钢丝绳断丝损伤漏磁检测技术研究及虚拟仪器开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢丝绳广泛应用于矿山、冶金、交通运输、港口、旅游等国民经济各主要行业,发挥着极为关键的作用。钢丝绳复杂的绳股结构和恶劣的工作环境使其在使用中易于出现磨损、锈蚀、疲劳、断丝等损伤,导致其强度下降,造成安全隐患。运行中的钢丝绳一旦断裂,会造成非常严重的人员伤亡和经济损失。因此,钢丝绳损伤检测已被世界各国高度重视,成为世界性的,既有理论意义又有实用价值的重要研究课题。
     断丝是钢丝绳损伤的主要形式之一。本文在全面分析和论述国内外钢丝绳检测技术研究现状的基础上,基于漏磁检测原理,对钢丝绳断丝损伤信号的产生和分布特征、损伤检测器设计、损伤信号处理等进行了深入的研究,并在此基础上开发了钢丝绳断丝损伤检测虚拟仪器系统。
     钢丝绳的磁化是损伤信号产生的基础和前提。本文首先对永磁式周向均匀励磁的励磁器设计方法进行研究,制作了实用的励磁器。利用霍尔元件来检测钢丝绳的表面磁场,分析了钢丝绳断丝损伤信号的特征及霍尔元件的特性,研制了钢丝绳断丝损伤检测系统与信号预处理系统。对钢丝绳断丝损伤信号的数据采集系统进行了详细的研究,开发了以AT89C52单片机为核心的数据采集系统,实现对钢丝绳进行在线检测。
     其次,充分利用小波理论在信号处理方面的优势,利用钢丝绳断丝信号具有奇异性的特点进行小波奇异性检测研究,并利用小波的多分辨分析特点对钢丝绳断丝信号进行特征提取。本文提出了基于RBF神经网络的钢丝绳断丝损伤信号的模式识别方法。运用MATLAB工具箱建立了钢丝绳断丝损伤定量识别的RBF网络模型,通过模拟和实际检测,验证了网络的可靠性和实用性。
     最后,利用可视化软件LabVIEW开发了钢丝绳断丝损伤检测虚拟仪器系统,为钢丝绳的断丝损伤检测提供了一个友好的人机交互界面。
Steel ropes is widely used in many industries such as mining, metallurgy, transport, port and tourism. The complex structure and the bad environment make it easily abraded, corroded, fatigue and wire broken. Once the Steel ropes broken in running, it will cause tremendous casualty and economy loss. Therefore, steel wire's damage detection has been attached great importance to the countries in the world, to become a world-wide phenomenon, both theoretical as well as practical value of the important research topic.
     Broken wire is one of the main form of Steel rope's damage. On the base of analyzing and discussing the domestic and foreign research about steel rope detection,based on the principle of electromagnetic detection, this paper takes a full study of the design of detection device and the processing of steel rope fault signal. Finally, a virtual instrument for steel rope fault detection is developed.
     The magnetization of ropes is the basis and premise of creating defect signal.Firstly, this paper analyzes the magnetizer's structure characteristic of the steel rope detection equipment based on electromagnetism method. The calculation and experiment indicate that using permanent magnet can meet the need of detection with less weight and volume. It measures the surface magnetic field of the steel rope by the Hall's sensor and analyzes the characteristic of the fault signal. The characteristic of Hall sensor is also analyzed. Both a detection system of steel rope fault diagnosis and a signal processing system are developed. This paper makes a detailed research on the fault signal processing system, where the single-chip—AT89C52 is the key part and which can achieve on-line detection of steel rope.
     Secondly, the wavelet singular detection has been researched through wire ropes signal's singular feature and feature extraction was done from broken wires signal based on the specialty of multi-resolution analysis of wavelet.And a pattern recognition method, which is based on RBF network, of steel rope fault signal is put forward. A RBF network model for quantitative identification of steel rope fault signal is set up by using the toolbox of MATLAB. According to simulative and real detection, the writer validates its reliability and practicality.
     Finally, a virtual instrument for steel rope fault detection is developed by using LabVIEW, which provides a friendly interface for human-computer interaction.
引文
[1]华文渊.钢丝绳的选用及报废标准[M].北京:高等教育出版社,1981.15-18.
    [2]吴宾义译.ISO/DIS4309(ISO/TC96)起重机构钢丝绳的检查方法和报废标准[J],起重运输机械,1981,(5):75-81.
    [3]杨叔子,康宜华.钢丝绳断丝检测原理与技术[M].北京:国防工业出版社.1996.
    [4]武新军,王峻峰.钢丝绳无损检测技术的研究现状[J].煤炭科学技术,2000,28(11).
    [5]#12
    [6]Dolemon C.The Safety of Ropeways in France and the Recent Accident.International Seilbahn-Rundschao,1987,(3):133-136.
    [7]武新军.钢丝绳面积损失的磁性无损检测原理与技术[D].华中理工大学博士论文,1998.10.
    [8]宋大雷,张东来等.钢丝绳无损检测技术的历史、现状及趋势[J].无损检测,1999.21(5):220-222.
    [9]Weischdel HR.Electromagnetic Wire Rope Inspection--Resolution is Important.Materials Evaluation,1998.(11):1297-1307.
    [10]James R.Review of Electromagnetic Methods in Nondestructive Testing of Wire Ropes.Proceedings of the IEEE.1979.67(6):892-903.
    [11]Kalwa E,Piekarski K.Design of Hall-effect sensors for magnetic testing of ropes.NDT&E International 1987.20(5):295-301.
    [12]Kalwa E,Piekarski K.Design of inductive sensors for magnetic testing of steel ropes.NDT&E International,1987.20(6):347-353.
    [13]Kalwa E,Piekarski K.Determination of flaws located at different depth levels in the cross-section of steel rope.NDT&E International,1988.21(2):77-82.
    [14]Kalwa E,Piekarski K.Qualitative and Quantitative Iktermination of Densely Occurnng Defects in Steel Ropes by Magnetic Testing Method.Materials Evaluation,1988.46(S):767-770.
    [15]Kwun H,Teller M C.Detection of Fractured Wire in Steel Cables Using Magnetorestrictive Sensors.Materials Evaluation,1994.52(4):503-507.
    [16]Kwun H,Holt A.E,Feasibility of under-lagging corrosion detection in steel pipe using the magnetostrictive sensor technique.NDT&E International,1995.28(4):211-214.
    [17]康宜华,杨克冲,杨叔子等.基于钢丝绳结构特征的断丝漏磁霍尔效应检测方法[J].华中理工大学学报,1992(增刊):188-194.
    [18]康宜华,杨克冲,朱文凯等.钢丝绳断丝断口漏磁场分析计算[J].中国机械工程,1993,22(4):1-3.
    [19]康宜华,武新军,杨叔子.磁性无损检测技术中的信号处理技术[J].无损检测,2000,22(6).
    [20]康宜华,杨叔子,卢文祥等.空间域信号的采样方法[J].华中理工大学学报,1992,1(20),增刊:183-188.
    [21]顾伟,褚建新.一种磁通门型钢丝绳缺陷检测传感器[J].无损检测,1997,19(8):226-229.
    [22]褚建新,顾伟.钢丝绳缺陷漏磁场的磁通门检测法[J].仪器仪表学报,1997,18(4):437-440.
    [23]邵永波,裴珍等.基于声发射技术的钢丝绳断丝模式识别[J].应用声学,1999.18(1):1-5.
    [24]Geller L.B,Kitzinger F.K.Computerized Operational Control of an Wire Leung Rope Tester.Materials Evaluation,1995.53(9):1002-1006.
    [25]Mironenko A,Sukhorukov V Non-destructive testing of steel wire ropes in Russia.Insight,1998.40(6):395-397.
    [26]武新军,康宜华,杨叔子.无损检测在役钢丝绳标准的研究[J].起重运输机械.1999.2.
    [27]赵新民.智能仪器设计基础[M].哈尔滨:哈尔滨理工大学出版社,1999.
    [28]张英全,刘芸.模拟电子技术[M].北京:机械工业出版社,2000.
    [29]傅全臻.矿用钢丝绳的使用检测及事故案例分析[M].北京:煤炭工业出版 社,1999.2.
    [30]中华共和国煤炭工业部.煤矿安全规程[M].1986:50-70.
    [31]陈可.缺陷漏磁场的研究及其无损检测探伤的应用[D].西北工业大学硕士学位论文.
    [32]陈笃行.磁测量基础[M].北京:机械工业出版社,1985.
    [33][美]R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,2002.
    [34]钟文定.铁磁学(中册)[M].北京:科学出版社,2000.
    [35]毛振珑,等.磁场测量[M].北京:原子能出版社,1985.
    [36]任吉林,林俊明,高春法.电磁检测[M].北京:机械工业出版社,2000.
    [37]周强.钢丝绳力磁效应与疲劳损伤漏磁信号监测的研究[D].武汉理工大学博士论文,2002.1.
    [38]谭继文,战卫侠,文妍.钢丝绳安全检测原理与技术[M].2008.10.
    [39]姜寿亭.铁磁性理论[M].北京:科学出版社,1993.7.
    [40]谭继文,任立义.矿井提升钢丝绳损伤检测系统研究[J].辽宁工程技术大学报,1999,18(6):645-648.
    [41]杨叔子,康宜华.钢丝绳断丝检测原理与技术[M].北京:国防工业出版社,1996.
    [42]康宜华.钢丝绳断丝定量检测方法及仪器的研究[D].华中理工大学博士论文,1993.
    [43]谭继文.钢丝绳损伤与张力在线定量检测主安全性评价的研究[D].东北大学博士论文,2000.
    [44]田志勇.钢丝绳断丝损伤定量检测技术的研究[D].青岛建筑工程学院硕士论文,2004.
    [45]谭继文.钢丝绳断丝损伤的漏磁检测系统研究[D].阜新矿业学院硕士论文,1989.
    [46]丁忠平、李劲松、杨叔子.钢丝绳断丝定量检测装置的可靠性研究[J].华中理工大学学报,1991,19(增Ⅱ):127-131.
    [47]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    [48]战卫侠,谭继文,文妍.小波分析对钢丝绳损伤信号奇异点的检测[J].矿山机械,2006,34(8):73-74.
    [49]田志勇,张耀,谭继文.基于BP神经网络的钢丝绳断丝定量检测[J].煤炭学报,2006,31(2):245-249.
    [50]张兴波,谭继文,侯英勇.基于径向基神经网络的钢丝绳断丝定量检测及Matlab实现[J].煤矿机械,2009.3:198-200.
    [51]田军.钢丝绳断丝损伤电磁检测原理与技术研究[D].青岛理工大学硕士论文.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700