Presence of Some Polar Solvents. Eur. Polym. J. 2001, 37, 2025-2030.
    [409] Mijovic, J.; Fishbain, A.; Wijaya, J. Mechanistic Modeling of Epoxy-Amine Kinetics. 2. Comparison of Kinetics in Thermal and Microwave Fields. Macromolecules 1992, 25, 986-989.
    [410] Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C. Synthese Organique Sous Champ Microondes: Premier Exemple D'activation Specifique En Phase Homogene. Tetrahedron Lett. 1991, 32, 2363-2366.
    [411] Ando, T.; Kamigaito, M.; Sawamoto, M. Iron(Ⅱ) Chloride Complex for Living
    
    Radical Polymerization of Methyl Methacrylate~1. Macromolecules 1997, 30, 4507-4510.
    [412] Wootthikanokkhan, J.; Peesan, M.; Phinyocheep, P. Atom Transfer Radical Polymerizations of (Meth)acrylic Monomers and Isoprene. Eur Polym. J. 2001, 37, 2063-2071.
    [413] De La Fuente, J.L.; Femandez-Garcia, M.; Fernandez-Sanz, M.; Madruga, E.L. Solvent Effects on the Synthesis of Poly(methyl methacrylate) by Atom-Transfer Radical Polymerization (ATRP). Macromol. Chem. Phys. 2001, 202, 2565-2571.
    [414] Woodworth, B.E.; Metzner, Z.; Matyjaszewski, K. Copper Triflate as a Catalyst in Atom Transfer Radical Polymerization of Styrene and Methyl Acrylate. Macromolecules 1998, 31, 7999-8004.
    [415] Johnson, R.M.; Christina, Ng.; Samson, C.C.M.; Fraser, C.L. Copper ATRP Catalysts with Quadridentate Amine Ligands: The Effects of Steric and Electronic Tuning on the Polymerization of Methyl Methacrylate. Macromolecules 2000, 33, 8618-8628.
    [416] Gillbert, R.G. Critically-Evaluated Propagation Rate Coefficients in Free Radical Polymerizations - I. Styrene and Methyl Methacrylate. Pure APPl. Chem. 1996, 68, 1491-1494.
    [417] Ferguson, R.C.; Ovenall, D.W. High resolution NMR analysis of the stereochemistry of poly(methyl methacrylate). Macromolecules 1987, 20, 1245-1248.
    [418] Yutaka, Isobe; Tamaki, Nakano; Yoshio, Okamoto. Stereocontrol during the free-radical polymerization of methacrylates with Lewis acids. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1463-1471.
    [419] Moineau, G.; Granel, C.; Dubois, Ph.; J(?)r(?)me, R.; Teyssi(?), Ph. Controlled Radical Polymerization of Methyl Methacrylate Initiated by an Alkyl Halide in the Presence of the Wilkinson Catalyst. Macromolecules 1998, 31,542-544.
    [420] Li, P.; Qiu, K. Reverse Atom Transfer Radical Polymerization of Styrene in the Presence of Tetraethylthiuram Disulfide. Polymer 2002, 43, 3019-3024.
    [421] Wang, X.S.; Luo, N.; Ying, S.K. Liu, Q. The Synthesis of ABA Block Copolymers by Means of 'Living'/Controlled Radical Polymerization Using Hydroxyl-Terminated Oligomers as Precursor. Eur. Polym. J. 2000, 36(1), 149-156.
    [422] Even, M.; Haddleton, D. M.; Kukulj, D. Synthesis and Characterization of Amphiphilic Triblock Polymers by Copper Mediated Living Radical Polymerization.
    
    Eur. Polym. J. 2003, 39(4), 633-639.
    [423] Shen, Y.; Zhu, S.; Zeng, F.; Pelton, R.H. Atom Transfer Radical Polymerization of Alkyl Methacrylates Using T-triazine as Ligand. Macromol. Chem. Phys. 2000, 201(11), 1169-1175.
    [424] Zhu, X.L.; Chen, J.Y.; Cheng, Z.P.; Lu, J.M.; Zhu, J. Emulsion Polymerization of Styrene Under Pulsed Microwave Irradiation. J. Appl. Polym. Sci. 2003, 88, 1787-1793.
    [425] Matyjaszewski, K. Ed. Controlled Radical Polymerization. ACS Symp. Ser. Vol.685; American Chemical Society; Washington, DC, 1998.
    [426] Georges, M.K.; Veregin, R.P.N.; Kazmair, P.M.; Hamer, G.K. Narrow Molecular Weight Resins by a Free-radical Polymerization Process. Macromolecules 1993, 26, 2987-2988.
    [427] Greszta, D.; Matyjaszewski, K. Mechanism of Controlled/"Living" Radical Polymerization of Styrene in the Presence of Nitroxyl Radicals. Kinetics and Simulations. Macromolecules 1996, 29, 7661-7670.
    [428] Deconport, W.; Michalak, L.; Malmstron, E.; Mate, M.; Kurdi, B.; Hawker, C.J. "Living" Free-Radical Polymerizations in the Absence of Initiators: Controlled Autopolymerization. Macromolecules 1997, 30, 1929-1934.
    [429] Moad, G.; Solomon, D.H. The Chemistry of Free Radical Polymerization. Pergamon Press: Oxford, U.K., 1995; P92.
    [430] Gaynor, S.; Greszta, D.; Mardare, D.; Teodorescu, M.; Matyjaszewski, K. Controlled radical polymerization. J. Macromol. Sci., Pure Appl. Chem. 1994, A31(11), 156-178.
    [431] Matyjaszewski, K.; Shigemoto, T.; Frechet, J. M. J.; Leduc, M. Controlled/"Living" Radical Polymerization with Dendrimers Containing Stable Radicals. Macromolecules 1996, 29(12), 4167-4171.
    [432] Fukuda, T.; Terauchi, T.; Goto, A.; Ohno, K.; Tsujii, Y.; Miyamoyo, T.; Kobatake, S.; Yamada, B. Mechanisms and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Macromolecules 1996, 29, 6393-6398.
    [433] Boutevin, B.; Bertin, D. Controlled Free Radical Polymerization of Styrene in the Presence of Nitroxide Radicals I. Thermal initiation. Eur. Polym. J. 1999, 35, 815-825.
    
    
    [434] Kojima, Y.; Koda, S.; Nomura, H.; Kawaguchi, S. Effect of Sonication on Nitroxide-Controlled Free Radical Polymerization of Styrene. Ultrasonics Sonochemistry 2001, 8, 81-83.
    [435] Mayo, F.R. The dimerization of styrene. J. Am. Chem. Soc. 1968, 90, 1289-1295.
    [436] Greszta, D.; Mardare, D.; Matyjaszewski, K. "Living" Radical Polymerization. 1. Possibilities and Limitations. Macromolecules 1994, 27, 638-644.
    [437] Fischer, H. The Persistent Radical Effect In "Living" Radical Polymerization. Macromolecules 1997, 30, 5666-5672.
    [438] Shipp, D.A.; Matyjaszewski, K. Kinetic Analysis of Controlled/"Living" Radical Polymerizations by Simulations. 1. The Importance of Diffusion-Controlled Reactions. Macromolecules 1999, 32, 2948-2955.
    [439] Angot, S.; Murthy, K.S.; Taton, D.; Gnanou, Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars. Macromolecules 1998, 31, 7218-7225.
    [440] Parker, J.; Jones, R.G.; Holder, S.J. Direct Evidence for the Interaction of the Mechanisms of Thermally Initiated and Atom Transfer Radical Polymerization. MacromolecuIes 2000, 33, 9166-9168.
    [441] Jones, R.G.; Holder, S.J. A Convenient Route to Poly(methylphenylsilane)-graft-Polystyrene Copolymers. Macromol. Chem. Phys. 1997, 198, 3571-3579.
    [442] Bamford, C.H. In Comprehensive Polymer Science (First Supplement). Allen, G.; Aggarwal, S.L.; Russo, S. Eds.; Pergamon: Oxford, 1992; P1.
    [443] J(?)r(?)me Gromada and Matyjaszewski, K. Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization. Macromolecules 2001, 34, 7664-7671.
    [444] Chong, K.; Rizzardo, E.; Solomon, D.H. Confirmation of the Mayo Mechanism for the Initiation of the Thermal Polymerization of Styrene. J. Am. Chem. Soc. 1983, 105, 7761-7762.
    [445] Komber, H.; Gruner, M.; Malz, H. ~1H and ~(13)C NMR Signal Assignment for the 4-phenyl-1,2,3,4- Tetrahydro-l-Naphthyl End-group of Autopolymerized Polystyrene. Macromol. Rapid Commun. 1998, 19, 83-88.
    [446 Shen, Y.Q.; Zhu, S.P.; Zeng, F.Q.; Pelton, R. Versatile Initiators for Macromonomer
    
    Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 5399-5404.
    [447] Ascenso, J.; Dias, R.; Gomes, P.F.; Ramao, C.C.; Neiberger, D.; Tkatchenko, I.; Revillon, A. Cationic η~3 -allylmetal complexes, 12. Oligomerization of Styrene with Cationic Allylnickel Compounds: Catalysts, Products and the Influence of Phosphines. Makromol. Chem. 1989, 190, 2773-2787.
    [448] Maier, S.; Sunder, A.; Frey, H.; Mulhaupt, R. Synthesis of Poly(glycerol)-block-Poly(methyl acrylate) Multi-Ann Star Polymers. Macromol. Rapid Commun. 2000, 21,226-230
    [449] Ma, Q.; Wooley, K.L. The Preparation of t-Butyl Acrylate, Methyl Acrylate, and Styrene Block Copolymers by Atom Transfer Radical Polymerization: Precursors to Amphiphilic and Hydrophilic Block Copolymers and Conversion to Complex Nanostructured Materials. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 4805-4820.
    [450] Bednarek, M.; Biedron, T.; Kubisa, P. Studies of Atom Transfer Radical Polymerization (ATRP) of Acrylates by MALDI TOF Mass Spectrometry. Macromol. Chem. Phys. 2000, 201, 58-66.
    [451] Shibayama, M.; Tanaka, T. Volume Phase Transition and Related Phenomena of Polymer Gels in "Responsive Gels: Volume Transitions I". Adv. Polym. Sci. 1993 109, 1-62.
    [452] Peppas, N.A.; Langer R..New challenges in biomaterials. Science 1994, 263(5154), 1715-1720.
    [453] Osada, Y.; Okuzaki, H.; Hori, H. Polymer Gel with Electrically Driven Motility. Nature 1992, 355, 242-242.
    [454] Chen, J.; Park, H.; Park, K. Synthesis of Superporous Hydrogels: Hydrogels with Fast Swelling and Superabsorbent Properties. J. Biomed Mater. Res. 1999, 44, 53-62.
    [455] Durie, S.; Jerabek, K.; Mason, C.; Sherrington, D. C. One-Pot Synthesis of Branched Poly(styrene-divinylbenzene) Suspension Polymerized Resins. Macromolecules 2002, 35(26), 9665-9672.
    [456] A Tuncel, A.; Cicek, H. 2-Hydroxypropylmethacrylate Based Mono- and Bifunctional Gel Beads Prepared by Suspension Polymerization. Polym Int 2000, 49(6), 485-494.
    [457] Kolarz, B.N.; Maria Wojaczy(?)ska, M.W.; Pielichowski, J. Porous Copolymers of
    
    N-vinylcarbazole and Divinylbenzene. Angewandte Makromolekulare Chemie 1991, 192(1), 27-34.
    [458] Abraham, GA.; Kesenci, K.; Fambri, L.; Migliaresi, C.; Gallardo, A.; Rom(?)n, J.S. Microcomposites of Poly(ε-caprolactone) and Poly(methyl methacrylate) Prepared by Suspension Polymerization in the Presence of Poly(ε-caprolactone) Macromonomer. Macromol. Mater. Eng. 2002, 287(12), 938-945.
    [459] Annaka, M.; Matsuura, T.; Kasai, M.; Nakahira, T.; Hara, Y.; Okano, T. Preparation of Comb-Type N-Isopropylacrylamide Hydrogel Beads and Their Application for Size-Selective Separation Media. Biomacromolecules 2003, 4(2), 395-403.
    [460] Lee, W.-F.; Wu, R.-J. Superabsorbent Polymeric Materials. I. Swelling Behaviors of Crosslinked Poly(sodium acrylate-co-hydroxyethyl methacrylate) in Aqueous Salt Solution. J. Appl. Polym. Sci. 1996, 62(7), 1099-1114.
    [461] Wang, G.; Li, M.; Chen, X. Inverse Suspension Polymerization of Sodium Acrylate. J. Appl. Polym. Sci. 1997, 65(4), 789-794.
    [462] Varga, I.; Gilanyi, T.; Meszaros, R.; Filipcsei, G.; Zrinyi, M. Effect of Cross-Link Density on the Internal Structure of Poly(N-isopropylacrylamide) Microgels. J. Phys. Chem. B. 2001, 105(38), 9071-9076.
    [463] McDonald, C. J.; Bouck, K. J.; Chaput, A. B.; Steven. C. J. Emulsion Polymerization of Voided Particles by Encapsulation of a Nonsolvent. Macromolecules 2000, 33, 1593-1605.
    [464] Jiang, C.; Shen, Y.; Zhu, S.; Hunkeler, D. Gel Formation in Atom Transfer Radical Polymerization of 2-(N,N-Dimethylamino)ethyl Methacrylate and Ethylene Glycol Dimethacrylate. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 3780-3788.
    [465] Matyjaszewski, K.; Beers, K.L.; Kern, A.; Gaynor, S.G. . Hydrogels by Atom Transfer Radical Polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the Macromonomer Method. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 823-830.
    [466] Asgarzadeh, F.; Ourdouillie, P.; Beyou, E.; Chaumont, P. Synthesis of Polymer Networks by "Living" Free Radical Polymerization and End-Linking Processes. Macromolecules 1999, 32, 6996-7002.
    [467] Ali, M.M.; St(?)ver, H. D.H. Polymeric Capsules Prepared by in Situ Synthesis and Cross-Linking of Amphiphilic Copolymer by Atom Transfer Radical Polymerization. Macromolecules 2003, 36, 1793-1801.
    
    
    [468] Acar, M.H.; Matjaszewski, K. Block Copolymers by Transformation of Living Anionic Polymerization into Controlled/ "Living" Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 1999, 200, 1094-1100.
    [469] Lu, Z.; Wan, D.; Huang, J. Preparation of PMMA-PS-PMMA via Combination of Anionic and Photoinduced Charge-Transfer Polymerization. J. Appl. Polym. Sci. 1999, 74, 2072-2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700