通信信号盲检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信信号盲检测是基于软件无线电的智能化盲接收机中一个重要的信号处理功能,特别是在非协作通信中需要在缺乏先验信息的条件下监视和截获空中信号,因此更显得尤为重要。
     结合实验室承担的军队大型重点工程研究项目,本文围绕通信信号的盲检测技术展开研究,具体包括通信信号的存在性检测技术、参数估计技术以及对特定信号的匹配识别技术。本文的工作可以概括为以下五方面:
     1.在信号存在性检测方面,重点研究了短突发以及质量较差信号的检测问题。
     提出一种基于观测数据时域自相关函数波动性的检测算法,利用观测数据自相关函数的一阶波动函数作为检测函数,与所提出的基于排序-做商-求最大值(SDM)的自适应门限确定方法相结合,较好地解决了对持续时间较短以及相邻间隔较近的突发信号的存在性检测。
     首次将语音信号处理中的谱熵法引入到通信信号检测中,提出一种基于观测数据短时傅氏变换幅度谱熵值的检测算法,实现了低信噪比下的信号检测。
     2.在信噪比估计方面,重点研究了与调制方式、载波频率、符号速率等参数无关的中频观测数据的盲信噪比估计问题。
     提出一种基于改进广义分符矩(GSSME)算法的MPSK信号盲信噪比估计算法,利用信噪比估计值的标准差作为算法迭代是否终止的度量,有效解决了原算法很难确定最佳迭代次数的问题。
     详细推导了基于子空间分解技术的盲信噪比估计算法的估计均值和估计方差的表达式,并且将该算法应用于OdB以下的QAM信号,弱化了原算法的应用条件,拓展了原算法的适用范围。
     提出一种基于改进投影近似子空间跟踪(PASTd)算法的盲信噪比估计算法,克服了基于子空间分解算法需要对观测数据的自相关矩阵进行特征值分解,运算量较大的问题,同时将Gram-Schmidt正交化过程引入到PASTd中,使计算得到的特征向量相互正交,从而保证算法具有更好的收敛性能。并且该算法的估计结果与观测数据的调制方式、载波频率等参数无关,也不要求系统同步。
     3.在符号速率估计方面,重点研究了调制方式未知时中频观测数据的盲符号速率估计问题。
     提出一种综合利用离散小波变换和连续小波变换的CPFSK信号盲符号速率估计算法,对离散小波变换后的细节信号进行连续小波变换,有效减小了噪声的影响,使低信噪比时的估计性能得到明显改善。
     提出一种基于小波多分辨率分析的盲符号速率估计算法,通过对观测数据进行多级多分辨率分解,利用各级细节系数之间的相关性来估计符号速率。估计结果不受调制方式、载波频率等参数的影响,适用于在调制方式识别前的符号速率估计。
     4.在目标信号匹配识别方面,重点讨论了单路PSK信号和FSK信号的有效识别问题。
     提出一种与调制方式无关的匹配识别算法,利用符号速率、调制阶数和频率间隔作为模板参数,通过一个统一的流程较好地实现了对短波PSK信号和FSK信号的有效识别。
     提出一种差分-门限检测算法,将对FSK信号调制阶数、频率间隔、载波频率等参数的估计问题转化为对其功率谱(或高次方谱)的谱峰搜索问题。
     5.结合实验室承担的科研任务,设计实现了一个突发信号存在性检测软件平台和一个目标信号匹配识别软件平台,分别针对大量仿真信号和实际信号给出了详实的实验结果,证实了算法的可行性和系统的有效性。
The blind detection of the communication signals is a very important function of the intelligent receiver based on Software Defined Radio (SDR), especially in the case of non-cooperative communications where no a priori information can be used for surveillance and interception.
     This dissertation is devoted to a study of key technologies of the blind detection of the communication signals, including the presence detection, blind parameter estimation and recognition of the specific signals. The achievements presented in this paper are a part of a large scale army project of research undertaken by the lab the author works with. The contributions obtained in this thesis can be summarized in the following five aspects.
     1. In the aspect of presence detection, the emphasis is laid on the blind detection of signals with short burst and/or with poor quality.
     A novel presence detection algorithm based on the fluctuation of the correlation function of the received signals in time domain is proposed. The algorithm, employing the first-order fluctuation function of the correlation function as the detection function and combining with the SDM-based adaptive threshold estimation method proposed in this paper, provides an effective solution to the detection problems of short burst or short burst-interval signals.
     A robust detection algorithm based on the spectral entropy of the short-time Fourier Transform (STFT) of the received signals, which is originally used in the speech signal processing, is proposed for the detection of signals under low Signal-to-Noise Ratio (SNR).
     2. In the aspect of blind SNR estimation, some algorithms independent of the parameters of the signals such as modulation type, carrier frequency and symbol rate etc. are addressed and discussed.
     A modified Generalized Split-Symbol Moment Estimator (GSSME) algorithm is proposed for the blind SNR estimation of MPSK signals, and the standard derivation of the estimated SNR is suggested as a measurement for indicating the end of an optimal iteration, which is a great difficulty in the original algorithm.
     The analytical expressions for the lower bounds of the mean and variance of the estimation are derived in detail for the subspace-based blind SNR estimator. In addition, simulations are performed for MQAM signals besides MPSK and MFSK signals, especially under negative SNR circumstance, expanding the applicable range of the original algorithm.
     A blind SNR estimator based on the modified Projection Approximation Subspace Tracking deflation (PASTd) algorithm is proposed. The orthogonality of the estimated eigenvectors is guaranteed by introducing the Gram-Schmidt orthogonization process into the original PASTd method. Compared with the eigenvalue decomposition-based method, the proposed algorithm can achieve a more accurate estimation with lower computational complexity. Furthermore, the algorithm needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.
     3. In the aspect of blind symbol rate estimation, the investigation is targeted at the algorithms for signals with unknown modulation type and nonzero carrier frequency.
     A novel blind symbol rate estimation algorithm for CPFSK signals is proposed based on combination of Discrete Wavelet Transform (DWT) with Continuous Wavelet Transform (CWT). CWT is used for the extraction of detailed information of the signal obtained from the DWT, and greatly reduces the influence of the noise. Thus the proposed algorithm can get an accurate estimation in low SNR.
     A blind symbol rate estimator based on the wavelet multi-resolution analysis is proposed. The wavelet orthogonal multi-resolution decomposition is performed for the received signals and the symbol rate can be estimated via the spectrum of the correlation function of the detailed coefficients at different stages. The performance of the proposed algorithm is less influenced by the parameters of the received signals, such as modulation type and carrier frequency, thus is very suitable for the estimation before modulation identification.
     4. In the aspect of recognition of the target signals, the emphasis is put on the effective identification of single-path MPSK and MFSK signals.
     A matched recognition alogirthm irrespective of the modulation type of the received signals is proposed. Effective recognition of the short wave PSK and FSK signals can be implemented in a uniform flow chart by employing parameters, including symbol rate, modulation order and frequency interval, as the template parameters.
     A method for peak-value-search, named as difference-threshold algorithm, is proposed, which converts the parameter estimation of MFSK signals, including the modulation order, frequency interval and carrier frequency, into a peak search problem of the Power Spectral Density (PSD) function or its higher-order counterparts.
     5. According to the requirements of the tasks the author undertaken in the project, a software platform for presence detection of burst signals and a software platform for matched recognition of target signals are designed and implemented respectively. Detailed experimental results with regard to various simulated signals as well as practical signals are provided which have proved the feasibility and effectiveness of the above two platforms.
引文
[1]樊昌信等.通信原理[M].第5版.北京:国防工业出版社,2001:1-3,137-139.
    [2]Mitola J著.赵荣黎等译.软件无线电体系结构:应用于无线系统工程中的面向对象的方法[M].北京:机械工业出版社,2003:2-8.
    [3]Yoon Y C, Leib H. Maximizing SNR in improper complex noise and applications to CDMA[J]. IEEE Communications Letters,1997,1(1):5-8.
    [4]Balachandran K, Kadaba S R, and Nanda S. Channel quality estimation and rate adaptation for cellular mobile radio [J]. IEEE Journal on Selected Areas in Communications,1999,7(17):1244-1256.
    [5]Talakoub S, Shahrrava B. Turbo equalization with iterative online SNR estimation[A]. In:Proc. of IEEE WCNC'05[C]. Wuhan, China, March 2005: 1097-1102.
    [6]Khalighi M A. Effect of mismatched SNR on the performance of log-MAP turbo detector[J]. IEEE Transactions on Vehicular Technology,2003,52(5): 1386-1397.
    [7]Khalighi M A. Sensitivity to SNR mismatch in interference cancelling based turbo equalizers[A]. In:Proc. of IEEE ISPIMRC'02[C]. Lisboa, Portugal, Sept. 2002:379-383.
    [8]Nandi A K, Azzouz E E. Algorithms of automatic modulation recognition of communication signal[J]. IEEE Transactions on Communications,1998,46(4): 431-436.
    [9]Van Trees H L. Detection, Estimation and Modulation Theory[M]. Part Ⅰ. New York:Wiley,2001:23-46.
    [10]Schonhoff T, Ciordano A A. Detection and Estimation:Theory and Its Applications [M].北京:电子工业出版社,2007:86-95.
    [11]Urkowitz H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE,1967,55(4):523-531.
    [12]Kostylev V I. Energy detection of a signal with random amplitude[A]. In:Proc. of IEEE ICC'02[C]. New York City, New York, May 2002:1606-1610.
    [13]Kaiser J F. On a simple algorithm to calculate the energy of a signal[A]. In: Proc.of IEEE ICASSP'90[C]. Albuquerque, USA, Apr.1990:381-384.
    [14]Dunn R B, Quatieri T F, and Kaiser J F. Detection of transient signals using the energy operator[A]. In:Proc. of IEEE ICASSP'93[C]. Minneapolis, USA, Apr. 1993:145-148.
    [15]Digham F F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels[A]. In:Proc. of IEEE ICC'03[C]. Seattle, May 2003:3575-3579.
    [16]Colonnese S, Sxarano G. Transient signal detection using higher order moments[J]. IEEE Transactions on Signal Processing,1999,47(2):515-520.
    [17]Chichereau C, Lacoume J L, Blanpain R, and Dassot G. Short delay detection of a transient in additive Gaussian noise via higher order statistic test[A]. In: Proc. of IEEE Digital Signal Workshop[C]. New York, USA,1996:299-302.
    [18]吴晓东,路友荣,黄渊凌等.TDMA突发信号的检测[J].电信技术研究,2005,1-2:28-34.
    [19]Hardwicke K R, Wilson G R, and Baugh K W. Characterization of spectral correlation detector statistics useful in transient detection[J]. Circuits, Systems and Signal Processing,1994,13(4):497-511.
    [20]Baugh K W, Hardwicke K R. On the detection of transient signals using spectral correlation[J]. Circuits, Systems and Signal Processing,1994,13(4): 467-479.
    [21]Nuttall A H. Near-optimum detection of random signals of unknown location, structure, extent, and strength[A]. In:Proc. of OCEANS'95. MTS/IEEE. 'Challenges of Our Changing Global Environment'Conference[C]. San Diego, CA, USA, Oct.1995:1659-1664.
    [22]Fawcett J A, Maranda B H. The optimal power law for the detection of a Gaussian burst in a background of Gaussian noise[J]. IEEE Transactions on Information Theory,1991,37(1):209-214.
    [23]Kirsteins I, Mehta S K, and Fay J. Power-law processors for detecting unknown signals in colored noise[A]. In Proc. of IEEE ICASSP'97[C]. Munich, Germany, Apr.1997:483-486.
    [24]Hirose H. Mixture model of the power law[J]. IEEE Transactions on Reliability,1997,46(1):146-153.
    [25]McCoy E J, Walden A T, and Percival D B. Multitaper spectral estimation of power law processes[J]. IEEE Transactions on Signal Processing,1998,46(3): 655-668.
    [26]Frey M, Andescavage D. An analytic theory for power law detection of bursty targets in multiplicative noise[J]. IEEE Transactions on Signal Processing, 1998,46(10):2837-2841.
    [27]Wang Z, Willett P K. A performance study of some transient detectors[J]. IEEE Transactions on Signal Processing,2000,48(9):2682-2685.
    [28]Wang Z, Willett P K. All-purpose and plug-in power-law detectors for transient signals[J]. IEEE Transactions on Signal Processing,2001,49(11):2454-2466.
    [29]Lehtomaki J J, Juntti M, and Saarnisaari H. Power-law based intercept receiver with nonorthogonal transforms [A]. In:Proc. of IEEE MILCOM'04[C], Monterey CA, USA, May 2004:1402-1408.
    [30]Koivu S, Saarnisaari H, and Juntti M. Comparison of quantized power-law based intercept receivers[A]. In:Proc. of IEEE MILCOM'04[C], Monterey CA, USA, May 2004:1345-1351.
    [31]Lee N, Schwartz S C. Robust transient signal detection using the oversampled Gabor representation[J]. IEEE Transactions on Signal Processing,1995,43(6): 1498-1502.
    [32]Bovik A C, Maragos P, and Quatieri F. AM-FM energy detection and separation in noise using multiband energy operators [J]. IEEE Transactions on Signal Processing,1993,41(12):3245-3265.
    [33]孙永军,杨绍全.利用子带提取改善信号检测能力[J].系统工程与电子技术,2003,25(12):1457-1459.
    [34]Proakis J G. Digital Communications[M]. Fourth edition. McGraw-Hill,2001: 185-187.
    [35]Shen J L, Hung J W, and Lee L S. Robust entropy-based endpoint detection for speech recognition in noisy environments[A]. In:Proc. of IEEE ICSLP'98[C]. Sydney, Australia,1998:232-235.
    [36]Huang L S, Yang C H. A novel approach to robust speech endpoint detection in car environments[A]. In:Proc. of IEEE ICASSP'00[C]. Istanbul, Turkey, June 2000:1751-1754.
    [37]Pauluzzi D R, Beaulieu N C. A comparison of SNR estimation techniques for the AWGN channel[J]. IEEE Transactions on Communications,2000,48(10): 1681-1691.
    [38]Andersin M, Mandayani N B, and Yates R D. Subspace based estimation of the Signal to Interference Ratio for TDMA cellular systems[A]. In:Proc. of IEEE VTC'96[C]. Atlanta, USA, Apr.1996:1155-1159.
    [39]Li B, DiFazio R, and Zeira A. A low bias algorithm to estimate negative SNRs in an AWGN channel[J]. IEEE Communications Letters,2002,6(11):469-471.
    [40]Li B, DiFazio R A, Zeira A, and Pietraski P J. New results on SNR estimation of MPSK modulated signals[A]. In:Proc. of IEEE ISPIMRC'03[C]. Beijing, China,2003:2373-2377.
    [41]Wiesel A, Goldberg J and Messer H. Non-data-aided signal-to-noise-ratio estimation[A]. In:Proc. of IEEE ICC'02[C]. New York, USA, Apr.2002: 197-201.
    [42]Mecklenbrauker C F, Paul S. On estimating the signal to noise ratio from BPSK signals[A]. In:Proc. of IEEE ICASSP'05[C]. Philadelphia, USA, March 2005:vol. IV,65-68.
    [43]Alagha N S. Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals[J]. IEEE Communications Letters,2001,5(1):10-12.
    [44]许华.短时突发信号的盲处理技术研究[D].郑州:解放军信息工程大学,2005.
    [45]Ertas T, Dilaveroglu E. Cramer-Rao bounds on SNR estimation of BPSK signals in Rayleigh fading channels with dual MRC diversity [J]. IEE Electronics Letters,2004,40(12):742-744.
    [46]Dilaveroglu E, Ertas T. Asymptotic CRB on SNR estimation of QPSK signals in low-SNR Nakagami-m fading channels with diversity combining[J]. IEE Electronics Letters,2004,40(11):678-679.
    [47]Dilaveroglu E, ErtasT. Erratum for'asymptotic crb on snr estimation of QPSK signals in low-SNR Nakagami-m fading channels with diversity combining'[J]. IEE Electronics Letters,2005,41(20):1143.
    [48]Dilaveroglu E, ErtasT. CRBs and MLEs for SNR estimation of noncoherent BFSK signals in Rayleigh fading channels[J]. IEE Electronics Letters,2005, 41(2):79-80.
    [49]Summers T A, Wilson S G. SNR mismatch and online estimation in turbo decoding[J]. IEEE Transactions on Communications,1998,46(4):421-423.
    [50]Ramesh A, Chockalingam A, and Milstein L B. SNR estimation in nakagami-m fading with diversity for Turbo decoding[A]. In:Proc. of IEEE MILCOM'01[C]. Washington D C, Oct.2001:1141-1145.
    [51]Ramesh A, Chockalingam A, and Milstein L B. SNR estimation in nakagami-m fading with diversity and its application to turbo decoding[J]. IEEE Transactions on Communications,2002,50(11):1719-1724.
    [52]Ramesh A, Chockalingam A, and Milstein L B. SNR estimation in generalized fading channels and its application to turbo decoding[A]. In:Proc. of IEEE ICC'01[C]. Helsinki, Finland,2001:1094-1098.
    [53]Sun J, Valenti M C. Joint synchronization and SNR estimation for turbo codes in AWGN channels[J]. IEEE Transactions on Communications,2005,53(7): 1136-1144.
    [54]Takizawa K I, Sasaki S, and Zhou J. Online SNR estimation for parallel combinatorial SS systems in nakagami fading channels[J]. IEICE Transactions on Fundamentals,2003, E85-A(12):2847-2858.
    [55]Beaulieu N C, Toms A S, and Pauluzzi D R. Comparison of four SNR estimators for QPSK modulations [J]. IEEE Communications Letters,2000, 4(2):43-45.
    [56]Karastergios E, Sumanasena M A K, and Evans B G. Simple SNR estimator for mobile fading channels[J]. IEE Electronics Letters,2003,39(2):244-245.
    [57]Celandroni N, Ferro E, and Potorti F. Quality estimation of PSK modulated signals[J]. IEEE Communications Magazine,1997,7:50-55.
    [58]Persson J. Methods of SNR estimation from asynchronously sampled data in an 802.11b system[D]. Lulea, Sweden:LULEA university of technology,2003.
    [59]Matzner R, Englberger F. An SNR estimation algorithm using fourth-order moments[A]. In:Proc. of IEEE ISIT'94[C]. Trondheim, Norway,1994:119.
    [60]Ren G L, Chang Y L, and Zhang H. A new SNR's estimator for QPSK modulations in an AWGN channel [J]. IEEE Transactions on Circuits and Systems-II:Express Briefs,2005,52(6):336-338.
    [61]詹亚锋.通信信号自动制式识别及参数估计[D].北京:清华大学,2004.
    [62]Cao Z G, Zhan Y F, and Ma Z X. SNR estimation using Gibbs sampler [J]. IEICE Transactions on Communications,2004, E87-B(10):2972-2979.
    [63]Simon M K, Mileant A. SNR estimation for baseband assembly[J]. The Telecommunications and Data Acquisition (TDA) Progress Report,1986, 42-85:118-126.
    [64]Dolinar S J. Cramer-Rao bounds for signal-to-noise ratio and combiner weight estimation[J]. TDA Progress Report,1986,42-86:124-130.
    [65]Shah B, Hindi S. Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference [J]. TDA Progress Report,1989, 42-98:157-173.
    [66]Shah B. The split symbol moments SNR estimator in narrow-band channels[J]. IEEE Transactions on Aerospace and Electronic Systems,1989,26(5): 737-747.
    [67]Dolinar S. Exact closed-form expressions for the performance of the split-symbol moments estimator of signal-to-noise ratio [J]. TDA Progress Report,1990,42-100:174-179.
    [68]Feria Y. A complex symbol signal-to-noise ratio estimator and its performance[J]. TDA Progress Report,1994,42-116:232-245.
    [69]Simon M, Dolinar S. Signal-to-noise ratio estimation for autonomous receiver operation[A]. In:Proc. of IEEE Globecom'04[C]. Dallas, Texas, USA,2004: 282-287.
    [70]Simon M, Dolinar S. Improving SNR estimation for autonomous receivers[J]. IEEE Transactions on Communications,2005,53(6):1063-1073.
    [71]Simon M, Dolinar S. Turning fiction into non-fiction for signal-to-noise ratio estimation-the time-multiplexed and adaptive split-symbol moments estimator[J]. The Interplanetary Network Progress Report,2005,42-162:1-9.
    [72]隋丹,葛临东.MPSK信号的盲信噪比估计算法[J].信号处理,2007,23(3):394-397.
    [73]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:344-348.
    [74]Ramakrishna D, Mandayam N B, and Yates R D. Subspace-based SIR estimation for CDMA cellular systems[J]. IEEE Transactions on Vehicular Technology,2000,49(5):1732-1742.
    [75]Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on ASSP,1985, ASSP-33(2):387-392.
    [76]詹亚锋,曹志刚,马正新.无线数字通信的盲信噪比估计[J].清华大学学报(自然科学版),2003,43(7):957-960.
    [77]范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(9):1369-1371.
    [78]Linn Y, Peleg N. A family of self-normalizing carrier lock detectors and Es/N0 estimators for M-PSK and other phase modulation schemes[J]. IEEE Transactions on Wireless Communications,2004,3(5):1659-1668.
    [79]Linn Y. Quantitative analysis of a new method for real-time generation of SNR estimates for digital phase modulation signals[J]. IEEE Transactions on Wireless Communications,2004,3(6):1984-1988.
    [80]Yang B. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing,1995,43(1):95-107.
    [81]隋丹,葛临东.一种新的基于改进PASTd算法的中频信号盲信噪比估计算法[J].电子与信息学报,2007,29(7):1657-1661.
    [82]Yang B. An extension of the PASTd algorithm to both rank and subspace tracking[J]. IEEE Signal Processing Letters,1995,2(9):179-182.
    [83]Mammone R J, Rothaker R J, and Podilchuk C I. Estimation of carrier frequency, modulation type and bit rate of an unknown modulated signal [A]. In:Proc. of IEEE ICC'87[C]. Seattle, Washington, June 1987:1006-1012.
    [84]Gaby J E. Automatic bit pattern analysis of communications signals[A]. In: Proc. of IEEE ICASSP'90[C]. Albuquerque, USA, Apr.1990:1715-1718.
    [85]Wegener A W. Practical techniques for baud rate estimation[A]. In:Proc. of IEEE ICASSP'92[C]. San Francisco, USA, Apr.1992:681-684.
    [86]Sills J A, Wood J F. Application of the Euclidean algorithm to optimal baud-rate estimation[A]. In:Proc. of IEEE MILCOM'96[C]. Washington D C, Oct.1996:1015-1019.
    [87]Reed R E, Wickert M A. Minimization of detection of symbol-rate spectral lines by delay and multiply receivers [J]. IEEE Transactions on Communications,1988,36(1):118-120.
    [88]Reed R E, Wickert M A. Symbol-rate detection by a power-series-nonlinear envelope detector receiver[A]. In:Proc. of IEEE Conf. on Computers and Communications[C]. Phoenix, USA, Mar.1988:179-183.
    [89]Wickert M A, Turcotte R L. Rate-line detection using higher-order spectra[A]. In:Proc. of IEEE MILCOM'92[C]. San Diego, USA, Oct.1992:1221-1225.
    [90]Yu Z H, Su W. Symbol-rate estimation based on filter bank[A]. In:Proc. of IEEE ISCAS'05[C]. Kobe, Japan, May 2005:1437-1440.
    [91]Gardner W A, Franks L. Characterization of cyclostationary random signal processes[J]. IEEE Transactions on Information Theory,1975, IT-21(1):4-14.
    [92]Gardner W A. Measurement of spectral correlation [J]. IEEE Transactions on ASSP,1986,ASSP-34(5):1111-1123.
    [93]Gardner W A. Spectral correlation of modulated signals:Part Ⅰ-analog modulation[J]. IEEE Transactions on Communications,1987, Com-35(6): 584-594.
    [94]Gardner W A, Brown W A, and Chen C K. Spectral correlation of modulated signals:Part Ⅱ-digital modulation[J]. IEEE Transactions on Communications, 1987, Com-35(6):595-601.
    [95]Gardner W A. Signal interception:a unifying theoretical framework for feature detection[J]. IEEE Transactions on Communications,1988,36(8):897-906.
    [96]Gardner W A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine,1991,4:14-36.
    [97]Roberts R S, Brown W A, and Loomis JR H H. Computationally efficient algorithms for cyclic spectral analysis [J]. IEEE Signal Processing Magazine, 1991,4:38-49.
    [98]Gardner W A, Spooner C M. Signal interception:performance advantages of cyclic-feature detectors[J]. IEEE Transactions on Communications,1992, 40(1):149-159.
    [99]Spooner C M, Gardner W A. Robust feature detection for signal interception [J]. IEEE Transactions on Communications,1994,42(5):2165-2173.
    [100]Mccallister R. Generalized cross-spectrum symbol synchronization[D]. Tempe, Arizona, USA:Arizona State University,1981.
    [101]Kim S H, Scholtz R A. An optimum generalized cross-spectrum symbol-rate detector[J]. IEEE Transactions on Communications,1993,41(9):1399-1411.
    [102]Mazet L, Loubaton Ph. Cyclic correlation based symbol rate estimation[A]. In: Proc. of IEEE ACSSC'99[C]. Pacific Grove, CA, Nov.1999:1008-1012.
    [103]Ciblat P, Loubaton P, Serpedin E, and Giannakis G B. Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators[J]. IEEE Transactions on Information Theory,2002,48(7):1922-1934.
    [104]汤素华,戴旭初,徐佩霞等.基于循环自相关的符号率估计[J].兵工学报,2005,26(2):251-255.
    [105]Koh B S, Lee H S. Detection of symbol rate of unknown digital communication signals[J]. IEE Electronics Letters,1993,29(3):278-279.
    [106]Chan Y T, Plews J W, and Ho K C. Symbol rate estimation by the wavelet transform[A]. In:Proc. of IEEE ISCAS'97[C]. Hongkong, June 1997: 177-180.
    [107]Ho K C, Prokopiw W, and Chan Y T. Modulation identification of digital signals by the wavelet transform[J]. IEE Proc. Radar, Sonar Navig.,2000, 147(4):169-176.
    [108]张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806.
    [109]Xu J, Wang F P, and Wang Z J. The improvement of symbol rate estimation by the wavelet transform[A]. In:Proc. of IEEE ICCCAS'05[C]. Hongkong, May 2005:100-103.
    [110]纪勇,徐佩霞.基于小波变换的数字信号符号率估计[J].电路与系统学报,2003,8(1):12-15.
    [111]胡建伟,杨绍全,汤建龙.基于多频带能量算子的符号率盲估计[J].系统 工程与电子技术,2005,27(9):1539-1544.
    [112]Boulinguez D, Gamier C, and Delignon Y. Time frequency and kalman filter based baud rate estimator[A]. In:Proc. of ISPA'03[C]. Fukushima, Japan, Sept. 2003:866-870.
    [113]Doroslovacki M, Yao L. On-line adaptive estimation of symbol period[A]. In: Proc. of IEEE MILCOM'97[C]. Monterey, CA,Nov.1997:1117-1121.
    [114]Mallat S著,杨力华等译.信号处理的小波导引[M].第二版.北京:机械工业出版社,2002:193-196.
    [115]Mallat S G, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [116]Mallat S G, Zhong S F. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(7): 710-732.
    [117]余英林,谢胜利,蔡汉添等.信号处理新方法导论[M].北京:清华大学出版社,2004:113-121.
    [118]Orfanidis S J. Introduction to Signal Processing[M]影印版.北京:清华大学出版社,1998:650-659.
    [119]刘双平.线性调制分析中的谐波检测与估计[D].郑州:解放军信息工程大学,2007.
    [120]MIL-STD-188-110B. Interoperability and performance standards for data modems[S]. USA:Department of Defense Interface Standard,2000.
    [121]胡中豫等.现代短波通信[M].北京:国防工业出版社,2003:3-5.
    [122]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2002:67-69.
    [123]胡广书.数字信号处理-理论、算法与实现[M].第二版.北京:清华大学出版社,2003:512-516.
    [124]Dubuc C, Boudreau D, and Patenaude F. An automatic modulation recognition algorithm for spectrum monitoring applications[A]. In:Proc. of IEEE VTC'99[C]. Vancouver, Canada, Sept.1999:570-574.
    [125]Boudreau D, Dubuc C, Patenaude F. A fast automatic modulation recognition algorithm and its implementation in a spectrum monitoring application [A]. In: Proc. of IEEE MILCOM'00[C]. Los Angeles, CA, Oct.2000, vol.2:732-736.
    [126]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别[J].通信学报,2004,25(1):140-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700