采样数据系统的故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字计算机技术、多传感器等技术在工业过程中的广泛应用,现代工业系统与设备本质上多数以采样数据系统的形式呈现。相比于一般系统,这类系统自动化程度更高、结构更复杂,相应发生故障的可能性更大。采样数据系统故障诊断的研究受到了广泛关注并取得了一些成果。然而由于采样数据系统所具有的混杂性、内采样信息的未知性、采样模式的多样性、采样时刻的不确定性等因素,增加了故障诊断的困难,而现有研究还存在诸多不足和深层次难题。为此,本文基于提升、混杂系统和时滞系统等技术和理论,开展了各类采样数据(单速率、多速率、非均匀)系统的故障诊断设计新方法的研究。论文的主要工作如下:
     1.针对一类单速率采样数据系统,在连续提升框架内建立了诊断观测器这一结构灵活的残差产生器的直接方法。
     2.针对具有连续过程噪声和离散测量噪声的采样数据系统,基于混杂系统方法和线性矩阵不等式技术提出了一种故障检测直接设计方法。不仅解决了连续提升要求系统必须服从严格正实的苛刻条件,也克服了现有方法求解跳变Riccati微分方程困难的不足。
     3.针对具有一般噪声干扰的多速率采样数据系统,基于离散提升、扩展QR分解和初等变换等技术,提出了一种直观简单的快速率故障检测设计新方法。
     4.针对随机多速率采样数据系统,应用序贯滤波的思想,建立了一种快速率稳态残差产生器和相应的残差评估方法,有效地避免了复杂的因果约束问题。同时,还对基于序贯滤波、左同步提升和右同步提升等异步多传感器融合估计算法的性能进行了分析和比较,相关结论为针对不同情况选用对应算法提供了一定依据。
     5.针对一般的采样非均匀数据系统,基于输出时滞方法提出了一种鲁棒传感器故障检测设计方法。
     6.从时滞系统角度率先研究了采样数据系统的故障估计问题。针对自适应诊断观测器不再有效适用于采样数据系统这一难题,提出一种新的增广故障估计滤波器设计方法能够保证估计误差收敛,该方法可以被推广于不确定采样数据系统的时变故障估计。
     7.文中所提方法的有效性和优越性通过一系列数值仿真和飞行器系统的例子进行了验证。
With the wide application of digital comuputer and multisensor techniques in industrial process, most morden systems and equiments are essentially appeared as sampled-data systems. Comparing with general systems, these type of systems have higher level of automation, more complex structure and thus bigger possibility of occurring faults. The research of fault diagnosis for sampled-data systems has attracted considerable attention and some results have achieved. However, due to the hybridism of sampled-data systems, the unknownness of intersampling behaviour, the diversity of sampling pattern and the uncertainity of sampling instant, the difficulties of fault diagnosis are increasing and the existing research has many deficiencies and profound problems. Therefore, with the aid of lifting technique, the theories of hybrid system and time-delay system, the thesis develops several new fault diagnosis design methods for various kinds of sampled-data systems. The main contributions are as follows:
     1. Under the framework of continuous lifting, the direct design approach to the diagnositic observer which has flexible structure has been establised for a class of sigle-rate sampled-data systems.
     2. Based on the hybrid system approach and linear matrix inequality (LMI) technique, a direct design methodology of fault detection for a class of sampled-data system with both continuous process noise and discrete measurement noise is presented. It not only resolves the harsh condition of strictly properness caused by continuous lifting, but also avoids solving Riccati equation with jumps which are difficult.
     3. With the aid of discrete lifting, the extended QR decomposition and elementary transformation, a new fast rate fault detection method, which is intuitive and simple, is proposed for the multirate sampled data systems corrupted by general disturbance.
     4. Based on the idea of sequential filtering, a fast rate fault detection scheme consisting of a fast rate steady-state residual generation and the corresponding residual evaluation, which can avoid the complex problem of causality constraint, is further developed for multirate sampled-data systems with stochastic disturbance. Meanwhile, the performance of three asynchronous multisensor fusion estimation algorithms based on sequential filtering, the left synchronization lifting and the right synchronization lifting are analyzed and compared. Some conclusions are valuable in practical engineering applications.
     5. Based on the output-delay approach, a robust sensor fault detection design approach is proposed for the general nonuniform sampled-data systems.
     6. The problem of fault estimation for sampled-data systems is firstly investigated from the time delay viewpoint. Based on the analysis of the inapplicability of the adaptive fault diagnosis observer in sampled-data system, a novel augmented fault estimation observer design method is proposed to guarantee the exponential convergence of the estimation errors. Furthermore, an extension to the case of time varying fault estimation for the uncertain sampled-data system is studied.
     7. The effectiveness and superiority of the proposed methods are demonstrated by numerical simulations and aircraft examples.
引文
[1] Basseville M and Nikiforov I V. Detection of abrupt changes- theory and application. Prentice-Hall, Inc, 1993.
    [2] Chen J and Patton R J. Robust model-based fault diagnosis for dynamic systems. Boston: Kluwer Academic Publishers, 1999.
    [3] Iserman R. Fault diagnosis system: an introduction from fault detection to fault tolerance. Berlin: Springer-Verlag, 2006.
    [4] Blanke M, Kinnaert M, Lunze J and Staroswiecki M. Diagnosis and fault tolerant control. Berlin: Springer-Verlag, 2006.
    [5] Ding S X. Model–based Fault diagnosis techniques: Design Schemes, Algorithms, and Tools. Berlin: Springer-Verlag, 2008.
    [6]周东华,叶银忠.现代故障诊断与容错控制,北京:清华大学出版社, 2000.
    [7]姜斌,冒泽慧,杨浩,张友民.控制系统的故障诊断与故障调节.北京:国防工业出版社, 2009.
    [8]周福娜.基于统计特征提取的多故障诊断方法及应用.[博士学位论文],上海:上海海事大学, 2009.
    [9] De Pesis C and Isidori A. A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control, 2001, 46(6):853-856.
    [10] Hou M, Patton R J. Input observability and input reconstruction, Automatica, 1998, 34 (6):789-794.
    [11] Zhou K M. A new approach to robust and fault tolerant control. Acta Automatica Sinica. 2005, 31(1):43-55.
    [12] Chen T W and Francis B A. Optimal sampled-data control systems. Springer, New York, 1995.
    [13]杨晓军.鲁棒H 2,∞故障检测与估计若干问题研究. [博士学位论文].上海:上海交通大学, 2005.
    [14]张萍.采样数据系统的故障检测方法. [博士学位论文].北京:清华大学, 2002.
    [15] Iman I. Fault diagnosis in sampled-data systems. [Ph. D dissertation]. Canada: University of Alberta. 2006.
    [16] Arun K T. Multirate control and multiscale monitoring of chemical processes. [Ph. D dissertation]. Canada: University of Alberta. 2001.
    [17] Sheng J and Chen T W, Shah S L. Generalized predictive control for non-uniformly sampled systems. Journal of Process Control, 2002 12:875-885.
    [18] Colandairaj J and Irwin G W. Scanlon W.G. Wireless networked control systems with QoS-based sampling. IET Control Theory Application. 2007, 1(1):430-438.
    [19] Wang Y L and Yang G H. H∞Controller design for networked control systems via active-varying sampling period method. Acta Automatica Sinica, 2008, 34(7):814-818.
    [20] Payam N, Joao P H and Andrew R T. Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control letters, 2008, 57: 378-385.
    [21] Murray R M, Astrom K J, Boyd S P, Brockett R W and Stein G. Future directions in control in an information-rich world: A summary of the report of the panel on Future Directions in Control, Dynamics and Systems. IEEE Control Systems Magazines, 2003: 20-34.
    [22] Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-base redundancy: A survey and some new results. Automatica, 1990, 26: 459-474.
    [23] Venkatasubrammanian V, Rengaswamy R, Yin K W and Kavuri S N. A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computer and Chemical Engineering, 2003, 27: 293-311.
    [24] Venkatasubrammanian V, Rengaswamy R, Yin K W and Kavuri S N. A review of process fault detection and diagnosis Part II: Qualitative model and search strategies. Computer and Chemical Engineering, 2003, 27: 313-326.
    [25] Venkatasubrammanian V, Rengaswamy R, Yin K W and Kavuri S N. A review of process fault detection and diagnosis Part III: Process history based methods. Computer and Chemical Engineering, 2003, 27: 327-346.
    [26]周东华,胡艳艳.动态系统的故障诊断技术.自动化学报. 2009, 35(6):748-758
    [27]王文辉,周东华.基于定性和半定性方法的故障检测与诊断技术.控制理论与应用. 2002, 19(5): 653-666.
    [28] Iri M, Aoki K, O’Shima E and Matsuyama H. an algorithm for diagnosis of systems failures in the chemical process. Computers and Chemical Engineering, 1979, 3(1/4): 489-493.
    [29] Wilcox N A and Himmelblau D M. The possible cause and effect graphs model for fault diagnosis- I: methodology. Computers and Chemical Engineering, 1994, 18(2): 103-116.
    [30] Yang F and Xiao D Y. Model and fault inference with the framework of probabilistic SDG. The 9th International Conference on Control, Automation, Robotics and Vision. Piscataway, USA: IEEE, 2006:1-6.
    [31] Caceres H and Heneley E J. Process failure analysis by block diagrams and fault trees. Industrial and Engineering Chemistry, Fundamentals, 1976, 15(2): 128-134.
    [32] Chang S Y, Lin C R and Chang C T. A fuzzy diagnosis approach using dynamic fault tress. Chemical Engineering Science, 2002, 57(15): 2791-2985.
    [33] Khoo L P, Tor S B and Li J R. A rough set approach to the ordering of basic events in a fault tree for fault diagnosis. International Journal of Advanced Manufacturing Technology, 2001, 17(10): 769-774.
    [34] Kulpers B. Qualitative simulation as causal explanation. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(3): 432-444.
    [35] Yang J B, Liu J, Wang J, Sii H S and Wang H W. Belief rule-base inference methodology using the evidential reasoning approach– RIMER. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2006, 36(2): 266-285.
    [36]方培培,李永丽,杨晓军. Petri网与专家系统结合的输电网络故障诊断方法.电力系统及其自动化学报, 2005, 17(2): 26-30.
    [37]戴忠健,苏利敏.基于遗传算法的网络故障诊断专家系统的设计与实现.北京理工大学学报, 2005, 25(1): 38-40.
    [38] Wise B M, Ricker N L, Veltkamp D F and Kowalski B R. A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1990, 1(1): 41-51.
    [39] Hoplins R W, Miller P, Swanson R E and Scheible J J. Method of controlling a manufacturing process musing multivariate analysis. Technical Report USA patent 5442562, Eastman Kodak Company, USA, 1995.
    [40]文成林,胡静,王天真,陈志国.相对主元分析及其在数据压缩和故障诊断中的应用研究.自动化学报, 2008, 38(4): 1128-1139.
    [41] Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. AICHE, Journal, 1998, 44(7): 1596-1610.
    [42] Ku W F, Storer R H and Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196.
    [43] Liu Y G. Statistical control of multivariate process with application to automobile body assembly. [Ph. D dissertation], USA: University of Michigan, 2002.
    [44]周福娜,文成林,汤天浩,陈志国.基于DCA的多故障诊断方法.自动化学报, 2009, 35(7): 971-982.
    [45]韩崇昭,朱洪艳,段战胜.多源信息融合.北京:清华大学出版社, 2006.
    [46]孙卫祥,陈进,伍星,董广明,宁佐贵,王东升.基于信息融合的支撑座早期松动故障诊断.上海交通大学学报. 2006, 40(2): 239-242.
    [47]朱大奇,于盛林.基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用.电子学报, 2002, 30(2): 221-224.
    [48] Fan X F, Zuo M J. Fault diagnosis of machines based on D-S evidence theory, Part II: application to the improved D-S evidence theory in gearbox fault diagnosis. Pattern Recognition Letters, 2006, 27(5): 377-385.
    [49]徐晓滨.不确定信息处理的随机集方法及在系统可靠性评估与故障诊断中的应用. [博士学位论文],上海:上海海事大学. 2009
    [50] Magni J F and Mouyon P. On residual generation by observer and parity space approaches. IEEE Transactions on Automatica Control. 1994, 39(2):441-447.
    [51] Garcia E A and Frank P M. On the relationship between observer and parameter identification based approaches to fault detection. in Proceeding of IFAC World Congress, San Francisco. USA, 1996: 25-29.
    [52] Gertler J. Diagnosing parametric faults: from parameter estimation to parity relations. in Proceeding of American Control Conference. Seattle USA. 1995, 1615-1620.
    [53] Stoustrup J and Niemann H. Fault estimation- a standard problem approach. International Journal of Robust and nonlinear control, 2002, 12(8):649-673.
    [54] Wang H and Daley S. Actuator fault diagnosis: an adaptive observer-based technique. IEEE Transactions on Automatic Control. 1996, 41(7): 1073-1078.
    [55] Wang H, Huang Z J and Daley S. On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica, 1997, 33(2): 217-225.
    [56] Jiang B, Staroswiecki M and Cocquempot V. Fault accommodation for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(9): 1578-1583.
    [57] Jiang B, Staroswiecki M and Cocquempot V. Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters. International Journal of Control. 2004, 77(4):415-426.
    [58] Zhang K, Jiang B and Shi P. Fast fault estimation and accommodation for dynamical systems. IET Control Theory & Applications, 2009, 3(2): 189-199.
    [59] Mao Z H and Jiang B. Fault identification and fault tolerant control for a class of networked control systems. International Journal of Innovative Computing, Information and Control, 2007, 3(5):1121-1130.
    [60] Jiang B and Chowdhury F N. Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Transactions on Control Systems Technology, 2005, 13(3):493-499.
    [61] Willsky A S. A survey of design methods for failure detection in dynamic systems. Automatica, 1976, 12: 601-611.
    [62] Wunenberg J and Frank P M. Model based residual generation for dynamic systems with unknown inputs. in Proceeding of the 12th IMCAS World Congress on Scientific Computation. Paris, 1988, 2: 435-437.
    [63] Patton R J and Chen J. On eigenstructure assignment for robust fault diagnosis. International Journal of Robust and Nonlinear Control, 2000, 10(4): 1193-1208.
    [64] Massoumnia M A. A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control. 1986, 31: 839-846.
    [65] Hou M and Patton R J. An LMI approach to infinity fault detection observers. in Proceeding of the UKACC international Conference on Control, 1996, 305-310.
    [66] Liu J, Wang J L and Yang G H. An LMI approach to minimum sensitivity analysis with application to fault detection. Automatica, 2005, 41:1995-2004.
    [67] Ding S X and Frank P M. Fault detection via optimally robust detection filters. in Proceeding of the 28th IEEE Conference on Decision and Control, 1989: 1767-1772.
    [68] Lou X, Willsky A S and Verghese G C. Optimally robust redundancy relations for failure detection in uncertain systems. Automatica, 1986, 22: 333-344.
    [69] Ding S X, Jeinsch T, Frank P M and Ding E L. A unified approach to the optimization of fault detection systems. International Journal of Adaptive Control and Signal Processing, 2000, 14:725-745.
    [70] Wang J L, Yang G R and Liu J. An LMI approach toΗ?index and mixedΗ?Η∞fault detection observer design. Automatica. 2007: 1656-1665.
    [71] Liu N. Optimal robust fault detection. [Ph. D dissertation], USA: Louisiana State University. 2008.
    [72] Li X B. Fault detection filter design for linear systems. [Ph. D dissertation], USA: Louisiana State University. 2009.
    [73] Zhong M, Ding S X, Lam J and Wang H. An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica, 2003. 39(3):543-550.
    [74]王红茹,王常虹,高会军.基于LMI的不确定系统鲁棒故障检测.电机与控制学报. 2005, 9(5):461-465.
    [75] Chow E Y and A. Willsky. Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control.1984 29(7):603-614.
    [76] Hwang D S, Chang S K and Hsu P L. A practical design for a robust fault detection and isolation system. International Journal of System Science, 1997, 28(3): 265-275.
    [77] Gertler J and Monajemy R. Optimal residual decoupling for robust fault diagnosis. International Journal of Control. 1995, 61(2): 395-421.
    [78] Wunnenberg J. Observer-based fault detection in dynamic systems. [Ph. D. Dissertation] German: University of Duisburg. 1990.
    [79] Ding S X, Ding E L and Jeinech T. An approach to analysis and design of observer and parity relation based FDI systems. in Proceeding of 14th IFAC world Congress, 1999, 37-42.
    [80] Zhang P, Ye H. Ding S X, Wang G Z and Zhou D H. On the relationship between parity space andΗ2 approaches to fault detection. Systems & Control letters. 2006, 55: 94-100.
    [81] Ye H, Wang G Z, and Ding S X. A new parity space approach for fault detection based on stationary wavelet transform. IEEE Transactions on Automatic Control, 2004, 49(2): 281-287.
    [82] Sivashankar N, Khargonekar P P. Characterization of the L2 -induced norm for linear systems with jumps with applications to sampled-data systems. SIAM Journal on Control and Optimization, 1994, 32(4): 1128-1150.
    [83]刘彦文.采样控制系统的Η∞控制.[博士论文],沈阳:哈尔滨工业大学,2006.
    [84] Zhang P, Ding S X, Wang G Z and Zhou D H. An FDI approach for sampled-data systems. in Proceeding of American Control Conference, Arlington, USA, June 2001: 2702-2707.
    [85]张萍, Ding S X,王桂增,周东华.采样数据系统的故障检测.自动化学报,2003,29:306-311.
    [86] Zhang P, Ding S X, Wang G Z and Zhou D H.. A frequency domain approach to fault detection in sampled-data systems. Automatica, 2003, 39:1303-1307.
    [87]张萍, Ding S X,王桂增,周东华.采样数据系统故障检测的Η∞方法.控制理论与应用.2003,20:361-366.
    [88] Zhang P, Ding S X, Wang G Z, Zhou D H and Ding E L. AnΗ∞approach to fault detection for sampled-data systems. in Proceeding of American Control Conference, Anchorage ,2002: 2196-2201
    [89] Izadi I, Chen T W and Zhao Q. Norm Invariant discretization for sampled-data fault detection. Automatica, 2005,41:1633-1637
    [90] Yang X J. Actuator fault detection for sampled-data systems inΗ∞setting. Journal of Shanghai Jiao tong University. 2005, E-10(2):131-134.
    [91]尤富强,王福利,关守平.采样数据系统传感器故障的Η∞估计.控制理论与应用. 2008, 25(6):1110-1112.
    [92] Yang X J, Weng Z X, and Tian Z H. Fault detection observer design for LSFDJ: a factorization approach. Journal of Shanghai Jiao tong University(Science), 2005, 10(1):30-33
    [93] Iman I, Chen T W and Zhao Q. Analysis of performance criteria in sampled-data fault detection. Systems & Control Letters, 2007, 56:320-32
    [94] Zhang P and Ding S X. Influence of sampling period on a class of optimal fault detection performance. IEEE Transactions on Automatic control. 2009 54(6): 1396-1402.
    [95] Zhang P, Ding S X, Patton R J and Kambhampati C. Adaptive and cooperative sampling in networked control systems. in Proceeding of IEEE International Conference on Networking, Sensing and Control, London, UK, 2007: 398-403.
    [96] Viswanadham N, Minto K D. Fault diagnosis in multirate sampled-data systems. Proc. of the 29th IEEE CDC, 1990:3666-3671.
    [97] Fadali M S and Liu W. Fault detection for systems with multirate sampling. American Control Conference,Philadelphia USA, June 1998:3302-3306.
    [98] Fadali M S. Observer-based robust fault detection of multirate linear system using a lifting reformulation. Computers and Electrical Engineering, 2003, 29:235-243.
    [99] Zhang P, Ding S X, Wang G Z and Zhou D H. Fault detection for multirate sampled-data systems with time delays. International Journal of Control, 2002, 75:1457-1471.
    [100] Zhang P, Ding S X, Wang G Z and Zhou D H. Observer-based approaches to fault detection in multirate sampled-data systems. in Proceeding of 4th Asian Control Conference, Singapore, 2002, 1367-1372.
    [101] Zhang P, Ding S X, Wang G Z and Zhou D H. An FD approach for multirate sampled-data systems in frequency domain. in Proceeding of American Control Conference, Denver USA, June, 2003:2901-2906.
    [102] Fadali M S and Emara-Shabaik H E. Timely robust fault detection for multirate linear systems. International Journal of Control, 2002, 75:305-313.
    [103] Zhong M Y, Ma C F and Liu Y X. Fast rate fault detection for multirate sampled-data systems. ACTA Automatica Sinica. 2006, 32:433-437.
    [104] Zhong M Y, Ye H, Ding S X and Wang G Z. Observer-Based fast rate fault detection for a class of multirate sampled-data systems. IEEE Transactions on Automatic Control, 2007, 52: 520-525.
    [105]刘云霞,钟麦英.基于等价空间的多速率数据采样系统快速残差的产生.控制理论与应用, 2008, 25(6):1059-1062.
    [106] Izadi I, Zhao Q and Chen T W. An optimal scheme for fast rate fault detection based on multirate sampled data. Journal of Process Control, 2005, 15:307-319.
    [107] Izadi I, Chen T W and Zhao Q. AnΗ∞approach to fast rate fault detection for multirate sampled-data systems. Journal of Process Control, 2006, 16:651-658.
    [108]张宁,丁锋,朱大奇.非均匀采样数据系统的故障检测.计算机测量与控制. 2008, 16(6): 774-777.
    [109] Li W H, Han Z G and Shah S L. Subspace identification for FDI in systems with non-uniformly sampled-data multirate data. Automatica, 2006, 42: 619-627.
    [110] Li W H, Shah S L and Xiao D Y. Kalman filters in non-uniformly sampled multirate systems: For FDI and Beyond. Automatica, 2008(44):199-208.
    [111] Iman I, Shah S L and Chen T W. A direct approach to fault detection in non-uniformly sampled systems. in Proceeding of the 17th IFAC World Congress.. Seoul, Korea. 2008: 10148-10153.
    [112] Iman I, Shah S L, Chen T W. Parity space fault detection based on irregularly sampled data. in Proceeding of American Control Conference, Seattle, USA, 2008:2798-2803
    [113] Ionescu V, Oara C. Spectral and inner-outer factorization for discrete-time systems. IEEE Transactions on Automatic Control, 1996, 41 (12): 1840-1845
    [114] Chen J and Patton R J. StandardΗ∞filtering formulation of robust fault detection. in Proceeding of Safe Process. Budapest. Hungary, 2000, 95-100.
    [115] Zhong M Y, Ye H, Shi P, and Wang G Z. Fault detection for Markovian jump systems. IEE Proceeding of Control Theory Applications. 2005, 152(4):397-402.
    [116] Yang G H, Wang J L, and Soh Y C. ReliableΗ∞controller design for linear systems, Automatica, 2001, 37:717-725.
    [117] Shi P, de Souza and Xie L H. Bounded real lemma for linear systems with finite discrete jumps. International Journal of Control. 1997, 66(1): 145-159.
    [118] Yang X J, Weng Z X, and Tian Z H. On necessity proof of strict bounded real lemma for generalized linear systems with finite discrete jumps. Journal of Control Theory and Applications. 2004, 21(4):411-415.
    [119] Mehra R and Peschon I. An innovations approach to fault detection and diagnosis in dynamic systems. Automatic, 1971, 7: 637-640.
    [120] Park J and Rizzoni G. A new interpretation of the fault detection filter: part2. International Journal of Control, 1994, 66: 1339-1351.
    [121] Keller J Y. Fault isolation filters design for linear stochastic systems. Automatica, 1999, 35:1701-1706.
    [122] Wang Y W and Zheng Y. Kalman filter based fault diagnosis of networked control system with white noise. Journal of Control Theory and Application, 2005, 22(1):55-59.
    [123] Lee D J and Tomizuka M. Multirate optimal state estimation with sensor fusion. in Proceeding of the American Control Conference, Denver, Colorado, 2003: 2887-2892.
    [124] Smyth A and Wu M L. Multirate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mechanical Systems and Signal Processing, 2007, 21: 706-723.
    [125]方保镕,周继东,李医民.矩阵论.北京:清华大学出版社, 2004.
    [126] Wang Z D, Huang B, and Huo P J. Sampled-data filtering with error covariance assignment. IEEE Transactions on Signal Processing. 2001, 49(3): 666-670.
    [127] Anderson B and Moore J. Optimal filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.
    [128] De Souza C, Gerver M R, and Goodwin G C. Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices. IEEE Transactions on Automatica Control. 1986, 31(9) 831-838.
    [129]文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法.电子学报. 2004, 32(8): 1264-1267, 2004.
    [130]文成林.多尺度动态建模理论及其应用.北京:科学出版社, 2008.
    [131] Shalom Y B, Li X R and Kirubrarajam T. Estimation with Application to Tracking and Navigation. New York: John Wiley & Sons, INC, 2001.
    [132] Armesto L, Tornero J, and Vincze M. On Multi-rate Fusion for Non-linear Sampled Data Systems: Application to a 6D Tracking System. Robotics and Autonomous Systems, 2008, 56: 706-715.
    [133] Alouani A T and Rice T R. On Optimal Synchronous and Asynchronous Data Fusion. Optical Engineering. 1998, 37(2): 427-433.
    [134] Alouani A T and Rice T R. Performance Analysis of an Asynchronous Track Fusion and Architecture. in Proceeding of SPIE, Orlando, 1997. 194-205.
    [135] Yan L P, Liu B S and Zhou D H. The Modeling and Estimation of Asynchronous Multirate Multisensor Dynamics Systems. Aerospace Science and Technology. 2006, 10: 63-71.
    [136]郭徽东,章新华,宋元,陆强强.多传感器异步数据融合算法.电子与信息学报. 2006, 28(9): 1546-1549.
    [137]葛泉波,汪国安,汤天浩,文成林.基于有理数倍采样的异步数据融合算法研究.电子学报, 2006, 34(3): 221-223.
    [138]王洁,韩崇昭,李晓榕.异步多传感器数据融合[J].控制与决策. 2001, 17(6): 877-881
    [139] Fridman E, Seuret A, Richard J. Robust sampled-data stabilization of linear systems: an input delay approach. Automatica, 2004, 40:1441-1446.
    [140] Fridman E, Shaked U, Suplin V. Input/output delay approach to robust sampled-dataΗ∞control. Systems & Control Letters, 2005, 54:271-282.
    [141] Xu S, Chen T.Η∞Robust filtering for uncertain impulsive stochastic systems under sampled measurements. Automatica. 2003, 39:509-516.
    [142] Nuang S, Shi P, Ding X. Fault detection for uncertain fuzzy systems: an LMI approach. IEEE Transactions on Fuzzy systems. 2007, 15(6):1251-1262.
    [143] Mao Z, Jiang B, Shi P.Η∞Fault detection filter design for networked control systems modeled by discrete Markovian jump systems. IET control Theory applications. 2007, 1(5): 1336-1343.
    [144] Ding X, Zhong M, Tang B, Zhang P. An LMI approach to the design of fault detection filter for time-delay LTI systems with unknown inputs. in Proceeding of the American Control Conference. Arlington, VA 2137-2142, 2006
    [145] Fridman E, Shaked U. Input-output approach to stability and L2 gain analysis of systems with time-varying delays. Systems & Control Letters. 2006, 55: 1041-1053.
    [146] Gu K, Kharitonov K, Chen J. Stability of time-delay systems. Boston: Birkhauser, 2003.
    [147] Fridman E, Shaked U. A descriptor system approach toΗ∞control of linear time-delay systems. IEEE Transactions on Automatic Control, 2002, 47(2): 253-270.
    [148] Jiang B, Staroswiecki M, Cocquempot V. An adaptive technique for robust diagnosis of faults with independent effectes on system outputs. International Journal of Control, 2002, 75(11): 792-802.
    [149] Jiang B, Staroswiecki M, Cocquempot V. Fault identification for a class of time-delay systems, Proceeding of American Control Conference, Anchorage AK May 8-10, 2002, 2239-2244.
    [150] Zhang K, Jiang B, Shumsky A. A new criterion of fault estimation for neutral delay systems using adaptive observer. Acta Automatica Sinica, 2009, 35(1): 85-91.
    [151] Jiang B, Zhang K, Shi P. Less conservative criteria for fault accommodation of time-varying delay systems using adaptive faults diagnosis observer, International Journal of Adaptive Control and Signal Processing. 2010, 24(4):322-334.
    [152]张柯,姜斌.一种改进的自适应故障诊断设计方法及其在飞控系统中的应用.航空学报. 2009, 30(7): 1271-1276.
    [153] Niemann H and Stoustrup J. Fault tolerant controllers for sampled-data systems. in Proceeding of American Control Conference, Boston, 2004, 3490-3495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700