通过活性阴离子聚合和原子转移自由基聚合相结合制备新型梳形聚合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梳形聚合物作为一类具有特殊链构造的高分子,可用作热塑性弹性体、稳定剂、分离用薄膜、水凝胶、药物载体等,也可用来制备纳米材料,因此这类聚合物的分子链构造设计越来越引起人们的关注。
     结构清楚的梳形聚合物通常采用活性聚合的方法来合成。在众多的活性聚合方法中,活性阴离子聚合发展得最为成熟,是迄今进行高分子链构造设计的最佳方法,但是可聚合单体的范围有限。原子转移自由基聚合(ATRP)虽然发展较晚,但是反应条件温和,单体选择范围很宽。
     本文综合上述两种聚合方法的优点,选择活性阴离子聚合与ATRP相结合制备了三种具有新型链构造的梳形聚合物:高支化梳形聚合物,梳形离聚物和蜈蚣形聚合物。主要研究内容和结果如下:
     1.通过ATRP聚合4-乙烯基苄氧基二苯甲酮,合成了含二苯甲酮侧基的聚苯乙烯,然后利用Wittig反应,将二苯甲酮基团定量的转化为二苯基乙烯(DPE)基团,得到含DPE侧基的聚苯乙烯主链。利用类似方法还合成了含环氧侧基的聚苯乙烯主链。用红外光谱(IR)、核磁氢谱(~1H NMR)和凝胶渗透色谱(GPC)等测试方法对这两种含侧基官能团的主链聚合物分别进行了详细表征,证明得到了分子量可控的、窄分布的含DPE侧基和环氧侧基的聚苯乙烯。
     2.利用活性聚苯乙烯阴离子(PSLi)与含DPE侧基的聚苯乙烯进行偶联反应,制备了每个重复单元含一条侧链的高支化梳形聚苯乙烯。用IR、~1H NMR、GPC和SLS(光散射)等测试方法对其进行了详细表征,并讨论了PSLi与DPE基团的比例和主链与侧链的分子量等因素对接枝率的影响,结果表明PSLi与DPE官能团的偶联反应是定量的,可以通过调节PSLi与DPE官能团的加料比来控制接枝率。
     3.PSLi与含DPE侧基的聚苯乙烯主链进行偶联反应,生成的二苯基甲基阴离子可进一步与亲电试制N,N-二甲氨基-3-氯丙烷反应,得到含氨基的高支化梳形聚合物。用盐酸对其进行季铵化反应后形成含阳离子的梳形离聚物。用~1H NMR、GPC和滴定等方法对其结构和官能化产率进行了详细表征。氨基滴定的结果表明,氨基官能化产率是定量的。离聚物在水溶液中可以自组装
As a kind of polymer with unique chain architectures, comb-like polymers have been used as thermoplastic elastomers, separated membrane, hydrogel, compatibilizer, and drug delivery carriers etc. In addition, they can also be used to prepare nanomaterials. Therefore, the design of chain architecture of comb-like polymers has attracted more and more interest.
    Well-defined comb-like polymers are usually synthesized by living polymerizations. Among all the living polymerization methods, anionic polymerization has been extensively studied, and is the best method to design chain architectures. However, anionic polymerization can only polymerize a limited range of monomers. Atom transfer radical polymerization (ATRP) has been developed late, but its reaction condition is gentle. More importantly, it can polymerize a wide range of monomers.
    In this thesis, we described the synthesis and characterization of three comb-like polymers with novel chain architectures by combination of living anionic polymerization and ATRP, including highly branched comb-like polymers, comb-like ionomers, and centipede-like copolymers. The brief contents and results are as follows:
    1. ATRP of 4-vinylbenzyloxy benzophenone followed by Wittig reaction led to polystyrene backbone with 1, 1-diphenylethene (DPE) pendent groups. In addition, the polystyrene backbone with epoxy pendant groups was also prepared by the similar method. These backbone polymers were characterized by ~1H nuclear magnetic resonance (~1H NMR) spectroscopy, Fourier-transform infrared (IR) spectroscopy, and gel permeation chromatography (GPC) respectively in detail. The results showed that backbone polymers with DPE and epoxy pendant groups, having controlled molecular weight and narrow distribution, were obtained successfully.
    2. The novel highly branched comb-like polystyrenes with one side chain per repeating unit were synthesized by coupling reaction of living polystyrene carbanions (PSLi) with DPE pendant groups of polystyrene backbone. The resulting polymers were characterized by ~1H NMR, IR, GPC, and SLS in detail. The effects of [PSLi] and
引文
[1] M. Szwarc, M. Levey, R. Milkovich, Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers [J]. J. Am. Chem. Soc., 1956, 78: 2656-2657.
    [2] C. Hawker, J. M. J. Frechet, Preparation of Polymers with Controlled Molecular Architecture. A new Convergent Approach to Dendritic Macromolecules[J]. J. Am. Chem. Soc., 1999, 112: 7638-7647.
    [3] H. Iatrou, N. Hadjichristidis, Synthesis of a Model 3-Miktaoarm Star Terpolymer[J]. Macromolecules, 1992, 25: 4649-4651.
    [4] A. Zioga, S. Sioula, N., Synthesis and Morphology of Model 3-Miktoarm Star Terpolymers of Styrene, Isoprene and 2-Vinyl pyridine[J]. Macromol. Symp., 2000, 157: 239-249.
    [5] V. Bellas, H. Iatrou, N. Hadjichfistidis, Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene[J]. Macromolecules, 2000, 33: 6993-6997.
    [6] T. Fujimoto, H. Zhang, T. Kazama, Preparation and Characterization of Novel Star-shaped Copolymers Having 3 Different Branches[J]. Polymer, 1992, 33: 2208-2213.
    [7] H. Huekstadt, V. Abetz, R. Stadler, Synthesis of a Polystyrene-arm-polybutadiene-arm-poly(methyl methacrylate) Triarm Star Copolymer[J]. Macromol. Rapid Commun., 1996, 17: 599-606.
    [8] H. Huckstadt, A. Gopfert, V. Abetz, Synthesis and Morphology of ABC Heteroarm Star Terpolymers of Polystyrene, Polybutadiene and Poly(2-vinylpyridine)[J]. Macromol. Chem. Phys., 2000, 201: 296-307.
    [9] O. Lambert, P. Dumas, G. Hurtrez, Synthesis of an Amphiphilic Triarm Star Copolymer Based on Polystyrene, Poly(ethylene oxide) and Poly(epsilon-caprolactone) [J]. Macromol. Rapid Commun., 1997, 18: 343-351.
    [10] S. Sioula, Y. Tselikas, N. Hadjichristidis, Synthesis of Model 3-Miktoarm Star Terpolymers of Styrene, Isoprene. and Methyl Methacrylate[J]. Macromolecules, 1997, 30: 1518-1520.
    [11] J. Roovers, P. M.Toporowski, Preparation and Characterization of H-shaped Polymers[J]. Macromolecules, 1981, 14: 1174-1178.
    [12] S. Perny, J. Allaier, Synthesis and Structural Analysis of an H-shaped Polybutadiene[J]. Macromolecules, 2001, 34: 5408-5415.
    [13] S. P. Gido, C. Lee, D. J. Pochan, Synthesis, Characterization, and Morphology of Model Graft Copolymers with Tdfunctional Branch Points[J]. Macromolecules, 1996, 29: 7022-7028.
    [14] G. Velis, N. Hadjichristidis, Synthesis of Model PS(PⅠ)(5) and (PⅠ)(5)PS(PⅠ)(5) Nonlinear Block Copolymers of Styrene(S) and Isoprene(Ⅰ)[J]. Macromolecules, 1999, 32: 534-536.
    [15] U. Bayer, R. Stadler, Synthesis and Properties of Amphiphilic Dumbbell-shaped Grafted Block-copolymers. 1. Anionic Synthesis via a Polyfunctional Initiator[J]. Macromol. Chem. Phys., 1994, 195: 2709-2722.
    [16] I. Gitsov, J. M. J. Frechet, Novel Nanoscopic Architectures -Linear-Globular ABA Coplymers with Polymers Dendrimers as A-Blocks and Polystyrene as B-Block[J]. Macromolecules, 1994, 27: 7309-7315.
    [17] Y. Ederle, C. Mathis, Palm Tree- and Dumbbell-like Polymer Architectures Based on C-60[J]. Macromolecules, 1999, 32: 554-558.
    [18] S, Houli, H. Iatrou, N. Hadjichristidis, Synthesis and Viscoelastic Properties of Model Dumbbell Copolymers Consisting of a Polystyrene Connector and Two 32-arm Star Polybutadienes[J]. Macromolecules, 2002, 35: 6592-6597.
    [19] R. P. Quirk, J. J. Ma, Anionic Synthesis of Functionalized Cyclic Macromolecules Using a Living Coupling Agent[J]. Polym. Prepr., 1988, 29: 10-11.
    [20] B. Lepoittevin, P. Hemery, Synthesis of High-molecular-weight Cyclic and Multicyclic Polystyrenes[J]. Polym. Adv. Technol., 2002, 13: 771-776.
    [21] D. Uhrig, J. M. Mays, Synthesis of Combs, Centipedes, and Barbwires: Poly(isoprene-graft-styrene) Regular Multigraft Copolymers with Trifunctional, Tetrafunctional, and Hexafunctional Branch Points[J]. Macromolecules, 2002, 35: 7182-7190.
    [22] M. Kubo, T. Hayashi, H. Kobayashi, Syntheses of Tadpole- and Eight-shaped Polystyrenes Using Cyclic Polystyrene as a Building Block[J]. Macromolecules, 1998, 31: 1053-1057.
    [23] Y. D. Gan, D. H. Dong,. E. Hogen-Esch, Synthesis and Characterization of a Catenated Polystyrene-poly(2-vinylpyridine) Block Copolymer [J]. Macromolecules, 2002, 35: 6799-6803.
    [24] C. D. Eisenbach, T. Heinemann, Thermoplastic Graft Copolymer Elastomers with Chain-folding or Bifurcated Side-chains[J]. Macromol. Chem. Phys., 1995, 196: 2669-2686.
    [25] D. J. Lohse, S. Datta, E. N. Kresge, Graft Copolymer Compatibilizers for Blends of Polypropylene and Ethylene Propylmene Copolymers [J]. Macromolecules, 1991, 24: 561-566.
    [26] H. Q. Feng, J. Tian, C. H. Ye, Compatibilization Effect of Graft Copolymer on Immiscible Polymer Blends, 2. LLDPE/PS/LLDPE-g-PS Systems[J]. J. Appl. Polym. Sci., 1996, 61: 2265-2271.
    [27] M. C. V. Amodm, C. M. F. Oliveira, M. I. B. Tavares, Investigation of PMMA/polyoxide Blends Containing Graft-copolymer Compatibilizers by Using NMR, SEM, and Thermal Analysis [J]. J. Appl. Polym. Sci., 1996, 61: 2245-2251.
    [28] D. Sek, B. Kaczmarczyk, Investigations of Graft Copolymer Compatibilizers foe Blends of Polyethylene and Liquid Crystalline Polyester, 1. FTir Study[J]. Polymer, 1997, 38: 2925-2931.
    [29] Y. Nagase, A. Naruse, K. Matsui, Chemical Modifications of Polysulfone, 2. Gas and Liquid Permeability of Polysulfone Polydimethylsiloxane Graft Copolymer Membranes[J]. Polymer, 1990, 31: 121-125.
    [30] T. Miyata, T. Takagi, T. Kadato, T. Uragami, Characteristics of Permeation and Separation for Aqueous Ethanol Solutions Through Methyl Methacrylate-dimethyl Siloxane Graft Copolymer Membranes[J]. Macromol. Chem. Phys., 1995, 196: 1211-1220.
    [31] A. J. Dualeh, C. A. Steiner, Bulk and Microscopic Properties of Surfactant -bridged Hydrogels Made From an Amphiphilic Graft Copolymer[J]. Macromolecules, 1991, 24: 112-116.
    [32] N. Muramatsu, Y. Yoshida, T. Kondo, Possible Application of Polyamine Graft Copolymer to Targeting Drug Delivery[J]. Chem. Pharm. Bull., 1990, 38: 3175-3176.
    [33] I. W. Hamely, The Physics of Block Copolymer[M]. Oxford: Oxford University Press, 1998.
    [34] T. Thurn-Albrecht, J. Schotter, T. P. Russell, Ultrahigh-density Nanowire Arrays Grown in Self-assembled Diblock Copolymer Templates[J]. Science, 2000, 290: 2126-2129.
    [35] P. Yang, D. Zhao, G. D. Stucky, Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks[J]. Nature, 1998, 396: 152-155.
    [36] M. Templin, A. Franck, U. Wiesner, Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases[J]. Science, 1997, 278: 1795-1798.
    [37] S. I. Stupp, V. LeBonheur, K. Walker, Supramolecular Materials: Self-organized Nanostructures[J]. Science, 1997, 276: 384-389.
    [38] S. A. Jenekhe, X. Linda Chen, Self-assembly of Ordered Microporous Materials from Rod-coil Block Copolymers[J]. Science, 1999, 283: 372-375.
    [39] W. A. Lopes, H. M. Jaeger, Hierarchical Self-assembly of Metal Nanostructures on Diblock Copolymer Scaffolds[J]. Nature, 2001, 414: 735-738.
    [40] 张洪敏,侯元雪,活性聚合[M].中国石油出版社,1998。
    [41] E. Ruckenstein, H. Zhang, Well-defined Graft Copolymers Based on the Selective Living Anionic Polymerization of the Bifunctional Monomer 4-(vinylphenyl)-1-butene[J]. Macromolecules, 1999, 32: 6082-6087.
    [42] H. J. Zhang, E. Ruckenstein, One-pot, Three-step Synthesis of Amphiphilic Comblike Copolymers with Hydrophilic Backbone and Hydrophobic Side Chains[J]. Macromolecules, 2000, 33: 814-819.
    [43] K. Se, H. Yamazaki, T. Shibamoto, A. Takano, T. Fujimoto, Model Block-graft Copolymer via Anionic Living Polymerization: Preparation and Characterization of [poly((4-vinylphenyl)dimethylvinylsilane)-graft-polyisoprene]-block-poly styrene[J]. Macrornolecules, 1997, 30: 1570-1576.
    [44] M. Kowalczuk, G. Adamus, Z. Jedlinski, Synthesis of New Graft Polymers via Anionic Grafting of Beta-butyrolactone on Poly(methyl methacrylate)[J]. Macrornolecules, 1994, 27: 572-575.
    [45] Y. Ederle, F. Isel, S. Grutke, P. J. Lutz, Anionic Polymerization and Copolymerization of Macromonomers: Kinetics, Structure Control[J]. Macrornol. Syrnp., 1998, 132: 197-206.
    [46] M, Miyamoto, M. Sawamoto, T. Higashimura, Living Polymerization of Isobutyl Vinyl Ether with the Hydrogen Iodide Initiating[J]. Macromolecules, 1984, 17: 265-268.
    [47] T. Higashimura, M. Sawamoto, Living Polymerization and Selective Dimerization-2 Extremes of the Polymer Synthesis by Cationic Polymerization[J]. Adv. Polym. Sci., 1984, 62: 49-94.
    [48] R. Faust, B. Lvan, J. P. Kennedy, Living Carbocationic Polymerization. 38. on the Nature of the Active Species in Isobutylene and Vinyl Ether Polymerization[J]. J. Macromol. Sci., Pure Appl. Chem., 1991, A28: 1-13.
    [49] R. Faust, A. Nagy, J. P. Kennedy, Living Carbocationic Polymerization. 5. Linear Telechelic Polyisobutylenes by Bifunctional Initiators [J]. J Macrornol. Sci, Pure Appl. Chem., 1987, A24: 595-609.
    [50] M. Zsuga, J. P. Kennedy, T. Kelen, Living Carbocationic Polymerization. 22. Effect of Polymer Precipitation on Molecular-weight[J]. Polyrn. Bull., 1988, 19: 427-433.
    [51] M. Zsuga, J. P. Kennedy, T. Kelen, Living Carbocationic Polymerization. 29. the Synthesis of Telechelic Polyisobutylenes by the Trans-2, 5-diacetoxy-2, 5 -dimethyl-3-hexene/BC13 Initiating System in 1, 2-dichloroethane in the -30-Degrees to 21-Degrees-C range[J]. Polyrn. Bull., 1989, 21: 273-280.
    [52] S. Kanaoka, M. Sueoka, M. Sawamoto, T. Higashimura, Star-shaped Polymers by Living Cationic Polymerization. 7. Amphiphilic Graft Polymers of Vinyl Ethers with Hydroxyl-groups-Synthesis and Host-guest Interaction [J]. J. Polym. Sci., Polym. Chem. Ed., 1993, 31: 2513-2521.
    [53] O. W. Webster, W. R. Hertler, D. Y. Sogah, W. B. Famham, T. V. Rajanbabu, Group-transfer Polymerization. 1. A New Concept for. Addition Polymerization with Organo-silicon Initiator[J]. J. Am. Chem. Sci., 1983, 105: 5706-5708.
    [54] D. Y. Sogah, O. W. Webster, Telechelic Polymers by Group Transfer Polymerization[J]. J. Polym. Sci., Part C: Polym. Lett., 1983, 21: 927-931.
    [55] W. R. Hertler, D. Y. Sogah, O. W. Webster, B. M. Trost, Group-transfer Polymerization. 3. Lewis Acid Catalysis[J]. Macromolecules, 1984, 17: 1415-1417.
    [56] T. Otsu, M. Yoshida, Role of Initiator-transfer Agent-terminator (Iniferter) in Radical Polymerizations-Polymer Design by Organic Dislfides as Iniferters [J]. Makrom. Chem., Rapid Commun., 1982, 3: 127-132.
    [57] K. Matyjaszewski, J. Xia, Atom Transfer Radical Polymerization[J]. Chem. Rev., 2001, 101: 2921-2990.
    [58] J. Wang, K. Matyjaszewski, Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J]. J. Am. Chem. Soc., 1995, 117: 5614-5615.
    [59] Kato M., Kamigaito M., Sawamoto M., Higashimura T., Polymerization of Methyl Methacrylate with the Carbon Tetrachlodde/Dichlorotris- (td phenylphosphine)ruthenium(Ⅱ)/Methylaluminum Bis(2, 6-di-tert-butyl phenoxide) Initiating System: Possibility of Living Radical Polymerization[J]. Macromolecules, 1995, 28: 1721-1723.
    [60] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of Methyl Methacrylate with the Carbon Tetrachloridel Dichlorotris -(triphenylphosphine)ruthedum(Ⅱ)/Methylaluminum Bis(2, 6-di-tert-butyl phenoxide) Initiating System: Possibility of Living Radical Polymerization[J]. Macromolecules. 1995, 28: 1721-1723.
    [61] J. S. Wang, K. Matyjaszewski, Controlled/"Living" Radical. Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(11) Redox Process[J]. Macromolecules, 1995, 28: 7901-7910.
    [62] V. Percec, B. Barboiu,"Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and Cu~1(bpy)_nCl[J]. Macromolecules, 1995, 28: 7970-7972.
    [63] H. Zhang, X. Sun, Xo Wang, Q. Zhou, Synthesis of a Novel ABC Triblock Copolymer with a Rigid-Rod Block via Atom Transfer Radical Polymerization[J]. Macromol. Rapid Commun., 2005, 26: 407-411.
    [64] M. W. Weimer, J. M. J. Frechet, I. Gitsov., Important of Active-Site Reactivity and Reaction Conditions in the Preparation of Hyperbranched Polymers by Self-condensing Vinyl Polymerization: Highly Branched vs. Linear Poly[4- (chloro methyl)styrene] by Metal-catalyzed"Living" Radical Polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 955-970.
    [65] K. Matyjaszewski, K. L. Beers, A. Kem, Hydrogel by Atom Transfer Radical Polymerizationm, 1. Poly(N-vinylpyrrolidinone-g-styrene) via the Macromonomer Method [J]. J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 823-830.
    [66] S. G. Gaynor, K. Matyjaszewski, Step-growth Polymers as Maeroinitators for"Living" Radical Polymerization: Synthesis of ABA Block Copolymers[J]. Macromolecules, 1997, 30: 4241-4245.
    [67] S. J. Lord, S. S. Sheiko, I. LaRue, H. -I. Lee, K. Matyjaszewski, Tadpole Conformation of Gradient Polymer Brushes [J]. Macromolecules, 2004, 37: 4235-4240.
    [68] T. Fonagy, B. Ivan, S. M. Zesztay, Polyisobutylene-graft-polystrene by Quasiliving Atom Transfer Radical Polymerization of Styrene from Poly (isobutylene-co-p-methylstyrene-co-p-bromomethylstyrene) [J]. Macromol. Rapid Commun., 1998, 19: 479-483.
    [69] X. S. Wang, N. Luo, S. K. Ying[J]. China Synth Rubber Ind, 1997, 20: 117.
    [70] J. S. Wang, D. Greszta, K. Matyjaszewski[J]. Polym. Mater. Sci. Eng., 1995, 73: 416-417.
    [71] S. G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of Branched and Hyperbranched Polystyrenes[J]. Macromolecules, 1996, 29: 1079-1081.
    [72] K. Matyjaszewski, S. G. Gaynor, A. Kalfan, Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization, 1. Acrylic AB~* Monomers in"Living" Radical Polymerizations[J]. Macromolecules, 1997, 30: 5192-5194.
    [73] K. L. Beers, S. G. Gaynor, K. Matyjaszewski, S. S. Sheiko, M. Moiler, The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules, 1998, 31: 9413-9415.
    [74] G. F. Meijs, E. Rizzardo, Living Free-radical Polymerization by Reversible Addition-fragmentation Chain Transfer: The RAFT process[J]. Macromolecules, 1998, 31: 5559-5562.
    [75] B. M. Novak, W. Risse, R. H. Grubbs, The Development of Well-defined Catalysts for Ring-opening Olefin Metathesis Polymerizations(ROMP)[J]. Adv. Polym. Sci., 1992, 102: 47-72.
    [76] K. M. Stridsberg, M. Ryner, A. Albertson, A. C. Albertsson, Controlled Ring-opening Polymerization: Polymers with Designed Macromolecular Architecture[J]. Adv. Polym. Sci., 2002, 157: 41-65.
    [77] Z. Komiya, C. Pugh, R. R. Schrock, Synthesis of Side Chain Liquid Crystal Polymers by Living Ring-opening Metathesis Polymerization. 1. Influence of Molecular Weight, Polydispersity, and Flexible Spacer Length(n=2-8) on the Thermotropic Behavior of the Resulting Polymers[J]. Macromolecules, 1992, 25: 3609-3616.
    [78] Z. Komiya, C. Pugh, R. R. Schrock, Synthesis of Side-chain Liquid Crystal Polymers by Living Ring-opening Metathesis Polymerization. 2. Influence of Molecular Weight, Polydispersity, and Flexible Spacer Length (n = 9-12) on the Thermotropic Behavior of the Resulting Polymers [J]. Marcromolecules, 1992, 25: 6586-6592.
    [79] Z Komiya, R. R. Schrock, Synthesis of Side Chain Liquid Crystal. Polymers by Living Ring-opening Metathesis Polymerization. 5. Influence of Mesogenic Group and Interconnecting Group on the Thermotropic Behavior of the Resulting Polymers[J]. Macromolecules, 1993, 26: 1393-1401.
    [80] H. Zhang, E. Ruckenstein, Graft Copolymers by Combined Anionic and Cationic Polymerizations Based on the Homopolymerization of a Bifunctional Monomer [J]. Macromolecules, 1998, 31: 476-752.
    [81] W. J. Feast, V. C. Gibson, A. E Johnson, Tailored Copolymers via Coupled Anionic and Ring Opening Metathesis Polymerization. Synthesis and Polymerization of Bicyclo[2. 2. 1]hept-5-ene-2, 3-trans-bis(polystyryl carboxylate)s [J]. Polymer, 1994, 35: 3542-3548.
    [82] S. Breuning, V. Heroguez, Y. Gnanou, Ring-Opening Metathesis Polymerization of Omega-norbornenyl Polystyrene Macromonomers and Characterization of the Corresponding Structures[J]. Macromol. Syrup., 1995, 95: 151-166.
    [83] V. Heroguez, Y. Gnanou, M. Fontanille, Synthesis of Alpha-norbomenyl Polystyrene Macromonomers and Their Ring-opening Metathesis Polymerization[J]. Macromol. Rapid Commun., 1996, 17: 137-142.
    [84] T. Tsoukatos, S. Pispas, N. Hadjichristidis, Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization[J]. Macromolecules, 2000, 33: 9504-9511.
    [85] R. Venkatesh, L. Yajjou, C. E. Koning, B. Klumperman, Novel Brush Copolymers via Controlled Radical Polymerization [J]. Macromol. Chem. Phys., 2004, 205: 2161-2168.
    [86] 刘兵,胡春圃,具有预期结构的苯乙烯与丙烯酸丁酯接枝共聚物的合成与表征[J].,高分子学报,2002,1:47-52。
    [1] M. Schappacher, A. Deffieux, New Comblike Copolymers of Controlled Structure and Dimensions Obtained by Grafting Polystyryllithium onto Poly(chloroethyl vinyl ether) Chains [J]. Macromol. Chem, Phys., 1997, 198: 3953-3961.
    [2] T. Tsoukatos, S. Pispas, N. Hadjichristidis, Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization [J]. Macromolecules, 2000, 33: 9504-9511.
    [3] Akira Hirao, Surapich Loykulnant, Takashi Ishizone, Recent Advance in Living Anionic Polymerization of Functionalized Styrene Derivatives [J]. Prog. Polym. Sci., 2002,27: 1399-1471.
    [4] M. Gauthier, L. Tihagwa, J. S. Downey, S. Gao, Arborescent Graft copolymers: Highly Branched Macromolecules with a Core-Shell Morphology [J]. Macromolecules, 1996, 29: 519-527.
    [5] R. P. Quirk, T. Yoo, Y. Lee, J. Kim, B. Lee, Application of 1,1-Diphenylethene Chemistry in Anionic Synthesis of Polymers with Controlled Structures [J]. Adv. Poly. ScL, 2000, 153: 67-162.
    [6] A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S. W. Ryu, N. Haraguchi, A. Matsuo, T. Higashihara, Precise Syntheses of Chain-multi-functionalized Polymers, Star-branched Polymers, Star-linear Block Polymers, Densely Branched Polymers, and Dendritic Branched Polymers Based on Iterative Approach Using Functionalized 1, 1-Diphenylethylene Derivatives [J]. Prog. Polym. Sci., 2005, 30: 111-182.
    [7] H. Zhang, E. Ruckenstein, Graft, Block-Graft and Star-Shaped Copolymers by an in Situ Coupling Reaction [J]. Macromolecules, 1998, 31: 4753-4759.
    [8] H. Zhang, E. Ruckenstein, One-Pot, Three-Step Synthesis of Amphiphilic Comblike Copolymers with Hydrophilic Backbone and Hydrophobic Side Chains [J]. Macromolecules, 2000, 33: 814-819.
    
    [9] M. Antonietti, S. Forster, J. Hartmann, S. Oestreich, Novel Amphiphilic Block Copolymer Reactions and Their Use for Solubilization of Metal Salt and Metal Colloids [J]. Macromolecules, 1996, 29: 3800-3806.
    [10] A. Hirao, N. Shimohara, S. W. Ryu, K. Sugiyama, Synthesis of Highly Branched Comblike Polymers Having One Branch in Each Unit by Linking Reaction of Polystryllithium with Well-defined New Epoxy-Functionalized Polystyrene [J]. Macromol. Syrup., 2004, 217: 17-28.
    [11] K. Matyjaszewski, J. Xia, Atom Transfer Radical Polymerization[J]. Chem. Rev., 2001, 101: 2921-2990.
    [12] V. Coessens, T. Pintauer, K. Matyjaszewski, Functional Polymers by Atom Transfer Radical Polymerization [J]. Prog. Polym. Sci., 2001, 26: 337-377.
    [13] K. Matyjaszewski, S. Coca, C. B. Jasieczek, Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymedzation of Glycidyl Acrylate[J]. Macrom. Chem. Phys., 1997, 18: 4011-4017.
    [14] S. Coca, C. B. Jasieczek, K. L. Beers, K. Matyjaszewski, Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymedzation of 2-Hydroxyethyl Acrylate [J]. J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 1417-1424.
    [15] A. Muhlebach, S. G. Gaynor, K. Matyjaszewski, Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization(ATRP) [J]. Macromolecules, 1998, 31: 6046-6052.
    [16] K. L. Beers, S. G. Gaynor, K. Matyjaszewski, Atom Transfer Radical Polymerization of 2-Hydroxyethyl Methacrylate, Macromolecules, 1999, 32, 5772-5776.
    [17] K. L. Beers, S. G. Gaynor, K. Matyjaszewski, S. S. Sheiko, M. Moiler, The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules, 1998, 31: 9413-9415.
    [18] X. Zhang, J. Xia, K. Matyjaszewski, Controlled/Living" Radical Polymerization of 2-(Dimethylamino)ethyl Methacrylate[J]. Macromolecules, 1998, 31: 5167-5169.
    [19] S. Coca, K. Matyjaszewski, Polymerization of Acrylates by Atom Transfer Radical Polymerization. 1. Homopolymerization of 2-Hydroxyethyl-, Glycidyl-, Vinyl- and Allyl Acrylate[J]. Polym. Prepr., 1997. 38: 691-692.
    [20] K. A. Davis, K. Matyjaszewski, Atom Transfer Radical Polymerization of tert-Butyl Acrylate and Preparation of Block Copolymers[J]. Macromolecules, 2000, 33: 4039-4047.
    [21] K. Ohno, Y. Tsujii, T. Fukuda, Synthesis of a Well-defined Glycopolymer by Atom Transfer Radical Polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 2473-2481.
    [22] K. Matyjaszewski, S. M. Jo, H. J. Paik, S. G. Gaynor, Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization[J]. Macromolecules, 1997, 30: 6398-6400.
    [23] J. Xie, X. Zhang, K. Matyjaszewski, Atom Transfer Radical Polymerization of 4-Vinylpyridine[J]. Macromolecules, 1999, 32: 3531-3533.
    [24] M. Teodorescu, K. Matyjaszewski, Controlled Polymerization of (Methyl)acrylamides by Atom Transfer Radical Polymerization[J]. Macromol. Rapid Commun., 2000, 21: 190-194.
    [1] M. Sawamoto, Ionic Polymerization and Block and Graft Polymers[J]. Int. J. Polym. Mater., 1991, 15: 197-206.
    [2] A. V. Lubnin, J. P. Kennedy, Designed T-Shaped and Comb-Shaped Copolymers of Poly(ethylene oxide) and Polyisobutylene [J]. J. Macromol. Sci., Pure Appl. Chem., 1994, A31: 1943-1453.
    [3] H. Hasegawa, T. Hashimoto, S. T. Hyde, Microdomain Structures with Hyperbolic Interfaces in Block and Graft Copolymer Systems [J]. Polymer, 1996, 37: 3825-3833.
    [4] T. Miyata, T. Takagi, T. Uragami, Microphase Separation in Graft Copolymer Membranes with Pendant Oligodimethylsiloxanes and Their Permseleetivity for Aqueous Ethanol Solutions [J]. Macromolecules, 1996, 29: 7787-7794.
    [5] K. Se, O. Watanabe, Y. Isono, T. Fujimoto, Synthesis and Characterization of Model Block-Graft Copolymers via Anionic-polymerization-introduction of Poly(isoprene) and Poly(ethylene Oxide) as Graft Chains [J]. Makromol. Chem., Macromol. Syrup., 1989, 25: 249-261.
    [6] P. Rempp, E. Franta, J. -E. Herz, Macromolecular Engineering by Anionic Methods [J]. Adv. Polym. Sci., 1988, 86: 145-173.
    [7] M. Schappaeher, A. Deffieux, New Comblike Copolymers of Controlled Structure and Dimensions Obtained by Grafting Polystyryllithium onto Poly(chloroethyl vinyl ether) Chains[J]. Macromol. Chem. Phys., 1997, 198: 3953-3961.
    [8] S. W. Ryu, A. Hirao, Synthesis of Branched Polymers by Means of Living Anionic Polymerization, 7 Synthesis of Well-defined Highly Branched Polymers and Graft Copolymers Having One Branch per Repeating Unit Using Poly(m-halomethylstyrene)s as Backbone Polymers [J]. Macromol. Chem. Phys., 2001, 202: 1727-1736.
    [9] T. Tsoukatos, S. Pispas, N. Hadjichristidis, Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization [J]. Macromolecules, 2000, 33: 9504-9511.
    [10] A. Hirao, N. Shimohara, S. W. Ryu, K. Sugiyama, Synthesis of Highly Branched Comblike Polymers Having One Branch in Each Unit by Linking Reaction of Polystryllithium with Well-defined New Epoxy-Functionalized Polystyrene [J]. Macromol. Syrup., 2004, 217: 17-28.
    [11] R. P. Quirk, T. Yoo, Y. Lee, J. Kim, B. Lee, Application of 1, 1-Diphenylethene Chemistry in Anionic Synthesis of Polymers with Controlled Structures [J]. Adv. Polym. Sci., 2000, 153: 67-162.
    [12] J. Corset, M Castella-Ventura, F. Froment, T. Strzalko, L. Wartski, Formation Mechanism of Acetaldehyde Lithium Enolate by Reaction of n-Butyllithium with Tetrahydrofuran: Infrared and Raman Spectroscopy and Density Functional Theory Calculations[J]. d.. Raman Spectrosc., 2002, 33: 652-668
    [13] R. P. Quirk, T. Yoo, Y. Lee, Applications of 1, 1-Diphenylethene Chemistry in Anionic Synthesis of Polymers with Controlled Structures[J]. Adv. Polym. Sci., 2000, 153: 67-162.
    [1] A. Eisenberg, Clustering of Ions in Organic Polymers. A Theoretical Approach[J]. Macromolecules, 1970, 3: 147-154.
    [2] R. D. Lundberg, H. S. Makowski, Solution Behavior of Ionomers. 1. Metal Sulfonate Ionomers in Mixed-Solvents [J]. J. Polym. Sci. Polym Phys. Ed., 1980, 18: 1821-1836.
    [3] S. Schlick, Ionomers: Characterization, Theory and Applications [M]. New York: CRC Press, 1995: 1-5.
    [4] C. W. Lantman, W. J. Macknight, D. G. Peiffer, S. K. Sinha, R. D. Lundberg, Light Scattering Studies of Ionomer Solutions [J]. Macromolecules, 1987, 20: 1096-1101.
    [5] M. Hara, J. Wu, A. H. Lee, Effect of Intra- and Intermolecular Interactions on Solution Properties of Sulfonated Polystyrene Ionomers[J]. Macromolecules, 1988, 21: 2214-2218.
    [6] A. Eisenberg, M. King, Ion Containing Polymers [M]. New York, San Francisco, London: Academic Press, 1977.
    [7] T. R. Earnest, J. S. Higgins, D. L. Handlin, W. J. McKnight, Small-angle Neutron-Scattering from Polypentenamer Sulfonate Ionomers [J]. Abstracts of Papers of the American Chemical Society. 181 (Mar), 55-MacR 1981.
    [8] R. Longworth, Developments in Ionic Polymers. I [M]. Essex, U. K.: Applied Science Publishers, Ltd., 1983.
    [9] W. M. Risen, Jr., Ionomers: Characterization, Theory and Applications [M]. New York: CRC Press, 1995: 281-300.
    [10] C. W. Lantman, W. J. MacKnight, J. S. Higgins, D. G. Peiffer, S. K. Sinha, R. D. Lundberg, Small-angle Neutron Scattering from Sulfonate Ionomer Solutions. 1. Associating Polymer Behavior[J]. Macromolecules, 1988, 21: 1339-1343.
    [11] C. Chassenieux, T. Nicolai, D. Durand, J. -F. Gohy, R. Jerome, Aggregation Behaviour of Monosulfonated Telecbelic Ionomers[J]. Polym. Int., 2000, 49: 561-566.
    [12] R. D. Lundberg; Philips, R. R., Solution Behavior of Metal Sulfonate lonomers. 2. Effects of Solvents[J]. J. Polym. Sci.: Polym. Phys. Ed., 1982, 20: 1143-1154.
    [13] M. Hara, J. L. Wu, Light Scattering Study of Ionomers in Solution. 2. Low-angle Scattering from Sulfonated Polystyrene Ionomers [J]. Macromolecules, 1988, 21: 402-407.
    [14] M. Hara, J. Wu, A. H. Lee, Solution Properties of Ionomers. 2. Simple Salt Effect[J]. Macromolecutes, 1989, 22: 754-757.
    [15] A. Eisenberg, M. Rinaudo, Polyelectrolytes and Ionomers [J]. Polym. Bull., 1990, 24: 671-671.
    [16] R. P. Quirk, T. -H. Chenong, K. Jiang, D. L. Gomochak, T. Yoo, K. T. Andes, R. T. Mathers, Recent Advances in the Anionic Synthesis of Chain-End Functionalized Polymers[J]. Macromol. Syrup., 2003, 195: 69-74.
    [17] K. Ueda, A. Hirao, S. Nakahama, Synthesis of Polymers with Amino End Groups. 3. Reactions of Anionic Living Polymers with α-Haio-ω-amino Alkanes with a Protected Amino Functionality [J]. Macromolecules, 1990, 23: 939-945.
    [18] R. P. Quirk, T. Lynch, Anionic Synthesis of Primary Amine-Functionalized Polystyrenes Using 1-[4-[N, N-Bis(trimethylsilyl)amino]phenyl]-1-phenyl ethylene [J]. Macromolecules, 1993, 26: 1206-1212.
    [19] R. P. Quirk, L. F. Zhu, Anionic Synthesis of Dimethylamino Functionalized Polystyrenes and Poly(methyl methacrylates) Using 1-(4-Dimethylamino phenyl)-1-phenylethylene [J]. Bri. Polym. J., 1990, 23: 47-54.
    [20] A. Hirao, I. Hattori, T. Sasagawa, K. Yamaguchi, S. Nakahama, Synthesis of Polymers with Primary Amino End Groups, 1 Reaction of Anionic Living Polymers with Protected Aminating Reagents [J]. Makromol. Chem. Rapid Commun., 1982, 3: 59-63.
    [21] R. P. Quirk, Y. Wang, Anionic Difunctionalized with 1, 1-Bis(4-t-Butyl dimethylsiloxyphenyl)ethylene. Synthesis of α, ω-Bis (phenol)-Functionalized Polystyrene Condensation Macromonomers[J]. Polym. Int., 1993, 31: 51-59.
    [22] R. P. Quirk, R. T. Mathers, J. J. Ma, C. Wesdemiotis, M. A. Amould, Reaction of Polymeric Organolithium Compounds with Ethylene Oxide in Hydrocarbon Solution: Determination of Extent of Oligomerization[J]. Macromol. Symp., 2002, 183: 17-22.
    [23] G. J. Summers, R. P. Quirk, Anionic Synthesis of Aromatic Carboxyl Functionalized Polymers. Chain-end Functionalization of Poly(stytyl) lithium with 4, 5-Dihydro-4,4-dimethyl- 2-[4-(1-phenylethenyl) phenyl]oxazole [J]. Polym. Int., 1996, 40: 79-86.
    [24] R. P. Quirk, J. Yin, Carbonation of Polymeric Organolithium Compounds: Effects of Chain End Structure [J]. J. Poym. Sci.: Part A: Polym. Chem., 1992, 30: 2349-2355.
    [25] R. P. Quirk, J. Kuang, Anionic Synthesis and Characterization of ω-Formyl-functionalized Polystyrenes[J]. Polym. Int., 1994, 33: 181.
    [26] G. Braze, R. Jerome, P. Teyssie, Halato-Telechelic Polymers. 4. Synthesis and Dilute-Solution Behavior[J]. Macromolecules, 1982, 15: 920-927.
    [27] J. Bodycomb, M. Hara, Aggregation Behavior of Halato-telechelic Ionomers in a Low-Polarity Solvent 1. Concentration Dependence of Aggregation[J]. Polym. Bull., 1988, 20: 493-498.
    [28] R. P. Quirk, Y. Lee, Quantitative Amine Functionalized of Polymeric Organolithium Compounds with 3-Dimethylaminopropyl Chloride in the Presence of Lithium Chloride[J]. J. Polym. Sci.: Part A: Polym. Chem., 2000, 38: 145-151.
    [1] H. Iatrou, N. Hadjichristidis, Synthesis of a Model 3-Miktoarmf Star Terpolymer [J]. Macromolecules, 1992, 25: 4649-4651.
    [2] R. P. Quirk, B. J. Lee, L. E. Schock, Anionic Synthesis of Polystyrene and Polybutadiene Heteroarm Star Polymers[J]. Makromol. Chem., Macromol. Symp., 1992, 53: 201-210.
    [3] C. M. Femyhough, R. N. Young, The Synthesis of Diene-Alkyl Methacrylate Diblock and Heteroarm Star Copolymers[J]. Macromol. Symp., 2000, 161: 103-111.
    [4] J. Wei, J. L. Huang, Synthesis of an Amphiphilic Star Triblock Copolymer of Polystyrene, Poly(ethylene oxide), and Polyisoprene Using Lysine as Core Molecule[J]. Macromolecules, 2005, 38: 1107-1113.
    [5] D. M. Knauss, H. A. Al-Muallem, Polystyrene with Dendritic Branching by Convergent Living Anionic Polymerization. Ⅱ. Approach Using Vinylbenzyl Chloride[J]. J. Polym. Sic. Part A: Polym. Chem., 2000, 38: 4289-4298.
    [6] S. Houli, H. Iatrou, N. Hadjichristidis, D. VIassopoulos, Synthesis and Viscoelastic Properties of Model Dumbbell Copolymers Consisting of a Polystyrene Connector and Two 32-Arm Star Polybutadienes[J]. Macromolecules, 2002, 35: 6592-6597.
    [7] M. Kubo, T. Hayashi, H. Kobayashi, T. Itoh, Syntheses of Tadpole- and Eight-Shaped Polystyrenes Using Cyclic Polystyrene as a Building Block[J]. Macromolecules, 1998, 31: 1053-1057.
    [8] S. Angot, D. Tatton, Y. Gnanou, Amphiphilic Stars and Dendrimer-Like Architectures Based on poly(Ethylene Oxide) and Polystyrene[J]. Macromolecules, 2000, 33: 5418-5426.
    [9] M. Schappacher, J. L. Putaux, C. Lefebvre, A. Deffieux, Molecular Containers Based on Amphiphilic PS-b-PMVE Dendrigraft Copolymers: Topology, Organization, and Aqueous Solution Properties[J]. J. Am. Chem. Soc., 2005, 127: 2990-2998.
    [10] M. Schappacher, A. Deffieux, J.-L. putaux, P. Viville, R. Lazzaroni, Synthesis and Characterization of Water-Soluble Amphipatic Polystyrene-Based Dendrigrafts[J]. Macromolecules, 2003, 36: 5776-5783.
    [11] H. Iatrou, J. W. Mays, N. Hadjichristidis, Regular Comb Polystyrenes and Graft Polyisoprene/Polystyrene Copolymers with Double Branches("Centipedes"). Quality of (1, 3-Phenylene) bis(3-methyl-1-phenylpentylidene) dilithium Initiator in the Presence of Polar Additives[J]. Macromolecules, 1998, 31: 6697-6701.
    [12] D. Uhrig, J. W. Mays, Synthesis of Combs, Centipedes, and Barbwires: Poly(isoprene-graft-styrene) Regular Multigraft Copolymers with Trifunctional, Tetrafunctional, and Hexafunctional Branch Points[J]. Macromolecules, 2002, 35: 7182-7190.
    [13] S. W. Ryu, H. Asada, A. Hirao, Synthesis of Novel Well-Defined Substituted Polystyrenes Functionalized with Two and Four Benzyl Bromide Moieties in Each Monomer Unit and Their Application to Densely Branched Polymer Synthesis [J]. Macromolecules, 2002, 35: 7191.
    [14] S. W. Ryu, H. Asada, T. Watanahe, A. Hirao, Synthesis of Well-Defined High-Density Branched Polymers Carrying. Two Branch Chains in Each. Repeating Unit by Coupling Reaction of Benzyl Bromide-Functionalized Polystyrenes with Polymer Anions Comprisedof Two Polymer Segments[J]. Macromolecules, 2004, 37: 6291-6298.
    [15] R. Fayt, R. Forte, C. Jacobs, R. Jerome, T. Ouhadi, Ph. Teyssie, S. K. Varshney, New Initiator System for the"Living" Anionic Polymerization of tert -Alkyl Acrylates[J]. Macromolecules, 1987, 20: 1442-1444.
    [16] D. Kunkel, A. H. E. Muller, Effect of Lithium Chloride on the Kinetics and MWD in the Anionic Polymerization of(Methyl)acrylates[J]. Abstracts of Papers of the American Chemical Society, 201: 94-Poly Part 2, 1991, APR 14: 301-302.
    [17] R. P. Quirk, B. Lee, Adducts of Polymeric Organolithiums with 1, 1-Diphenylethylene. Rates of Formation and Crossover to Styrene and Diene Monomers[J]. Macromol. Chem. Phys., 2003, 204: 1719-1737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700