复杂电磁环境下的信号检测与估计关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的飞速发展,通信信号的体制和调制样式复杂多样,频谱日益拥挤和重叠,导致背景噪声与干扰显著提高,电磁环境极其复杂。这种复杂的电磁环境对于无论军事领域还是民用领域的无线通信系统都会形成严重的电磁噪声干扰,甚至会使通信联络中断,因而对于无线通信系统尤其是对于接收端的信号检测与估计提出了更高的要求和更严峻的挑战。由于非线性随机共振处理技术对于滤除干扰噪声和检测微弱信号具有较好效果,甚至可以利用噪声来增强有用信号,使得这一非线性现象在生物、化学、电子、图像处理等领域得到广泛应用。尽管如此,将随机共振理论应用于无线通信系统,仍然面临模型设计、复杂信号处理、参数优化与自适应控制等诸多关键问题。因此,针对当前无线通信面临的迫切需求和严峻挑战,本文将非线性科学领域的随机共振技术引入到复杂电磁环境下的信号检测与估计当中,在深入研究典型随机共振系统原理及其特性,并解决随机共振相关瓶颈问题的基础上,提出基于非线性随机共振系统的微弱信号检测、非高斯信号接收和信号参数估计等关键技术,进一步提升无线通信系统的接收性能。
     首先,对典型非线性系统中的随机共振现象及其原理进行详细描述和深入研究,为后续随机共振的实际应用提供了理论基础。将周期信号和噪声输入双稳态模型和单阈值模型这两种典型随机共振系统,研究和分析了因非线性系统、信号和噪声之间的协同效应而产生的随机共振现象及其机理。提出了基于线性变换的系统参数调整策略,并解决了SR系统参数最优化和复杂信号处理等问题,获得了最佳的随机共振处理性能。
     接下来,提出了复杂电磁环境下基于双稳态SR系统的能量检测算法,证明了随机共振处理能够实现噪声能量向信号能量转移,从而有效削弱了噪声不确定度的影响,进而改善1-2dB检测性能。并且,提出了基于双稳态SR系统的截尾序贯检验算法,推导了最佳截尾门限,进一步缩短了50%的检测时间。此外,提出了基于广义SR系统的能量检测算法,推导了最佳SR噪声的概率密度解析式,仅通过增加SR噪声就能改善检测性能。
     其次,将随机共振系统应用到广义高斯噪声情况下的信号最佳接收中,从而降低了误码率和改善接收性能。复杂环境下背景噪声的非高斯分布特性会导致线性最佳接收算法性能的急剧恶化,因此在分析了阵列阈值随机共振系统输出信号特征基础上,提出了基于阵列阈值系统的非线性接收算法。采用基于直接搜索法的阈值噪声自适应调整策略,实现了输出信噪比和误码率的最优化。理论推导和仿真结果表明在拉普拉斯型等非高斯分布噪声下,所提算法的接收性能优于基于匹配滤波的线性最佳接收算法1-3dB,从而保障了非高斯噪声下无线通信系统的接收性能。
     最后,针对复杂环境下的直接扩频信号估计需求,提出了基于广义随机共振系统和特征分解技术的信号参数估计算法。发现了电平通过率估计算法中的随机共振现象,并提出了基于该SR模型的最大多普勒频移估计算法,通过实现背景噪声与多普勒估计器之间的匹配,改善多普勒估计性能达1.5dB以上。与此同时,根据直接扩频信号相似性和特征分解原理,提出了一种基于平均互相关和特征分解的伪码序列估计算法,性能分析和仿真结果表明所提算法有效克服了部分反码问题和提高了2dB以上的抗噪声性能。
With the rapid development of modern wireless communication, communication systems and modulation schemes is gradually complicated and diversified. Spectrum was increasingly congested and overlapping, which lead to an increase of background noise and interference significantly. The electromagnetic environment is extremely complex. This complex electromagnetic environment has badly restricted transmission quality and reception performance of communication system on civil and military fields, which even caused connection broken suddenly. Thus, it offers higher demands and severer challenges for wireless communication, especially signal detection and estimation in communication terminal. Due to the nonlinear stochastic resonance (SR) technology has good effects in noise suppression and weak signal detection, it is widely applied in many different areas such as biology, chemistry, electronics, image processing. However, the application of stochastic resonance in communications is still facing many key problem including model design, complicated signal process, parameter optimization, adaptive control, et al. Therefore, on the basis of in-depth research on typical SR systems and solution to their belated bottle-neck problems, this thesis proposed some important technologies about weak signal detection, and parameter estimation based on SR, which further promoted the reception performance of wireless communications systems under complex electromagnetic environment.
     First, the SR phenomenon and its mechanism in typical systems are researched and analyzed in details, which provides the theorotic basis for its subsequent actual applications. Then, the periodic signal and noise are put into bistable stochastic resonance (BSR) and suprathreshold stochastic resonance (SSR) mode, and the SR phenomena caused to synergistic effect between signal, noise and nonlinear systems and their mechanism are research and analyzed. Moreover, the adaptive parameters adjust strategy based on linear transformation is proposed, and system parameter optimization and complex signal process problem are solved for optimal performance in SR systems.
     Next, nonlinear SR process technology is applied in weak signal detection, to improve detection performance and reduce detection time. An energy detection (ED) based on BSR is proposed under the complex environment. By utilizing the SR process of received signal, proposed algorithm can achieve energy transfer from noise to signal, thus effectively eliminates the influence of interference noise and improves 1~2dB detection performance. Then, a truncated sequential probability ratio test (SPRT) algorithm based on BSR is introduced and the optimal truncated threshold is derived to further shorten detection time about 50%. Moreover, we propose an ED algorithm based on generalized stochastic resonance (GSR), which can improve the detection performance by adding SR noise with special probability density function.
     Then, nonlinear SR system is applied in signal reception under Generalized Gaussian noise conditions, to reduce bit error rate (BER) and improve reception performance. Because non-Gaussian interference noise brings to performance degradation of linear best receiving algorithms designed under Gaussian noise, on the basis of analysis on the output signal feature of SSR system, a nonlinear receiving algorithm is proposed based on SSR. Then, a strategy for parameters adaptive adjustment is put forward to ensure the optimization of output SNR and BER. Theory deduction and simulation results show that under non-Gaussian interference noise, e.g. Laplacian noise, the received performance of proposed algorithm is superior to linear best receiving algorithm based on matched filter (MF) for 1-3dB, thus it guarantees the reception performance of wireless communications systems under non-Gaussian noise.
     Finally, according to parameter estimation demand of spread spectrum (DS) signal, we propose the maximum Doppler shift estimation based on GSR and the PN estimation based on eigenanalysis. The SR phenomenon is discovered in Doppler shift estimation, and new Doppler shift estimation is proposed based on this SR mode. Through a low-pass filtering processing of the received signal, interference noise and the Doppler estimator can be matched, thus the estimation performance of the maximum Doppler shift can be improved more than 1.5dB. Meanwhile, a blind estimation for PN sequence is proposed based on the similarities among the DS signals and the eigenanalysis technique. Simulation results show that compared with the existing algorithms, the proposed algorithm not only overcomes the partial-encode problem, but also improves estimation performance by 2dB. Thus, it achieves an accurate estimation of PN sequence in low SNR conditions.
引文
[1]Andreas F. Molisch. Wireless communications-second edition. Cambridge University,2011.
    [2]李建东,杨家玮.个人通信.北京:人民邮电出版社,2002.
    [3]Simon Haykin, Michael Moher. Modern wireless communications. Prentice Hall,2005.
    [4]T. S. Rappaport, A. Annamalai, R. M. Buehere, and W. H. Tranter. Wireless communications: past events and a future perspective. IEEE Communications Magazine,2002,40(5):148-161.
    [5]郭梯云,杨家玮,李建东.数字移动通信.北京:人民邮电出版社,2001.
    [6]L. Sevgi. Complex electromagnetic problems and numerical simulation approaches. Wiley, 2003.
    [7]Jaechan Lim, H. Daehyoung. Inter-carrier interference estimation in OFDM systems with unknown noise distributions. IEEE Signal Processing Letters,2009,16(6):493-496
    [8]A. Chubukjian, J. Benger, R. Otnes, et al. Potential effects of broadband wireline telecommunications on the HF spectrum. IEEE Communications Magazine,2008,46(11): 49-54.
    [9]GB/T4365-1995.中华人民共和国国家电磁兼容标准.1995年颁发.
    [10]Federal Communications Commission. Spectrum policy task force report. FCC.02-155, Nov, 2002.
    [11]B.A. Fette. Cognitive radio technolog. Elsevier, Burlington, USA,2006.
    [12]Y.C. Liang, Y. Zeng, E. Peh, and A. Hoang. Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Communications,2008,7(4):1326-1337.
    [13]X. Shuzheng, Y. Huazhong, W. Hui. Application of DAPSK in HF communications. IEEE Communications Letters,2005,9(7):613-615.
    [14]Yang Li, Hao Ling. Investigation of wave propagation in a dielectric rod array:toward the understanding of HF/VHF propagation in a forest. IEEE Transactions on Antennas and Propagation,2010,58(12):4025-4032.
    [15]T.Q.S. Quek, Shin Hyundong. Bursty relay networks in low-SNR regimes. IEEE Transactions on Communications,2010,58(2):694-705.
    [16]Li Yan, S. Kishore. Diversity factor-based capacity asymptotic approximations of MRC reception in Rayleigh fading channels. IEEE Transactions on Communications,2008,56(6): 858-861.
    [17]R. Tandra, A. Sahai. SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing,2008,2(1):4-17.
    [18]M. Beko, J. Xavier, V.A.N. Barroso. Further results on the capacity and error probability analysis of noncoherent MIMO systems in the Low SNR regime. IEEE Transactions on Signal Processing.2008,56(7), Part-1:2915-2930
    [19]S. Draganov, M. Harlacher, L. Haas, et al. Synthetic aperture navigation in multipath environments. IEEE Transactions on Wireless communications,2011,18(2):52-58.
    [20]S. Atapattu, C. Tellambura, Jiang Hai. Performance of an energy detector over channels with both multipath fading and shadowing. IEEE Transactions on Wireless Communications,2010, 9(12):3662-3670.
    [21]Hua Jingyu, Xu Zhijiang, Li Jin, et al. Doppler shift estimator with MMSE parameter optimization for very low SNR environment in wireless communications. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1228-1233.
    [22]W..U. Bajwa, J. Haupt, A.M. Sayeed, R. Nowak. Compressed channel sensing:a new approach to estimating sparse multipath channels. Proceedings of the IEEE,2010,98(6):1058-1076.
    [23]E. Diederichs, A. Juditsky, V. Spokoiny, et al. Sparse non-Gaussian component analysis. IEEE Transactions on Information Theory,2010,56(6):3033-3047.
    [24]M. Biguesh, S. Gazor, M.H. Shariat. Optimal training sequence for MIMO wireless systems in colored environments. IEEE Transactions on Signal Processing,2009,57(8):3144-3153.
    [25]Thomas Schonhoff, Arthur A.Giordano. Detection and estimation theory and its applications. Prentice Hall press, Aug,2005.
    [26]赵树杰,赵建编著.信号检测与估计理论.北京:清华大学出版社,2005.
    [27]马淑芬,王菊,朱梦宇.离散信号检测与估计.北京:电子工业出版社,2010.
    [28]高晋占.微弱信号检测.北京:清华大学出版社,2010.
    [29]Lin Ma, Nanning Zheng, Zejian Yuan, et al. A Novel dual-probe adaptive model for image change detection. IEEE Signal Processing Letters,2010,17(10):863-866.
    [30]R.R. Nadakuditi, J.W. Silverstein. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE Journal of Selected Topics in Signal Processing,2010,4(3):468-480.
    [31]A.P. Kurian, H. Leung. Weak signal estimation in chaotic clutter using model-based coupled synchronization. IEEE Transactions on Circuits and Systems I:Regular Papers,56(4):2009: 820-828.
    [32]J.W.R. Grifftths, P.L. Des Stoklin. Signal Processing. Academic Press,1973.
    [33]F.G. Agis, C. Ware, D. Erasme, R. Ricken.10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in periodically poled lithium niobate. IEEE Photonics Technology Letters,2006,18(13):1460-1462
    [34]李月,杨宝俊,谭力等.微弱周期脉冲信号的取样积分一混沌系统联合检测方法.电子与信息学报,2003,25(12):1653-1657.
    [35]M.I. Plett. Transient detection with cross wavelet transforms and wavelet coherence. IEEE Transactions on Signal Processing,2007,55(5):1605-1611
    [36]Yiannis Andreopoulos, Mihaela van der Schaar. Generalized phase shifting for M-band discrete wavelet packet transforms. IEEE Transactions on Signal Processing,2007,55(2):742-747.
    [37]A.Y. Goharrizi, N. Sepehri, A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators. IEEE Transactions on Industrial Electronics,2010,57(5):1755-1763.
    [38]Ran Tao, Bing Deng, Wei-Qiang Zhang, Yue Wang. Sampling and sampling rate conversion of band limited signals in the fractional fourier transform domain. IEEE Transactions on Signal Processing,2008,56(1):158-171.
    [39]Deyun Wei, Qiwen Ran, Yuanmin Li. Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform. IEEE Signal Processing Letters,2010,17(6): 595-598.
    [40]Soo-Chang Pei. Wen-Liang Hsue. Random discrete fractional Fourier transform. IEEE Signal Processing Letters,2009,16(12):1015-1018.
    [41]R.R. Bitmead, A.C. Tsoi, P.J. Parker. A kalman filtering approach to shrot-time Fourier analysis. IEEE Transaction on Acoust, Speech, Signal Processing,1986,34(6):1493-1501.
    [42]G Nicolis. Introduction to Nonlinear Science. Cambridge University,1995.
    [43]J.A. Tenreiro, C.J. Albert, R.S. Barbosa, et al. Nonlinear Science and Complexity. Springer, 2011.
    [44]Ching-Hsiang Tseng. Estimation of cubic nonlinear bandpass channels in orthogonal frequency-division multiplexing systems. IEEE Transactions on Communications,2010,58(5): 1415-1425.
    [45]L. Lu, W. Hsiao-Chun, S.S.Iyengar. A Novel Robust Detection Algorithm for Spectrum Sensing. IEEE Journal on Selected Areas in Communications,2011,29(2):305-315.
    [46]S. Marini, A. Coves, V.E. Boria, et al. Full-wave modal analysis of slow-wave periodic structures loaded with elliptical waveguides. IEEE Transactions on Electron Devices,2010, 57(2):516-524.
    [47]L. Reznik, G. Von Pless, T. AlKarim. Distributed neural networks for signal change detection: on the way to cognition in sensor networks. IEEE Sensors Journal,2011,11(3):791-798.
    [48]S.B. Rasool, M.R. Bell. Biologically inspired processing of fadar waveforms for enhanced delay-Doppler resolution. IEEE Transactions on Signal Processing,2011,59(6):269-270.
    [49]Minho Jo, Hee Yong Youn, Hsiao-Hwa Chen. Intelligent RFID tag detection using support vector machine. IEEE Transactions on Wireless Communications,2009,8(10):5050-5059.
    [50]V.Gomez-Verdejo, J. Arenas-Garcia, M. Lazaro-Gredilla, et al. Adaptive one-class support vector machine. IEEE Transactions on Signal Processing,2011,59(6):2975-2981.
    [51]L. Gyemin, C. Scott. Nested support vector machines. IEEE Transactions on Signal Processing, 2010,58(3):1648-1660.
    [52]O. Niang, E. Delechelle, J. Lemoine. A spectral approach for sifting process in empirical mode decomposition. IEEE Transactions on Signal Processing,2010,58(11):5612-5623
    [53]S. Shukla, S. Mishra, B. Singh. Empirical-mode decomposition with Hilbert transform for power-quality assessment. IEEE Transactions on Power Delivery,2009,24(4):2159-2165.
    [54]M. Egard, M. Arlelid, E. Lind, E.et al. Bias stabilization of negative differential conductance oscillators operated in pulsed mode. IEEE Transactions on Microwave Theory and Techniques, 2011,59(3):672-677.
    [55]W. Guanyu, C. Dajun, L. Jianya, C. Xing. The application of chaotic oscillators to weak signal detection. IEEE Transactions on Industrial Electronics,1999,46(2):440-444.
    [56]W. Guanyu, H. Sailing. A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2003,50(7):945-953.
    [57]李月,石要武,马海涛,杨宝俊.湮没在色噪声背景下微弱方波信号的混沌检测方法.电子学报,2004,32(1):87-90.
    [58]C. Hao, P.K. Varshney, S.M. Kay, et al. Theory of the stochastic resonance effect in signal detection:part Ⅰ-fixed detectors. IEEE Transactions on Signal Processing,2007,55(7): 3172-3184.
    [59]C. Hao, P.K. Varshney, Theory of the stochastic resonance effect in signal detection part-II: variable detectors. IEEE Transactions on Signal Processing,2008,56(10):5031-5041.
    [60]M. Guerriero, S. Marano,V. Matta, et al. Stochastic resonance in sequential detectors. IEEE Transactions on Signal Processing,2009,57(1):2-15.
    [61]张雷,宋爱国.随机共振在信号处理中应用研究的回顾与展望.电子学报,2009,37(4):811-818.
    [62]D. Fun-Bin, J. Chia-Feng, L. Chin-Teng. A neural fuzzy network approach to Radar pulse compression. IEEE Geoscience and Remote Sensing Letters,2004,1(1):15-20.
    [63]Keem Siah Yap, Chee Peng Lim, I.Z. Abidi. A Hybrid ART-GRNN online learning neural network with an insensitive loss function. IEEE Transactions on Neural Networks,2008,19(9): 1641-1646
    [64]R. Benzi, S. Sutera, A.Vulpiani. The mechanism of stochastic resonance. Physical Review A, 1981,14:453-L457.
    [65]S. Fauve, F. Heslot. Stochastic resonance in a bistable system. Physical Review A,1983,97: 5-7.
    [66]B. McNamara, K Wiesenfeld, R. Roy. Observation of stochastic resonance in a ring laser. Physical Review Letters,1988,1(4):3-4.
    [67]B. McNamara, K. Wiesenfeld. Theory of stochastic resonance. Physical Review A,1989,39(9): 4854-4869.
    [68]M.I. Dykman, D.C. Luchinsky, et al. Noise induced linearization. Physical Letters,1994: 61-66.
    [69]R.E. Fox. Stochastic resonance in a double well. Physical Review A,1989,39(8):4148-4153.
    [70]G. Hu, G. Nicolis, C. Nicolis. Periodically forced Fokker-Planck equation and stochastic resonance. Physical Review A,1990,42(4):2030-2041.
    [71]M.I. Dykman, R. Mannena, et al. Stochastic resonance:Linear response theory and gaint nonlinearity. J. Stat. Phys.,1993,70(1/2):463-479.
    [72]T. Zhou, E. Moss. Analog simulations of stochastic resonance. Physical Review A,1990,41(8): 4255-4264.
    [73]M.H. Choi, R.E. Fox, P. Jung. Quantifying stochastic resonance in bistable systems:response vs residence-time distribution functions. Physical Review E,1998,57(6):6335-6344.
    [74]M. James, F. Moss, P. Hanggi, C. V. Broeck. Switching in the presence ofcolored noise:The decay of an unstable state. Physical Review A,1988,38:4690.
    [75]J.T. Rubinstein, B.S. Wilson, et al. Pseudospontaneous activity:stochastic independence of auditory nerve fibers with electrical stimulation. Heating Research,1999,127:108-118.
    [76]K.R. Henry and E.R. Lewis. Cochlear nerve acoustic envelope response detection is improved by the addition of random-phased tonal stimuli. Hearing Research,2001,155:91-102.
    [77]I.C. Gebeshuber. The influence of stochastic behavior on the human threshold of hearing. Choas, Solitons and Fractals,2000,11:1855-1868.
    [78]G. Gacomelli, F. Maria and I. Rabbiosi. Stochastic and bona-fide resonance:anexperimental investigation. Physical Review Letters,1999,82(4):675-678.
    [79]S. Sarbay, G. Gacomelli, F. Maria. Experimental evidence of binary aperiod stochastic resonance. Physical Review Letters.2000,61(4):4272-4280.
    [80]M.D. McDonnell, N.G. Stocks, C. E. Pearce and D Abbott. Optimal information transmission in nonlinear arrays through suprathreshold stochastic resonance. Physics Letters A,2006,352(3): 183-189.
    [81]M.D. McDonnell, N.G. Stocks, D. Abbott. Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. Physical Review E,2007, 75(6):1-35.
    [82]F. Duan, F. Chapeau-Blondeau, D. Abbott. Theory of array stochastic resonance in a parallel array of nonlinear dynamical elements. Physics Letters A,2008,372(13):2159-2166.
    [83]S. Zozor and P.O. Amhlard. Stochastic resonance in discrete time nonlinear AR(1) models. IEEE Trans signal proceeding,1999,47(1):108-121.
    [84]H. Chen, P.K. Varshney, S.M. Kay, J.H. Michels. Theory of stochastic resonance effect in signal detection:part1-fixed detectors. IEEE transactions on Signal Processing,2007,55(7): 3172-3185
    [85]H. Chen and P.K. Varshney. Theory of stochastic resonance effect in signal detection: part2-variable detectors. IEEE transactions on Signal Processing,2008,56(10):5031-5041
    [86]Wei Chen, Jun Wang, Husheng Li and Shaoqian Li. Stochastic resonance noise enhanced spectrum sensing in cognitive radio networks. IEEE Globecom 2010 proceedings, pp.1-6.
    [87]冷永刚,王太勇,郭焱,吴振勇.双稳随机共振参数特性的研究.物理学报,2007年,56(1):30-35.
    [88]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究.物理学报,2003年,52(10):2432-2437.
    [89]J.M.G. Vilar, J.M. Rubi. Divergent signal-to-noise ratio and stochastic resonance in monostable systems. Physical Review Letters,1996,77(14):2863-2866.
    [90]F. Chapeau-Blondeau. Input-output gains for signal in noise in stochastic resonance. Physics Letters. A,1997,232(1):41-48.
    [91]K Loeriocz, Z. Gingl, L.B. Kiss. A stochastic resonance is able to greatly improve signal-to-noise ratio, Physics Letters A,1996,224:63-67.
    [92]Asish K. Dhara. Enhancement of signal-to-noise ratio. Journal of Statistical Physics,1997, 87(1/2).1997:251-271.
    [93]S. Mitaim, B. Kosko. Adaptive stochastic resonance in noisy neurons based on mutual information. IEEE Transactions on Neural Networks,2004,15(6):1526-1540.
    [94]G.P. Harmer, B.R. Davis, D. Abbott. A review of stochastic resonance:circuits and measurement. IEEE Transactions on instrumentation and measurement,2002,51(3):299-310.
    [95]M. Eduardo, F. Giovanni, C. Mario. Stochastic resonance of a domain wall in a stripe with two pinning sites. Applied Physics Letters,2011,98(7):072507-072510.
    [96]张莉,刘立,曹力.过阻尼谐振子的随机共振.物理学报,2010,59(3):1494-1499.
    [97]Song Aiguo, Liu Wei, Wu Juan, Huang Weiyi. A single neuron with stochastic resonance for noisy square pulse train signal transmission. Journal of Southeast University,2001,17(1):1-3.
    [98]A.A. Saha, G.V. Anand. Perturbative corrections to stochastic resonant quantizers. Signal processing,2007,86 (11):3466-3471.
    [99]D. Rousseaua, G.V. Anandb, F. Chapeau-Blondeau. Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise. Signal Processing,2006,86:3456-3465.
    [100]R. Benzi, G. Parisi, A. Vulpiani. Stochastic resonance in climatic change. Tellus,1982,34: 10-16.
    [101]S. Fauve and E. Heslot. Stochastic resonance in e bistable system. Physical Letters,1983,97A: 1-2.
    [102]L. Gammaitoni, F. Marchesoni, E. Meniehella-Saatta. Stochastic resonance in bistable systems, 1989, Physical Review Letters, vol.62, no.4, pp
    [103]M.I. Dykmen, R. Marmella, P.V.E. McClintock, N.G Stocks. Comment on stochastic resonance in bistable systems. Physical Review Letters, preceding Comment,1990,65:2606-2614.
    [104]N.G. Stocks, N.D. Stein and P.V.E. McClintock. Stochastic resonance in monostable systems. Physical Review A,1993,26:385-390.
    [105]T. Kapitaniak. Stochastic resonance in chaotically forced systems. Chaos, Solitons & Fractals,1993,3(4):405-410.
    [106]O. Calvo, C.R. Mirasso, R. Toral. Coherence resonance in chaotic electronic circuits. Electronics Letters,2001,37(17):1062-1063.
    [107]G. Hu, L. Pivka, A.L. Zheleznyak. Synchronization of a one-dimensional array of Chua's circuits by feedback control and noise. IEEE Trans. Cir & Sys.-I:Fundamental theory and Application,1995,42(10):736-740.
    [108]T. Shimokawa, A. Rogel, et al. Stochastic resonance and spike-timing precision in an ensemble of leaky integrate and fire neuron models. Physical Letters A,1999,59(3):3461-3470.
    [109]J.K. Douglass, L. Wilkens, E. Pantazelou and F. Moss. Noise enhancement of information transfer in crayfish mechanorceceptors by stochastic resonance. Nature,1993,365:337-340.
    [110]C. Heneghan, C.C. Chow, J.J. Collins, et al. Information measures quantifying aperiod stochastic resonance. Physical Review E,1996,54(3):2228-2231.
    [111]R.M. Siegel, H.L. Read. Models of the temporal dynamics of visual processing. J. Stat. Phys., 1993,70(1/2):297-308.
    [112]D.R. Chialvo, A.V. Apkarian. Modulated noisy biological dynamics:three examples. J Stat. Phys,1993,70(1/2):375-390.
    [113]K. Wiesenfeld, D. Pierson, et al. Stochastic resonance on a cirelc. Physical Review Letters, 72(14),1994,72(1):2125-2129.
    [114]I.K. Kaufman, D.G. Luchinsky, et al. High-frequency stochastic resonance in SQUIDs, Phys. Lett A,1996, Sep:219-223.
    [115]F. Chapeau-Blondean. Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel. Physical Review E,1998,55(2):2016-2019.
    [116]D. FaBing, B. Xu. Parameter-induced stochastic resonance and baseband binary signals transmission over an AWGN channel, Int. J. Bifurcation & Chaos,2003,13(2):79-84.
    [117]D.G Luchinsky, R. Mannella, P.V.E. Mcclintock, N.G Stpcks. Stochastic resonance in electrical circuits-1:Conventional stochastic resonance. IEEE Trans. Cir & Sys.-Analog and digital signal processing,1999,40(9):1205-1214.
    [118]J.L. Ting. Stochastic resonance for quantum channels. Physical Review E,1999,59(3): 2801-2803.
    [119]S. Zozor and P.O. Amhlard. Stochastic resonance in discrete time nonlinear AR(1) models. IEEE Trans signal proceeding,1999,47(1):108-121.
    [120]T. Zhou, F. Moss. Analog simulations of stochastic resonance. Physical Review A,1990,41(8): 4255-4264.
    [121]P. Jung, P. Hanggi. Amplification of small signals via stochastic resonance. Physical Review A, 1991,44(12):8032-8042.
    [122]J.J. Collins, C.C. Carson, C. Ann, et al. Apefiod stochastic resonance. Physical Review E,1996, 54(5):5575-5584.
    [123]C. Heneghan, C.C. Chow, J.J. Collins, et al. Information measures quantifying parried stochastic resonance. Physical Review E,1996,54(3):2228-2231.
    [124]M. Stemmler. A signal spike suffices:the simplest form of stochastic resonance inmodel neurons. Network:Computer Neural Systems,1996,7:687-716.
    [125]N.G Stocks. Suprathreshold stochastic resonance in multilevel threshold systems. Physical Review Letters,2000,83:2310-2313.
    [126]N.G Stocks. Information transmission in parallel threshold arrays:suprathreshold stochastic resonance. Physical Review E,2001,63:1-9.
    [127]N.G. Stocks. Suprathreshold stochastic resonance:an exact result for uniformly distributed signal and noise, Physics Letters A,2001,279:308-312.
    [128]M. Misnoo, T. ohmoto, et al. Noise-enhanced transmission of information in a bistable system. Physical Review E,1998,58(5):5602-5607.
    [129]胡岗.随机力与非线性系统.上海科技教育出版社,1994.
    [130]H. Niaoqing, C. Min, W. Xisen. The application of stochastic resonance theory for early detecting rub-impact fault of rotor system. Mechanical Systems and Signal Processing,2003, 17(4):883-895.
    [131]E. Hairer, C. Lubich, G. Wanne. Geometric numerical integration. Benlin:Springer,2002.
    [132]B. Widrow, S.D. Stearns. Adaptive Signal Processing. Prentice-Hall Press,1985.
    [133]D.G Manolakis. Statistical and adaptive signal processing. Cambridge University Press,2002.
    [134]Geetha Ramaswami. Perturbed collocation and symplectic RKN methods. Advances in Computational Mathematics,1995, vol.3, pp:23-40.
    [135]H. Urkowitz. Energy detection of unknown deterministic signals. Proc. IEEE,55(4):523-531, Apr.1967.
    [136]Y. F. Chen. Improved energy detector for random signals in Gaussian noise. IEEE Transactions on Wireless Communications,2010,9(2):558-563.
    [137]J. Theiler, B.R. Foy. Effect of signal contamination in matched-filter detection of the signal on a cluttered background. IEEE Geoscience and Remote Sensing Letters,2006,3(1):98-102.
    [138]J. Lunden, S.A. Kassam, V. Koivunen. Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio. IEEE Transactions on Signal Processing,2010,58(1): 38-52.
    [139]Y. Chen and N.C. Beaulieu. Performance of collaborative spectrum sensing for cognitive radio in the presence of Gaussian channel estimation errors. IEEE Transactions on Communications, 2009,57:1944-1947.
    [140]J. Lai, J.J. Ford. Relative entropy rate based multiple hidden Markov model approximation. IEEE Transactions on Signal Processing,2010,58(1):165-174
    [141]S. Xu, P. Shui, X. Yan. CFAR detection of range-spread target in white Gaussian noise using waveform entropy. Electronics Letters,2010,46(9):647-649.
    [142]朱佳,郑宝玉,邹玉龙.基于最佳中继选择的协作频谱感知方案研究.电子学报,2010,38(1):92-98.
    [143]Y.C. Liang, Y. Zeng, E. Peh, and A. Hoang. Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications,2008,7(4):1326-1337.
    [144]D.L. Duan, L.Q. Yang, J.C. Principe. Cooperative diversity of spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing,2010,58(6):3218-3227.
    [145]Wei Zhang, and Khaled Ben Letaief. Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications,2008, 7(2):4761-4766.
    [146]Bruce A. Fette. Cognitive radio technology. Burlington:Newnes, Aug.2006.
    [147]J. Ma, G.D. Zhao, and Y. Li. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications,2008,7: 4502-4507.
    [148]A. Sendonairs, E. Erkip and B. Aazhang. User cooperation in diversity. Part Ⅱ. implementation aspects and performance analysis. IEEE Transactions on Communications, 2003,51(11):1939-1948.
    [149]F.F. Digham, M.S. Alouini, M.K. Simon. On the energy detection of unknown signals over fading channels. IEEE International Conference on Communications,2003,5:3575-3579.
    [150]N. Kundargi and A. Tewfik. Hierarchical sequential detection in the context of dynamic spectrum access for cognitive radios, in Proc. IEEE 14th Int. Conf. on Electronics, Circuits and Systems, Marrakech, Morocco, Dec.11-14,2007, pp.514-517.
    [151]Ruixin Niu, Pramod K. Varshney. Sampling schemes for sequential detection with dependent observations. IEEE Transactions on Signal Processing,2010,58(3):1469-1481.
    [152]P. Addesso, S. Marano, and V. Matta. Sequential sampling in sensor networks for detection with censoring nodes. IEEE Transactions on Signal Processing,2007,55(11):5497-5505.
    [153]A. Wald, Sequential Analysis. New York:Dover,1947.
    [154]R. Tandra, A. Sahai. SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing,2008,2(1):4-17
    [155]A. Sonnenschen, P.M. Fishman. Radiometric detection of spread-spectrum signals in noise uncertain power. IEEE Transactions on Aerospace and Electronic Systems,1992,28(3): 654-660.
    [156]C.R. Stevenson, C. Cordeiro, E. Sofer, and G. Chouinard. Functional requirements for the 802.22 WRAN standard. IEEE 802.22-05/0007r47, Jan.2006.
    [157]W. Feller. An introduction to probability theory and its applications. John Wiley & Sons,1966.
    [158]E.C. Field, and M. Lewinstein, Amplitude-probability distribution model for VLF/ELF atmospheric noise. IEEE Transactions on Communications,1978,26(1):83-87.
    [159]A. Giordano, F. Haber. Modeling of atmospherie noise. Radio Science,1972,7:1101-1123.
    [160]P. Mertz. Model of impulsive noise for data transmission. IRE Transactions on communication systems,1961,9(6):120-137.
    [161]M. Bouvet and S.C. Schwartz. Comparison of adaptive and robust receivers for signal detection in ambient underwater noise. IEEE Transacdons on Acoustic, Speech, Signal Processing,1989,137:621-626.
    [162]D. Middleton. Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility,1977,19(3):106-127.
    [163]B.W. Stuck and B. Kleiner. A statistical analysis of telephone noise. Bell Systems Technical Journal,1974,53(7):1263-1320.
    [164]A.C. Kolaram, R.D. Morris, et al. Interpolation of missing data in image sequences. IEEE Transactions on Image Processing,1995,4(1); 1509-1519.
    [165]J. Ilow. Signal processing in a-stable noise environments:noise modeling, detection and estimation, PhD. Thesis, University of Toronto,1995.
    [166]B. Mandelbrot. The variation of certain speculative prices. Journal of Business,1963,36: 394-419.
    [167]H. Hall. A new model for impulsive phenomena:application to atmospheric-noise communication channel. Technical Report,3412-8,66-052, Stanford University,1966.
    [168]P.H. Diananda. Note on some properties of maximum likelihood estimates. Proceedings of Cambridge Philosophical Society,1949,45:536.
    [169]J.H. Miller. Detectors for discrete-time signels in non-Gaussian noise. IEEE Transactions on Information Theory,1972,18(2):241-250.
    [170]T.T. Pham and R.J.E. deFigueirode. Maximum likelihood estimation of a class of non-Gaussian densities with application to Lp deconvolution. IEEE Transactions on Acoustics Speech and Signal Processing,1989,37(1):73-82.
    [171]A. Nezampour, A. Nasri, R. Schober, M. Yao. Asymptotic BEP and SEP of quadratic diversity combining receivers in correlated ricean fading, non-Gaussian noise, and interference. IEEE Transactions on Communications,2009,57(4):1039-1049.
    [172]Ta-Hsin Li, Kai-Sheng Song. Estimation of the parameters of sinusoidal signals in non-Gaussian noise. IEEE Transactions on Signal Processing,2009,57(1):62-72.
    [173]A. Mukherjee, A. Sengupta. Estimating the probability density function of a nonstationary non-Gaussian noise. IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
    [174]A. Nasri, R. Schober, I.F. Blake. Performance and optimization of amplify-and-forward cooperative diversity systems in generic noise and interference. IEEE Transactions on Wireless Communications,2011,10(4):1132-1143.
    [175]A.M. Maras, E. Kokkinos. Locally optimum Bayes detection in nonadditive non-Gaussian noise. IEEE Transactions on Communications,1995,43(234):1545-1555.
    [176]张辉,曹丽娜.现代通信原理与技术.西安:西安电子科技大学出版社,2002.
    [177]M.D. McDonnell, D. Abbott, C.E.M. Pearce. A characterization of suprathreshold stochastic resonance in an array of comparators by correlation coefficient, Fluctuation Noise Letters. 2002,2:L205-L220.
    [178]叶青华,黄海宁,张春华.用于微弱信号检测的随机共振系统设计.电子学报,2009年,37(1):216-220.
    [179]G. Ping, C. Tepedelenlioglu. SNR estimation for nonconstant modulus constellations. IEEE Transactions on Signal Processing,2005,53(3):865-870.
    [180]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安电子科技大学出版社,2004.
    [181]C. Popper, M. Strasser, S. Capkun. Anti-jamming broadcast communication using uncoordinated spread spectrum techniques. IEEE Journal on Selected Areas in Communications,2010,28 (5):703-715.
    [182]M. Pereira, Spread spectrum techniques in wireless communication Part 2:Transmission issues in free space. IEEE Instrumentation & Measurement Magazine,2010,13(1):8-14.
    [183]Cunsheng Ding, Yang Yang, Xiaohu Tang. Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Transactions on Information Theory,2010,56(7):3605-3612.
    [184]Zhiyong Feng, Wei Li, Qian Li, et al. Dynamic spectrum management for WCDMA/DVB heterogeneous systems. IEEE Transactions on Wireless Communications,2011,10(5): 1582-1593.
    [185]Hwan Hur, Hyo-Sung Ahn. A circuit design for ranging measurement using chirp spread spectrum waveform. IEEE Sensors Journal,2010,10(11):1774-1778.
    [186]G. L. Stuber. Principles of mobile communication. Norwell, MA, Kluwer,2001.
    [187]Goohyun Park, Daesik Hong and Changeon Kang. Level crossing rate estimation with Doppler adaptive noise suppression technique in frequency domain. IEEE 58th Vehicular Technology Conference (VTC'03). Korea, Seogwipo,2003, pp:1192-1195.
    [188]C. Tepedelenlioglu, G.B. Giannakis. On the velocity estimation and correlation properties of narrow-band mobile communication channels. IEEE Transactions on Vehicular Technology, 2001,50:1039-1052.
    [189]K.E. Baddour, N.C. Beaulieu. Robust Doppler spread estimation in nonisotropic fading channels. IEEE Transactions on Wireless Communications,2005,4(6):2677-2682.
    [190]Hong. Zhang and A. Abdi. A robust mobile speed estimator in fading channels:Performance analysis and experimental results. IEEE Global Telecommunications Conference (Globecom'05). St. Louis, Missouri:IEEE Communications Society,2005, pp:2569-2573.
    [191]K. E. Baddour, N. C. Beaulieu. Nonparametric Doppler spread estimation for flat fading channels. IEEE Wireless Communications and Networking Conference (WCNC'03), New Orleans, Louisiana,2003, pp.953-958.
    [192]A. Dogandzic and B. Zhang, Estimating Jakes'Doppler power spectrum parameters using the Whittle approximation. IEEE Transactions on Signal Processing,2005,53(10):987-1005.
    [193]L. Krasny, H. Arslan, D. Koilpillai, S. Chennakeshu. Doppler spread estimation in mobile radio systems. IEEE Communications Letters,2001,5(8):197-199.
    [194]Hyunkyu Yu, Goohyun Park and Hangyu Cho. SNR-Independent Methods for Estimating Maximum Doppler Frequency. IEEE Signal Processing Letters,2005,12(5):384-386.
    [195]R. Narasimhan and D.C. Cox. Estimation of mobile speed and average received power in wireless systems using best basis methods. IEEE Transactions on Wireless Communications, 2001,1(49):2172-2183.
    [196]J.M. Holtzman, A. Sampath. Adaptive averaging methodology for handoffs in cellular systems [J]. IEEE Transactions on Vehicular Technology,1995,44(1):59-66.
    [197]Goohyun Park, Sangho Nam, Takki Yu, et.al. A Modified covariance-based mobile velocity estimation method for Rician fading channels. IEEE Communicaions Letters,2005,9(8): 706-708.
    [198]Yahong Rosa Zheng, Chengshan Xiao. Mobile speed estimation for broadband wireless communications over Rician fading channels. IEEE Wireless Communicaions Letters,2009, 8(1):1-5.
    [199]张天骐,周正中.一种直扩信号伪码周期及序列的盲估计方法.电波科学学报,2005,20(3):400-405.
    [200]孙家旺,沈青峰,袁亮.分段相关累加算法提取直扩信号伪码周期.现代防御技术,2006,34(1):73-75.
    [201]资小军,谢丹,易可初.基于四阶累积量的二次谱法检测DS_SS伪码周期.电子信息对抗技术,2006,21(1):18-21.
    [202]张天骐,周正中,郭宗祥.一种DS/SS信号PN码序列估计的神经网络方法.信号处理,2001,17(6):533-537.
    [203]Yang Bo. Projection approximation subspace tracking. IEEE Trans.on Signal Processing,1995, 43(1):95-107.
    [204]张红波,吕明.基于子空间跟踪的扩频码盲估计算法.系统工程与电子技术,2006,28(10):1470-1473.
    [205]Gilles BUREL, Celine BOUDER. Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal. In:MILCOM 2000.21st Century Military Communications Conference Proceedings. Los Angeles,2000:967-970.
    [206]Tianqi Zhang, Xiaokang Lin, Zhengzhong Zhou. Blind estimation of the PN Sequence in Lower SNR DS/SS Signels. IEICE Trans on Communications,2005,88(7):3087-3089.
    [207]张天骐,周正中,陈前斌等.窄带干扰环境下DS-SS信号的细微特征分析.数据采集与处理,2007,22(1):31-37.
    [208]章军,詹毅.负信噪比直扩信号伪码盲估计方法.电子对抗技术,2006,(2):10-13.
    [209]M.T. Heideman. Multiplicative complexity, convolution, and the DFT. New York: Springer-Verlag,1988.
    [210]F. Wijk, A. Kegel, and R. Prasad. Assessment of a picocellular system using propagation measurements at 1.9 GHz for indoor wireless communications. IEEE Transactions on Vehicular Technology,1995,44(1):155-162.
    [211]3GPP TR 25.141. Base Station (BS) conformance testing (FDD).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700