排爆机器人遥操作性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排爆机器人是最典型的遥操作机器人。本文在国家863项目“反恐排爆机器人研究“、国家863项目“消防侦察机器人研究”和国家自然科学基金项目“遥操作机器人操作性能研究”的支持下,从系统的角度对影响排爆机器人遥操作性能的各主要因素进行了分析研究,重点研究排爆机器人排爆作业安全性差、效率低和操作者紧张程度高等几个方面,对排爆机器人的开发设计提供指导性建议。
     从排爆机器人半自主爆炸物抓取研究入手,在分析了排爆作业的瓶颈在于如何克服二维图像无法正确指导操作者操作机械臂抓取爆炸物后,作者创新性的提出了基于激光测距的环境建模和爆炸物定位方法,利用智能搜索A*算法,实现了爆炸物的半自主抓取。另外,作者试图通过双目立体视觉来定位爆炸物,但结果表明,由于排爆机器人的移动性、机械臂的不够精确性等原因双目视觉得到的爆炸物位置数据有很大误差,其应用受到了限制。在从半自主抓取爆炸物这个局部研究的基础上展开,引出了下一章的内容,从系统的角度全面考虑排爆机器人遥操作性能。
     提出了排爆机器人遥操作性能的概念,并分析了体现遥操作性能的性能指标。在遥操作机器人的性能和功能基础上,人们对其提出了更高的标准,要求其能在更复杂和非结构化的环境下完成更难的工作。影响排爆机器人遥操作性能的6个一级性能指标,每一个都为多个二级性能指标的加权和,找出影响性能的根本原因,提高排爆机器人的整体遥操作性能。这些性能指标的提出为如何提高排爆机器人的遥操作性能指明了方向,并进行了量化分析。根据用途的不同,对排爆机器人进行了分类,给出了每一类对应的两级性能指标的权重参数,并以侦察型排爆机器人为例加以说明。
     采用层次分析法,从轮式、履带式、关节式、“关节-轮”式、“关节-履带”式五种机构中为排爆机器人SUPER-Ⅱ的移动载体选择了一种最优机构形式。分析了传统三自由度排爆机械臂的局限性,设计出了六冗余自由度机械臂。增加了一个主工作平面内冗余自由度、一个腰部转动自由度和一个小臂伸缩自由度,很大程度上扩大了机器人的操作空间,增加了排爆操作的精确性,提高了排爆操作的效率,并使得机器人作业范围和柔性大为增强,并得出了该机械臂三维工作空间。
     系统阐述了排爆机器人的安全性能。提出了提高机械臂操作安全性能的有效方法之一就是实现机械臂的受控联动。创新性地简化了六自由度机械臂运动学模型,将三臂联动功能引入排爆作业,增加了操作安全性和效率,并推导出了联动方程。基于多传感器融合,特别是腕力传感器的融合,提出了机器人的防倾覆设计。另外,结合机器人两轮编码器数据和超声波传感器数据,根据ICP算法,推导出了排爆机器人在通讯意外中断时可采取的回撤路径算法。专门针对爆炸物抓取设计了一个包括柔力夹紧机构、强力固定机构和安全合抱机构在内的气动驱动手爪,其少自由度和高抓取性能的特点使得爆炸物抓取更为安全而有效。
     分析了微控制器在排爆机器人上的应用,包括PLC、单片机、ARM嵌入式和DSP等,通过与工业机器人控制系统的比较,需要将排爆机器人传感系统的研究重点放在其有限软硬件资源上。从遥操作机器人必须要将周围的环境信息实时传达给远地操作者的特点,分析了排爆机器人的传感器接口。为解决环境信息的实时传递,本文以VC++和OpenGL为工具,创新性地将虚拟现实技术中的视觉临场感和力觉临场感引入排爆机器人系统,通过各种传感器将远地排爆机器人与环境的交互信息实时地反馈到本地操作者处,生成和远地环境一致的虚拟环境,使操作者产生身临其境的感受,从而实现对机器人灵活的控制,完成作业任务。
     通过搭建排爆操作的坐标系框架,研究了操作者通过观察一个或多个视频画面操作主手来控制从手,将从手期望的运动变换到主手上需要的运动所必然经历的视频画面在心理上变换(比如旋转、平移、缩放、变形)所引起的心理负载。通过构建合理的人机接口来使这些心理的负载更少,以减少操作者的训练时间、提高完成任务的表现、扩充操作者人才库。
EOD robot is the most typical robot of the teleoperation robot. This research paper is supported by National 863 Projects“EOD Robot Research”,“Fire Reconnaissance Robot Research”and the National Natural Science Foundation Project (Teleoperation Performance Research). From the system perspective, this paper analysed and studied the major impact factors of EOD robot teleoperation performance. From feedbacks of EOD robot users, current EOD robot performance is far away from the actual demand, mainly manifested in the poor safety in operation, low efficiency and high level of operator tension. This paper is focused on it and will help to give a guide to EOD robots design.
     This paper started from semi-autonomous bomb fetching of EOD robot. Based on the analysis of EOD operation’s bottleneck, which is how a operator can fetch bombs by watching the two-dimensional video images, a new method for locating explosives was innovatively given by the author, which was based on laser ranging environmental modeling and bomb positioning. The intelligent A* search algorithm was used to achieve a manned autonomous bomb fetching. In addition, we tried to use binocular stereo vision to obtain explosives positioning. But experiment results show that the binocular vision positioning has great errors due to the mobile character of EOD robot and the lack of precision of the mobile manipulator. Therefore, its application has a lot of restrictions. Finally, we come to an important concept, EOD robot teleoperation performance. How to improve the performance from the system view is the main task of next chapter.
     The concept of EOD robot teleoperation performance was brought out and the elements which affect the EOD robot teleoperation performance were analysed. In the performance and functions of teleoperation robot, people require that they can do more difficult jobs in more complex and unstructured environments. Each of the 6 key Class I performance elements of EOD robot teleoperation is the sum of several Class II performance elements. These Class II performance elements could affect other Class I performance elements. All these performance elements give clues about how to improve the teleoperation performance of EOD robot. By evaluating the performance of robot system, it will be clearer to know the relationship between the volume and the essence. It will help to find out the root reason and to accelerate the teleoperation robot technology and to improve the teleoperation performance. According to different uses, EOD robot is devided into three types. For each type, the weight coefficients are given both for Class I and Class II performance elements. A example based on a reconnaissance EOD robot was given.
     This paper took a proposal decision-making for EOD robot mobile carriers. By AHP, a most appropriate form of mobile carrier was selected for SUPER-II EOD robot from the 5 types: wheeled style, tracked style, joints style, joints-wheeled style and joints-tracked. After the analysis the Limitations of traditional 3-joint EOD robot, a 6-DOF manipulator was designed. A redundant DOF inside main working plane, a waist rotational DOF and a forearm transportation DOF were added, which expanded robot operation to a much larger space, increased the accuracy of EOD operation, improved efficiency of EOD operation and greatly enhanced the robot operation scope and flexibility. The 3D working envelope was given for the 6-DOF EOD manipulator.
     The safety characters are discussed. One efficient way to improve the manipulator’s safety perfoamance is to make the joints of the manipulator move with cooperation. The kinematics of the 6-DOF EOD manipulator is simplified by a new way. Consequently, the three-arm cooperation movement concept is applied into EOD robot, which greatly increased the operational safety and efficiency. And the cooperation movement equations were deduced. Based on mutle-sensors fusion, especially wrist force sensor’s fusion, the anti-rollover of the robot and submissive control of the manipulaotor are realized. By combining robot encoder data with ultrasonic sensors data and using ICP algorithm, we deduced a retracement path algorithm in case of unexpected communication disruption. A compressed air based paw was designed especially for the EOD robot. It has a gentle clamping machine, a strong clamping machine and a safe holding machine. Its few DOFs and high fetching performance make the bomb fetching more safe and efficient.
     The applications of MCU on EOD robot are analysed, including PLC, single-chip controller, ARM embedded system and DSP. By Comparing with the control system of an industrial robot, the EOD robot sensing system should be emphasized on the limited software and hardware resources of EOD robot. From characteristics of teleoperation robot to transfer the the surrounding environment information to distant operator in real-time, the paper analysed the sensor interface of EOD robot. Using VC++ and OpenGL as a tool, we innovatively brought visual telepresence and force telepresence of virtual reality to EOD robot system. Through a variety of sensors the remote EOD robot’s interaction information with the environment will be presented to the local operator in real-time, which generates the same virtual environment with the remote environment. Therefore, it allows operators to have a realistic feeling to achieve flexible control of the robot to complete their tasks.
     By structuring the coordinate system framework of EOD operation, the mental load of the operator was studied, which was inevitably caused by the psychological transformation of video graph (such as rotation, translation, scaling, deformation) when the operator drives the master robot to operate the slave robot by watching one or more video screens. The target is to construct a reasonable man-machine interface to make these mental load less and to reduce operator training time and improve the performance of operation, expand the pool of operators.
引文
[1]孔新立,金丰年,蒋美蓉.恐怖爆炸袭击方式及规模分析,爆破, 2007,24(3), 88-92
    [2] www.rand.org
    [3] Leger P.C., Trebi-Ollennu A., Wright J.R., etc., Mars Exploration Rover surface operations: driving spirit at Gusev Crater, IEEE International Conference on Systems, Man and Cybernetics, Volume 2, 10-12 Oct. 2005 Page(s):1815-1822
    [4] Guthart G.S., Salisbury J.K., The IntuitiveTM telesurgery system: overview and application, IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA '00. Volume 1, 24-28 April 2000 Page(s):618-621
    [5] Low S.C., Phee L., A review of master-slave robotic systems for surgery, IEEE Conference on Robotics, Automation and Mechatronics, Volume 1, 1-3 Dec. 2008 Page(s):37-42
    [6]孙立宁,杨东海,杜志江等.遥操作正骨机器人虚拟手术仿真系统研究,机器人,2004(6), Vol. 26: 533-537.
    [7]张禹,刑志伟,黄俊峰等.远程自治水下机器人三维实时避障方法研究.机器人. 2003(6), Vol. 25:481-485.
    [8] Jiegao Wang, Mukherji R., Ficocelli M., Ogilvie A., Modeling and Simulation of Robotic System for Servicing Hubble Space Telescope, IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2006 Page(s):1026-1031
    [9] Zuniga A L.A., Pedraza O J.C., Gorrostieta E., 11th IEEE International Power Electronics Congress, CIEP, 24-27 Aug. 2008 Page(s):84-89
    [10] http://www.abprecision.co.uk
    [11] http://www.pedsco.com
    [12] http://www.remotec-andros.com
    [13] Sungehul Kang, Changhyan Cho, Jonghwa Lee, etc., ROBHAZ-DT2: Design and Integration of Passive Double Tracked Mobile Manipulator System for Explosive Ordnance Disposal, IEEE International Conference on Intelligent Robots and Systems, 2003, 3, 2624-2629
    [14] Ryu D, Hwang C S, Kang S. Wearable Haptic-based Multi-modal Tele-operation of Field Mobile Manipulator for Explosive Ordnance Disposal. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics[C], 2005: 75-80
    [15] Dongseok, Ryu, Chang-Soon, Hwang. & Sungchul, Kang. (2005). Wearable haptic-based multi-modal tele-operation of field mobile manipulator for explosive ordnance disposal. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Satoshi, T., pp. 75-80, 0-7803-8946-8, Kobe Laboratory, Jun., 2005, International Rescue System Institute, Kobe, Japan
    [16] E, Kruse, R, Gutsche. & F.M., Wahl. (1996). Efficient, iterative, sensor base 3-d map building using rating functions in configuration space. In Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Stephen, B., pp.1067–1072, 0-7803-2988-0, Minneapolis, Apr. 1996, IEEE, Minnesota, USA
    [17] P, Renton, M, Greenspan, H, Elmaraghy. & H, Zghal. (1999). Plan-N-Scan: a robotic system for collision free autonomous exploration and workspace mapping. Journal of Intelligent and Robotic System, Vol.24, pp.207-234, 0921-0296
    [18] Yifeng, Huang. & Kamal, Gupta. (2005). An adaptive configuration-space and work-space based criterion for view planning. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Max, Meng., pp. 3366-3371, 0-7803-8913-1, Edmonton, Aug. 2-6, 2005, IEEE, Alberta, Canada
    [19] Belen, C, Vidal, M. & Francisco, J. (2002). A general method for C-space evaluation and its application to articulated robots. IEEE Transaction on Robotics and Automation, Vol.18, No.1, pp.24-31, 0882-4967
    [20]曾建军,杨汝清,张伟军.有限人参与下的排爆机器人半自主抓取,上海交通大学报,2007, 41(8), 1238-1243
    [21] Zeng Jian-Jun, Yang Ru-Qing, Zhang Wei-Jun. Research on semi-automatic bomb fetching for an EOD robot. International Journal of Advanced Robotics System (2007), Vol. 4, No.2, pp. 247-252.
    [22] Jun Qian, Jian-Jun Zeng, Ru-Qing Yang and Xin-Hua Weng. A fire scout robot with accurate returning for urban environment An All-terrain Mobile Robot for Hazardous Tasks, Robotica, Robotica, 2007, Vol. 25, pp. 351–358.
    [23]顿向明,“关节-轮”式移动机器人自主越障研究,上海,上海交通大学机械工程学院, 1999
    [24]王韬,杨汝清,顿向明等,自主越障时关节轮式移动机器人的姿态设定,上海交通大学学报, 2001, 35(1), 59-63
    [25]徐正飞,关节式移动机器人自主越障行为协调和基于行为的反应控制,上海,上海交通大学机械工程学院, 2001
    [26]乔凤斌,排爆机器人准极限理论研究,上海,上海交通大学机械工程学院, 2006
    [27]刘寒冰,赵丁选.临场感遥操作机器人综述,机器人技术应用, 2004(1), 42-45.
    [28]曾建军,杨汝清.基于激光测距的排爆机器人建模,机械,2008,35(5),63-67
    [29]乔凤斌,杨汝清.六轮移动机器人爬楼梯性能分析,机器人,2004(4),301-305.
    [30]乔凤斌,谢霄鹏,杨汝清.基于准极限理论的排爆机器人直流电动机选择,上海交通大学学报,2005(6),892-895.
    [31]宁柯军,杨汝清.一种自主移动机器人智能导航控制系统设计,上海交通大学学报,2006(7),1074-1078.
    [32]曾建军,杨汝清.基于OpenGL的排爆机器人离线编程系统,系统仿真学报,2007, 19(23), 5506-5509
    [33]乔凤斌,谢霄鹏,杨汝清.反恐机器人SUPER-I转弯性能分析,上海交通大学学报,2005(3),895-904.
    [34] www.directshow.cn
    [35] Horaud Ruda, Dornaika F. Hand-eye calibration. The International Journal of Robotics Research, 2001, 20(3):228-248.
    [36] Portilla H., Basanez L., Augmented Reality Tools for Enhanced Robotics Teleoperation Systems, 3DTV Conference, 7-9 May 2007 Page(s):1-4
    [37] Fan Luqiao, Yao Xifan, Qi Hengnian, A Single-Hand and Binocular Visual System for EOD Robot, IEEE International Conference on Automation and Logistics, 18-21 Aug. 2007 Page(s):1930-1935
    [38]黄献龙,梁斌,吴宏鑫.机器人避碰规划综述,航天控制,2002(1),34-41.
    [39] Lozano-Perez T., A simple motion-planning algorithm for general robot manipulators, IEEE Journal of Robotics and Automation, Volume 3, Issue 3, June 1987 Page(s):224-238
    [40] Ponce J., Faverjon B., On computing three-finger force-closure grasps of polygonal objects, IEEE Transactions on Robotics and Automation, Volume 11, Issue 6, Dec. 1995 Page(s):868-881
    [41] Xiaorui Zhu, Youngshik Kim, Merrell R., Minor M.A., Cooperative Motion Control and Sensing Architecture in Compliant Framed Modular Mobile Robots, IEEE Transactions on Robotics and Automation, Volume 23, Issue 5, Oct. 2007 Page(s):1095-1101
    [42] Yahja A., Stentz A., Singh S., Brumitt B.L., Framed-quad tree path planning for mobile robots operating in sparse environments, IEEE International Conference on Robotics and Automation, Volume 1, 16-20 May 1998 Page(s):650-655
    [43]韩卫军,丁富强,赵锡芳.基于可达流形与接触流形的双臂SCARATES型机器人C空间快速建立方法[J].中国机械工程. 2002, 13(8):702-706.
    [44]连广宇,赵清杰,孙增圻.机器人操作臂奇异路径约束最优轨迹规划.机器人.2002.Nov. Vol24,No6,550-554.
    [45]王伟,杨扬,原魁,马玉村,蔡鹤皋.机器人C空间障碍边界建模与无障碍路径规划.机器人.1998.July. Vol20.No4.280-284.
    [46] Powell L., Hesla E., Electrical engineering calculations, Industry Applications Magazine, IEEE, Volume 15, Issue 6, Nov.-Dec. 2009 Page(s):8-11
    [47] Watanabe T., Yoshikawa T., Grasping Optimization Using a Required External Force Set, IEEE Transactions on Automation Science and Engineering, Volume 4, Issue 1, Jan. 2007 Page(s):52-66
    [48]王国庆,张启先,李大寨,何永强.基于抓持稳定度的多指灵巧手抓持控制,航空学报,1997,18(3):294-298.
    [49] Li Y.F., Daniel R.W., Robot Tip Velocity Measurement For Direct End Effecter Position Control, lEEE International Conference on Intelligent Robots and Systems, Volume 2, July 7-10,1992 Page(s):998-1003
    [50] Hong SG, Kim BS, Kim SH, et al. Artificial force reflection control for teleoperated mobile robots, Mechatronics, 1998, 8 (6): 707-717.
    [51] Rahman S.M.Mizanoor, Ikeura Ryojun, Nobe Masaya, Control of a power assist robot for lifting objects based on human operator's perception of object weight, The 18th IEEE International Symposium on Robot and Human Interactive Communication, Sept. 27 2009 Page(s):84-90
    [52] Lewis Colin, Ware William R., Doemeny Laurence J., The Measurement of Short‐Lived Fluorescence Decay Using the Single Photon Counting Method, Review of Scientific Instruments, Vol.44, Issue 2, Feb 1973 Page(s):107-114
    [53] Shelton J.N., Chiu G.T.-C., Pizlo Z., Exponentially Segmented Positioning of a Single Link Mechanism: A Control Algorithm that Satisfies Fitts' Law,American Control Conference, July 2007 Page(s):5983-5988
    [54] G. Rodriguze, C.R. Weisbin. A New Method to Evaluate Human-Robot System Performance,Autonomous Robots,Volume:14, 2003, pp. 165-178.
    [55]钱钧,杨汝清,翁新华,刘红星.一种安全工作于城区环境的消防侦察机器人,机器人,2006(6), 571-576
    [56] Moore K.L.,Flann N.S.,A six-wheeled omnidirectional autonomous mobile robot, IEEE Control Systems Magazine, 2000, 20(6), 53-66
    [57] Kyung-Seok B yun, Sung-Jae Kim, Jae-Bok Song, Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism, Proceedings of IEEE 2002 International Conference on Robotics and Automation,2002, 1, 720-725
    [58] Baumgartner E.T., Bonitz R.G., Melko J.P., The Mars Exploration Rover instrument positioning system Aerospace Conference, 2005 IEEE 5-12 March 2005 Page(s):1-19
    [59] Damoto R, Cheng W, Hirose S., Holonomic omnidirectional vehicle with new onmi-wheel mechanism, Proceedings of IEEE International Conference on Robotics and Automation, 2001, 1, 773-778
    [60] Sloane E.B., Liberatore M.J., NydickR.L., etc, Clinical engineering technology assessment decision support: a case study using the analytic hierarchy process (AHP), Proceedings of the Second Joint EMBS/BMES, Conference, 2002,3, 1950-1951
    [61] Kunene K.N., Petkov D., Task structuring a brainstorming group activity with an AHP-based group support system, Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, 2889-2898
    [62] Mirabedini H., Gorji A., The sort of fault diagnosis in large synchronous generators analytic hierarchy process (AHP) method, Canadian Conference on Electrical and Computer Engineering, 2001, 2, 715-718
    [63]吴殿廷,李东方,层次分析法的不足及其改进的途径,北京师范大学学报,2004,40(2), 264-268
    [64]蔡自兴.机器人学,清华大学出版社,2000
    [65]张德丰. MATLAB数值分析与应用,国防工业出版社,2009
    [66] P.J. Besl, H.D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
    [67]公茂法,黄鹤松,杨学蔚. MCS-51/52单片机原理与实践,北京航空航天大学出版社,2009
    [68]杜春雷. ARM体系机构与编程,清华大学出版社,2003
    [69]赵世廉. TMS320X240x DSP原理及应用开发指南,北京航空航天大学出版社,2007
    [70] Burdea, G.C., Invited review: the synergy between virtual reality and robotics, IEEE Transactions on Robotics and Automation, Volume 15, Issue 3, June 1999 Page(s):400-410
    [71] Hornung A., Sar-Dessai S., Kobbelt L., Self-calibrating optical motion tracking for articulated bodies, IEEE Proceedings on Virtual Reality, 12-16 March 2005 Page(s):75-82
    [72] Kon T., Oikawa T., Choi Y., A method for supporting robot's actions using virtual reality in a smart space, 18-21 Oct. 2006 Page(s):3519 - 3522
    [73] Oikawa T., Kon T., Yongwoon Choi, Kubota Y., A method of supporting collision avoidance for mobile robots in a smart space, International Conference on Control, Automation and Systems, 17-20 Oct. 2007 Page(s):490-493
    [74] Deutsch J.E., Lewis J.A., Burdea G., Technical and Patient Performance Using a Virtual Reality-Integrated Telerehabilitation System: Preliminary Finding, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Volume 15, Issue 1, March 2007 Page(s):30-35
    [75] Formaglio A., Prattichizzo D., Barbagli F., Dynamic Performance of Mobile Haptic Interfaces , IEEE Transactions on Robotics, Volume 24, Issue 3, June 2008 Page(s):559-575
    [76] Masia L., Casadio M., Morasso P., Using a wrist robot for evaluating how human operators learn to perform pointing movements to a rotating frame of reference, 2nd IEEE RAS & EMBS, 19-22 Oct. 2008 Page(s):682– 687
    [77] Guangming Yuan, Xiaoling Lv, Minglu Zhang, Design of Mending Robot Based on Hearing and Virtual Reality, International Conference on Computer Science and Software Engineering, Volume 1, 12-14 Dec. 2008 Page(s):1115-1118
    [78] Ding Cheng-jun, Duan Ping, Zhang Ming-lu, Design of mobile robot tele-operation system based on virtual reality, IEEE International Conference on Automation and Logistics, 5-7 Aug. 2009 Page(s):2024-2029
    [79]任倩,王树国,陈祥立,付宜利,蔡鹤皋.面向机器人离线编程的真实感虚拟环境生成.哈尔滨工业大学学报. 2003.5, Vol13, No5, 133-127.
    [80]胡军,李嘉,刘文江等.基于微机主从式机器人场景三维可视化与仿真,计算机工程与应用, 2003(24):12-14.
    [81]刘伟军,朱枫董,再励.虚拟现实辅助机器人遥操作技术研究,机器人, 2001(5), Vol.23:385-390.
    [82]柳长安,许松,刘春阳.核电站检修机器人运动学仿真研究,华中科技大学学报(自然科学版), 2008(10), Vol. 36:23-26
    [83]吴冬梅,杜志江,贾志恒.孙立宁机器人辅助正骨手术系统虚拟环境精确建模方法,哈尔滨工业大学学报, 2006(6) Vol. 38: 859-861
    [84]李刚,黄席樾,袁荣棣等.以人为中心的机器人系统的人机交互技术,重庆大学学报, 2003(5),Vol.26:59-63.
    [85]王挺,王越超.非结构环境下基于人机合作技术的抓取作业研究,机器人, 2008(1): Vol. 30: 7-12
    [86] http://www.abb.com
    [87] Shreiner Dave. OpenGL编程指南,机械工业出版社, 2008
    [88] http://www.ati.com
    [89]张正友,马颂德.计算机视觉、计算理论与算法基础,科学出版社,1998
    [90] M. Wrage, S. H. Creem, D.R. Proffitt, The influence of spatial reference frames on imagined object and viewer rotation, Acta Psychologica, Vol.102, pp. 247-264, 1999
    [91] http://www.anl.gov
    [92] Sanders J.E., Smith L.M., Spelman F.A., A portable measurement system for prosthetic triaxial force transducers, IEEE Transactions on Rehabilitation Engineering, Volume 3, Issue 4, Dec. 1995 Page(s):366-373
    [93] Kosslyn S.M., Display design for the eye and mind, Information Visualization, IEEE Symposium on INFOVIS, 28-29 Oct. 2002 Page(s):171-171
    [94] Murray R., Gattami A., A frequency domain condition for stability of interconnected MIMO systems, Proceedings of American Control Conference, Volume 4, 30 June-2 July 2004 Page(s):3723-3728
    [95] Wexler A.S., Jun Ding, Binder-Macleod S.A., A mathematical model that predicts skeletal muscle force, IEEE Transactions on Biomedical Engineering, Volume 44, Issue 5, May 1997 Page(s):337-348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700