核电站检修机器人位姿问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核能是现在世界上可利用的重要能源之一,核电站是核能利用的一个重要方面。但是核电站检修维护工作有很多环境是人不能现场操作的,所以在核工业以及核电站进行检修等人无法胜任的工作需要使用核电站检修机器人。本文考虑到核电站的特点以及在检修过程中效率的重要性,研究了流体力学和空间变换理论在核电站检修机器人中的应用。
     本文首先对核电站检修机器人在检修过程中出现的位姿问题进行的阐述,并把位姿问题分解成检修机器人的路径规划问题和检修设备的姿态判断问题,说明了位姿问题待需解决的必要性。
     接着,针对核电站检修机器人的路径规划问题和检修设备的姿态判断问题,提出了两种新的算法。针对核电站检修机器人的路径规划问题,提出了一种新的基于流体力学的路径规划算法,其算法将检修机器人的路径规划问题转变成对核电站的地图流场问题的求解,算法除了在路径的平滑度上有了优化之外,在路径生成的效率方面比起以往的人工势场法也有了很大的提高;针对核电站检修设备的姿态判断问题,提出了姿态变换判断算法,算法减少了检修机器人在检修设备的过程中直接访问设备信息存储数据库的次数,从而很好地提高了检修机器人查找设备信息的效率。
     最后,针对路径规划问题和姿态判断问题,先从理论上证明了流体力学法和姿态变换算法的优越性,再通过仿真对比实验更加说明了流体力学路径规划算法比起人工势场法生成的路径具有更好的平滑度以及更高的效率和姿态变换算法比起常规检修判断算法拥有更高效的查找效率的结论。实现了在位姿问题上的高效性。
Nuclear power is one of the important energy that is useful in the world,and nuclear power plant is an important aspect of use of nuclear energy. Because of the maintaining work environment in the nuclear power plants where people is forbidden,the work which people can not afford in the nuclear power plants need the use of the robot of nuclear power plants. In view of the characteristics of the nuclear power plants and the importance of efficiency in maintaining of the nuclear power plants,the article does some researches on the Fluid Mechanics and Space Transformation Theory in the appliance of the maintaining robots in nuclear power plants.
     First,the article introduced the location and posture issue of the maintaining robots in the process of maintaining.The problem is divided into the path planning issue and the posture judgments issue which are necessary to be dealt.
     Then,in order to solve these two issues,the article posed two corresponding algorithms.One is the Fluid Mechanics algorithm,the other is the Posture Transformation algorithm.The Fluid Mechanics algorithm can get a smoother path than the Artificial Potential Field algorithm do,and the efficiency of the Fluid Mechanics algorithm is also higher than the efficiency of the Artificial Potential Field algorithm.In the process of searching the devices the Posture Transformation algorithm can be able to use less time than the Normal Searching algorithm.
     Last,the article proved the superiority of two algorithms via two procession. The first procession is proving the superiority of two algorithms in theory,the second procession is proving the superiority of two algorithms through simulation experiments,which include the comparison of path smoothness simulation experiments and the comparison of time simulation experiments.Through these work the article solve the location and posture issue and prove the efficiency of two algorithm.
引文
[1]张小林,王世联,包敏等.环境水平样品中放射性含量的Y能谱分析[J].核电子学与探测技术,2005,25(4):404-408
    [2]Steyn J. Fuel for the 21st Century[J]. Nucl Eng Int,2003,48(590):22-23
    [3]国家环境保护局.GB 624921986.核电厂环境辐射防护规定[S]
    [4]朱昌寿.中国人受电离辐射照射剂量份额研究[J].中华放射医学与防护杂志,1998,18(5):340-345
    [5]Andres I, Juan A P. Robots in radioactive environments[J]. IEEE Robotics& Automation Magazine,2003(11):12-22
    [6]陈历仁.机器人在核工业中的应用[J].机器人学报,1990,(6):1-6
    [7]White J, Harvey H. Farnstrom K Testing of mobile surveillance robot at a nuclear power plant[J]. Proceedings of IEEE International Conference on Robotics and Automation,1987,714-719
    [8]Kita N. Visual attention control for nuclear power plant inspection[A]. Proceedings of the 15th International Conference on Pattern Recognition[C], 2009:118-123
    [9]White T., Hewer N., Luk B., et al. The design and operational performance of a climbing robot used for weld inspection in hazardous environments [J]. Proceedings of the IEEE International Conference on Control Applications, 1998,(9):45-55
    [10]Jeffrey Abouaf. Trial by fire:teleoperated robot targets Chernobyl[J]. IEEE Computer Society,1998,18(4):10-14
    [11]Cox D J. Mock-up of hazardous material handling tasks using a dual-arm robotic system[J]. Proceedings of the 5th Biannual World Automation Congress, 2002,(6):527-532
    [12]Sugiyama S., Tanaka K., Numata N., et al. Quadrupedal locomotion subsystem of prototype advanced robot for nuclear power plant facilities[J].15th International Conference on Advanced Robotics,1991,(6):326-333
    [13]杨秀清,骆敏舟,梅涛.核环境下的机器人研究现状与发展趋势[J].机器人技术与应用,2008,(1):31-39
    [14]R·西格沃特,I·R·诺巴克什著,李人厚译.自主移动机器人导论[M].西安交通大学出版社,2007,12(2):268-277
    [15]霍迎辉,张连明.一种移动机器人的路径规划算法[J].自动化技术与应用,2003,(5):23
    [16]柳长安,许松,刘春阳等.核电站检修机器人运动学仿真研究[J].华中科技大学学报,2008,6:23-24
    [17]Iborra.A., Pastor.J.A., Alvarez.B., et al. Robots in radioactive environments Robotics[J]. Robotics&Automation Magazine, IEEE Volume 10, Issue 4, Dec. 2003:12-22
    [18]陈凤东,洪炳镕.基于特征地图的移动机器人全局定位与自主泊位方法[J].电子学报,2010,6
    [19]况菲,王耀南,张辉.动态环境下基于改进人工势场的机器人实时路径规划仿真研究[J].湖南:计算机应用,2005,25(10):2415-2417
    [20]Shi Hongyan, Sun Changzhi, Sun Xiaoming, et al. Chaotic potential field method and application in robot soccer game[A]. Proceedings of the 6th World Congress on Intelligent Control and Automation[C],2006,9297-9301
    [21]L.Huang. Velocity Planning for a mobile robot to track a moving target-a potential field approach[J]. Robotics and Autonomous Systems,2009,57:55-63
    [22]刘春阳,谭应清,柳长安.多智能体强化学习在足球机器人中的研究与应用[J].电子学报,2010,8
    [23]Chang'an Liu; Zhenhua Wei; Chunyang Liu. A New Algorithm for Mobile Robot Obstacle Avoidance Based on Hydrodynamics[J]. Automation and Logistics,2007 IEEE International Conference on Digital Object Identifier. 2007,Page(s):2310-2313
    [24]庄礼贤,伊协远,马晖扬.流体力学第2版[M].中国科学技术大学出版社,2009,7(3):160-172
    [25]Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research,1986,5(1):90-98
    [26]Brun Y. Solving NP-complete problems in the tile assembly model[J]. Theiretical Computer Science,2008,395(1):31-36
    [27]胡茂林.空间与变换[M].科学出版社,2007,6(1):62-64
    [28]刘建亚,吴臻主编.复变函数与积分变换第2版[M].高等教育出版社,2011
    [29]M Gemeinder, M Gerke. GA-based path planning for robot system employing an active search algorithm[J]. Applied Soft Computing,2003(3):149-158
    [30]Rui Huang, Gergely V, Zaruba. Static path planning for mobile beacons to localize sensor networks[J]. In the Proceedings of the Third IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing, New York, March,2007
    [31]D.Koutsonikolas, S.M.Das, Y.C.Hu. Path planning of mobile landmarks for localization in wireless sensor networks[J]. In the Proceedings of IEEE Distributed Computing Systems Workshops,2006:80-86
    [32]常继科,赵建辉.基于环境模型的路径规划算法研究[J].开封:科技创新导报,2008,(9):46-47
    [33]文勇,张怀相,曾虹.新型势场法的移动机器人避障研究[S].杭州:杭州电子科技大学学报,2009,29(1):50-53
    [34]Jefferies B, Mcintosh A, Ricker W J, et al. Mini conference on Operator Theory and Partial Differential Equations[J]. Vol.14 of Proceedings of the Center for Mathematical Analysis,Camberra:CMA,ANU,1986:210-231
    [35]刘经南.坐标系统的建立和变换[M].武汉:测绘科技大学出版社,1995
    [36]代素梅,李允旺,贾瑞清.动态交互性流体力学虚拟实验室[J].电子学报,2009,7
    [37]北京大学数学系几何与代数教研室前代数小组编.高等代数第三版[M].北京:高等教育出版社,2003,9(3):273-290
    [38]陈前.关于工程大系统的状态监测与故障诊断[J].振动、测试与诊断学报,2002,22(3):163-174
    [39]Bruce Hunt. Mathematical analysis of groundwater resources[M]. London,Boston:Butterworths,1983
    [40]麦结华,曾素行.黎曼积分的几个等价定义[J].数学研究,2005.1:35-41
    [41]Dayandeh S, Goldenberg A A. Formulation of the kinematic model of general (6 DOF) robot manipulator using a screw operator[J]. IEEE J, Rob,Sys,1987,4(6)
    [42]Stelling G S, Verboom G K. Solving the shallow water equations with an orthogonal coordinate transformation[J]. International Symposium on Computational Fluid Dynamics, Tokyo,Japan,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700