基于ITS体系结构的实时交通控制CPN建模仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市智能交通系统是一个由诸多异构系统集结而成的复杂系统,一直是国内外学者研究的热点。合理高效的城市智能交通系统建设不仅有助于提升现有交通体系能力,而且能有效改善城市的生存环境,产生可观的城市社会效益。
     本文遵循现代复杂工程系统研究的五个基准:过程、体系架构、方法论、建模与评价,以城市智能交通系统中的交通信号控制系统为主要研究对象,在对国内外城市交通信号控制系统研究现状及发展进行分析的基础上,较系统地研究了城市交通信号控制的若干关键议题;重点研究并提出了一种新型的道路车辆数据采集系统的车辆检测传感器;研究建立符合城市智能交通系统体系结构框架标准的层次化交通信号控制系统建模方法,由此建立了基于层次着色Petri网(HCPN: HierarchicalColored Petri Nets)的城市交通流模型;基于HCPN交通流模型,研究并提出了一种新的实时自适应城市交通信号控制算法。
     论文的主要内容包括以下几个方面:
     研究并开发了一种基于各向异性磁阻(AMR:Anisotropic Magnetoresistive)传感器的车辆检测系统,提出了基于AMR车辆检测器的车辆检测分类方法。为了获得城市交通流实时路况数据,在讨论各种车辆检测方法的基础上,深入研究了AMR传感器的数据采集及车辆分类的原理,给出了代表车型的主要特征以及由此组成的特征向量的提取方法,然后,采用支持向量机(SVM: Support Vector Machine)分类学习算法检测车辆及进行车型分类。并从核函数,模型参数等方面对其分类性能进行了讨论。实验结果显示,该车辆检测方法具有长期稳定性的特点,不受外在天气环境路况的影响,有较强的实用性。进一步,以AMR车辆检测器为节点,应用高效率、低成本的串行接口总线,提出了网络化城市道路车辆检测传感器系统的建设构想。
     研究城市交通系统体系结构和交通流理论的基础上,应用着色Petri网,研究建立符合城市智能交通系统体系结构框架标准的层次化交通信号控制系统建模方法,提出顶层为操作视图、中层为系统视图、底层为技术标准视图的城市ITS(IntelligentTransportation Systems)体系结构框架。论文依据城市交通流的特点,提出了城市交通流的层次模型。该层次模型由交通路网层,网络构件层,逻辑控制层等三层组成,实现了交通流与交通信号控制的无缝链接。基于ITS体系结构和层次着色Petri网,依据实际的道路参数,采用自顶而下的建模方法,依次建立各层子模型。然后,论文通过城市交通流着色Petri网建模实例,进一步介绍了交通流着色Petri网建模过程,讨论了分层结构所具有的易扩展性,验证了分层模型在解决交通流建模复杂性问题上的显著成效。
     通过分析城市交通流模型,在重点考虑算法实时性和自适应性的前提下,分别提出了单交叉口和多交叉口的信号控制算法。首先分析了单交叉口的交通流特征以及短时交通流预测,以优化车辆延误为目标,提出了基于规则的单交叉口实时自适应控制算法。然后研究了多交叉口之间交通流的相互影响,以相邻交叉口中间路段上的车流量为协调变量,实现了基于规则的多交叉口两级协调控制算法。最后结合文章提出的HCPN交通流模型,建立了交通信号控制器的CPN模型,以及交通信号控制的评价指标,通过模型仿真,完成了基于规则的城市交通信号优化协调控制策略的评价研究。仿真结果证明了该实时自适应协调控制方法及其模型的正确性和实用性。
Urban traffic signal control system has been a hot topic of research by domestic andforeign scholars. Rational and efficient urban traffic signal control system does not onlyhelp to improve the existing transportation system performance, but also effectivelyimprove the living environment of the city and produce considerable social benefits for thecity.
     According to complex engineering system benchmarks research areas: the process,the architecture frameworks (AFs), the methodologies, the modeling and evaluation.Based on the analysis of current urban traffic signal control system's research situation anddevelopment trends at home and abroad, a number of key technologies of urban trafficsignal control are systematically studied and discussed in this paper, especially research onvihicle detection and classification system, model of urban traffic flow based on ITSarchitecture and Hierarchical Colored Petri Nets(HCPN), and a new real-time adaptiveurban traffic signal control algorithm.
     The paper mainly covers the following areas:
     Firstly, a novel vehicle detection and classification system based on anisotropicmagnetoresistive (AMR) sensors and support vector machine (SVM) algorithm ispresented. The AMR sensors detect the change of earth magnetic field which will bedisturbed differently by different types of passing traffic vehicle. With the featuresextracted from the disturbance data of earth magnetic field, SVM classifier will be trainedand tested to classify the vehicle type. The results of our experiments indicated thatvehicle classification based on AMR sensors and SVM algorithm is effective and efficient.In addition, using AMR vehicle detection sensors as sensor network nodes, networkedsensors vehicle detection system based on the low cost and high-speed rs485serial bus ispresented.
     Secondly, after researching on urban transportation system architecture and trafficflow theory, an urban ITS architecture and a hierarchical modeling approach for urbantraffic signal control system are established based on Colored Petri Nets, whicharchitecture inlcudes three levels: the top level-operational view, the middle-systemview, and the underlying-technical standard view. According to the characteristics ofurban traffic flow, a hierarchical structure model of urban traffic flow is presented, whichmodel consists of three levels, traffic network level, network conponents level and logic control level, and implements the seamless connection between traffic flow and logiccontroller. Based on hierarchical Colored Petri Nets theory and actual road parameters,models of every level are established using top-down modeling approach. Afterestablishing the hierarchical Colored Petri Nets model of a real traffic network forexample, introduced the design approach of Colored Petri Nets model, argued that themodel has good extensibility, and validated that the hierarchical structure model will makeus better to achieve remarkable results in complex problem solving tasks on traffic flowmodeling.
     Finally, according to the analysis of urban traffic flow model and mainly taking thecapability of real-time and adaptive control into account, traffic signal control algorithmsfor isolated intersection and area traffic are presented respectively. Based on the trafficflow characteristics of an isolated intersection and precdiction for short-term traffic flow,aiming to minimize the vehicle delay, a rule-based traffic signal control algorithm ispresented. After analyzing the relationship of traffic flow between adjacent intersections, arule-based coordination control algorithm is presented with traffic volume in the linkbetween adjacent intersections as the coordination variable. The property of the trafficflow model with HCPN is analyze, and then through the simulation, the evaluatingindicator is created to evaluate the control strategy. The consequence of the simulationindicates the real-time adaptive traffic signal strategy achieves more effective control.
引文
[1] Papageorgiou M, Diakaki C, Dinopoulou V, et al. Review of Road Traffic ControlStrategies. Proceeding of the IEEE,2003,91(12):2043~2067
    [2] Shah A A, Lee J D. Intelligent Transportation Systems in Transitional andDeveloping Countries. Aerospace and Electronic Systems Magazine, IEEE,2007,22(8):27~33
    [3] Hunt P B, Robertson D I, Bretherton R D. SCOOT-A Traffic Responsive Methodof Coordinating Signals. Transport and Road Research Laboratory,1981:1~41
    [4] Lowric P R. The Sydney Coordinated Adaptive Traffic System--Principles,Methodology, Algorithms. in IEEE International Conference on Road TrafficSignaling, London, UK,1982
    [5] Gartner N H. OPAC: A Demand-Responsive Strategy for Traffic Signal Control. in62nd Annual Meeting of the Transportation Research Board. Washington DC,1983
    [6]王明哲.大型集成系统体系结构研究进展与挑战.系统工程理论与实践,2008(增刊):119-126.
    [7]刘智勇,梁渭清.城市交通信号控制的进展.公路交通科技,2003,20(6):121~125
    [8]刘智勇.智能交通控制理论及应用.北京:科学出版社,2003
    [9] Lian A P, Gao Z Y. Research on Combined Dynamic Traffic Assignment and SignalControl. Acta Automatica Sinica,2005,31(5):727~736
    [10] Nishikawa I, Iritani T, Sakakibara K. Improvements of the Traffic Signal Control byComplex-Valued Hopfield Networks. International Joint Conference on NeuralNetworks,2006:459~464
    [11] Wong Y K, Woon W L. An Iterative Approach to Enhanced Traffic SignalOptimization. Expert Systems with Applications,2008,34(4):2885~2890
    [12] Ceylan H, Bell M G H. Traffic Signal Timing Optimization Based on GeneticAlgorithm Approach, Including Drivers’ Routing.Transportation Research Part B,2004,(38):329-342
    [13] Shenoda M, Machemehl R. Development of a Phase-by-Phase, Arrival-Based,Delay-Optimized Adaptive Traffic Signal Control Methodology with MetaheuristicSearch. Research Report SWUTC,2006:1~102
    [14]张飞舟,范耀祖.交通控制工程.北京:中国铁道出版社,2005
    [15]李江,傅小光,李作敏.现代道路交通管理.北京:人民交通出版社,2000:200~203
    [16]沈国江.城市道路交通智能控制技术研究:[博士学位论文].杭州:浙江大学,2004
    [17]尹宏宾,徐建闽.道路交通控制技术.广州:华南理工大学出版社.2000:86~87
    [18]杨佩昆.城市交通管理与控制.北京:人民交通出版社,1995
    [19] Aubin S, Plainchault P, Ieng S S, et al. Sensor Technologies to Follow Vehicles forITS. in ITS Telecommunications Proceedings,6th International Conference,2006,870~873
    [20] Gajda J, Sroka R, Stencel M, et al. A Vehicle Classification Based on InductiveLoop Detectors. in Proccedings of the18th IEEE. IMTC, Budapest,2001,460~464
    [21] Caruso M J, Withanawasam L S. Vehicle Detection and Compass Applicationsusing AMR Magnetic Sensors. Sens Expo Proc,1999:477
    [22] Caruso M J, Ratland T, Smith C H, et al. A New Perspective on Magnetic FieldSensing. Sensors,1998,15(12):34~46
    [23] Kasprzak W. An Iconic Classification Scheme for Video-based Traffic Sensor Tasks.in W Skarbek. CAIP2001, Springer, Berlin,2001:725~732
    [24] Lee J W. A Machine Vision System for Lane-Departure Detection. Computer Visionand Image Understanding,2002,86(1):52~78
    [25] Marr D, Hildreth E. Theory of Edge Detection. in Proceedings of the Royal Societyof London. Series B, Biological Sciences,1980,207(1167):187~217
    [26]肖旺新,张雪,黄卫.交通视频图像的多尺度自适应阈值边缘检测.土木工程学报,2003,36(7):89~94
    [27]李希胜,于广华.各向异性磁阻传感器在车辆探测中的应用.北京科技大学学报,2006,6
    [28] Hunt P B, Robertson D I, Bretherton R D. The SCOOT on-line Traffic SignalOptimisation Technique. Traffic Engineering and Control,1982(23):190~192
    [29] Robertson D I, Bretherton R D. Optimizing Networks of Traffic Signals in RealTime-the SCOOT Method. IEEE Transactions on Vehicular Technology,1991:11~15
    [30] Lowrie, P R. SCATS, Sydney Co-Ordinated Adaptive Traffic System: A TrafficResponsive Method of Controlling Urban Traffic. Roads and Traffic Authority NSW,1990
    [31] Sims A G, Dobinson K W. The Sydney coordinated adaptive traffic (SCAT) systemphilosophy and benefits. IEEE Transactions on Vehicular Technology,1980:130~137
    [32] Mauro V, Taranto C. UTOPIA. Control, computers, communications intransportation,1990:245~252
    [33] Mirchandani P B, Head K L. A Real-Time Traffic Signal Control System-Architecture, Algorithm and Analysis. Transportation Research Part C,2001:415~432
    [34] Sen S, Head,L. Controlled Optimization of Phases at An Intersection. TransportationScience,1997(31):5~17
    [35] Zou N, Mirchandani P. Analyses of Vehicular Delays and Queues at Intersectionswith Adaptive and Fixed Timing Control Strategies. in Proceedings of the8thInternational IEEE Conference on Intelligent Transportation Systems. Vienna,Austria,2005
    [36] Li H L, Zhang L, Gartner N H. Comparative Evaluation of Three Adaptive ControlStrategies: OPAC, TACOS and FLC. in85th Annual Meeting of the TransportationResearch Board, Washington, DC,2007
    [37] Gartner N H, Tarnoff P J, Andrews C M. Evaluation of the Optimized Policies forAdaptive Control(OPAC) Strategy. Transportation Research Record1324,1991:105~114
    [38] Webster F V, Traffic Signal Settings. Road Research Laboratory, London, U.K.,Road Res. Tech. Paper no.39,1958
    [39] Little J DC, The Synchronization of Traffic Signals byMixed-integer-linear-programming. Oper. Res.,1966(14):568~594
    [40] Gartner N H, Assmann S F, Lasaga F, et al. MULTIBAND: A Variable--BandwidthArterial Progression Scheme. Transportation Research Record1287, TransportationResearch Board, National Research Council, Washington, D C,1990:212~222
    [41]1995. Olmo P D, Mirchandani P B, REALBAND: An Approach for Real-TimeCoordination of Traffic Flows on a Network. Transportation Research Record,1994:106~116
    [42]隽志才,魏丽英,李江.信号交叉口排队长度宏观模拟的自适应分析法.中国公路学报,2000,13(1):77~80
    [43]万绪军,陆化普.线控系统中相位差优化模型的研究.中国公路学报,2004,14(2):99~102
    [44]藏利林,贾磊.城市交通智能控制优化算法.中国公路学报,2006(19):97~101
    [45] Abutaleb A S. Automatic Thresholding of Gray-level Pictures UsingTwo-dimensional Entropy. Computer Vision Graphics and Image Processing,1989,47(2):22~32
    [46] Bertozzi M, Broggi A, Castelluccio S. A Real-time Oriented System for VehicleDetection. Journal of System Architecture,1997,43(3):317~325
    [47] Fathy M, Siyal M Y. An Image Detection Technique Based on Morphological EdgeDetection and Background Differencing for Real-time Traffic Analysis. PatternRecognition Letters,1995,16(2):1321~1330
    [48]丹尼尔,L鸠洛夫,马休J休伯.交通流理论.美国运输科学研究所专题报告165号.北京:人民交通出版社,1983
    [49] Lighthill M J, Whitham G B. A Theory of Traffic Flow on Long Crowded Roads. inProceedings of the Royal Society of London, Series A, Mathematical and PhysicalSciences, London,1955,229(1178):317~345
    [50] Richards P I. Shock Waves on a Highway. Operations Research,1956,4(1):42~51
    [51] Brackstone M, McDonald M, Car-following: a Historical Review. TransportationResearch Part F,1996:181~196
    [52] Payne H J. Models of Freeway Traffic and Control. in Mathematical Models ofPublic Systems, Bekey, G.A(Ed),1971,1:51~61
    [53] Pipes L A. An Operational Analysis of Traffic Dynamics. Journal of AppliedPhysics,1953,24(3)
    [54] Prigogine I, Herman R. Kinetic Theory of Vehicular Traffic. American Elsevier,New York,1971
    [55] Paveri-Fontana S L. On BoltZmann-like Treatments for Traffic Flow: A CriticalReview of the Basic Model and Alternative Proposal for Dilute Traffic Analysis.Transportation Research,1975,9(4):225~235
    [56] Newell G F. Nonlinear Effects in the Dynamics of Car Following. OperationsResearch,1961,9:209~229
    [57] Newell, G. F. Instability in Dense Highway Traffic, a Review. in Proceedings ofSecond International Symposium on the Theory of Road Traffic Flow, London,1963,73~83
    [58] May A D, Keller H E. Non-integer Car Following Models. in Highway ResearchRecords No.199, Washington, DC,1967:19~32
    [59] Castillo J M. A Car Following Model Based on the Lighthill and Whitham Theory.in Proc. ISTTT96, Lyon, France,1996:103~118
    [60] Fenton, R E, Montano W B. A Study of Driver-aided Car-following. in Proceedingsof Fourth International Symposium on Theory of Traffic Flow,1968,86:1~7
    [61] Edie L C. Car Following and Steady State Theory for Non-congested Traffic.Operations Research.1962,9:66~76
    [62] Wolfram S. Theory and Application of Cellular Automata. Physica,1978,24:179~218
    [63] Helbing D. Derivation and Empirical Validation of a Refined Traffic Flow Model.Physica A233,1996,253~282
    [64] Codd E F. Cellular Automata. Acadenic Press: New York,1968
    [65] Cremer M, Ludwig J. A Fast Simulation Model for Traffic Flow on the Basis ofBoolean Operations. J. Math. Comp.1986,28:297~303
    [66] Nagel K, Schreckenberg M. A Cellular Automaton Model for Freeway Traffic. Phys,France,1992,12(2):2221
    [67] Biham O, Middleton A, Levine D. Self-Organization and a Dynamical Transition inTraffic-Flow Models. Phys. Rev. E,1992,46: R6124
    [68] Tolba C, Lefebvre D, Thomas P, et al. Continuous Petri nets Models for the Analysisof Traffic Urban Networks. in IEEE International Conference on Systems, Man, andCybernetics,2001:1323~1328
    [69] Tolba C, Lefebvre D, Thomas P, et al. Continuous and Timed Petri nets for theMacroscopic and Microscopic Traffic Flow Modeling. Simulation Modeling Practiceand Theory,2005,13:407~436.
    [70] Jiang R, Wu Q S, Zhu Z J. A New Continuum Model for Traffic Flow andNumerical Testd. Transportation Research Part B: Methodological,2002,36(5):405~419
    [71] Jensen K. Colored Petri nets: basic concepts, analysis methods and practical use. inSpringer-Verlag. Monographs in Theoretical Computer Science, Berlin,1997
    [72] Vitaly E, Kozura. Unfoldings of Voloured Petri nets. Berlin Heidelberg:Springer-Verlag,2001:268~278
    [73] Christensen S, Jepsen L O. Modelling and Simulation of a Network ManagementSystem using Hierarchical Coloured Petri nets. Proceedings of the1991EuropeanSimulation Multiconference, Copenhagen,1991:47-52.
    [74]林闯.随机Petri网和系统性能评价.第2版.北京:清华大学出版社,2005
    [75]袁崇义.PETRI网原理及应用.电子工业出版社,2005:10~78.
    [76]姜春英,房立金,赵明扬.基于有限状态机与Petri网的系统分析与设计.计算机工程,2007,33(18):245~248.
    [77]廖晓文,刘美.基于UML与Petri网的嵌入式系统设计与验证.电子技术应用,2006,32(5):66~68.
    [78]蒋昌俊.Petri网的行为理论及其应用.北京:高等教育出版社,2003
    [79] Wang J, Deng Y, Zhou M. Compositional Time Petri nets and Reduction Rules.IEEE Transaction on System, Man and Cybernetics,2000,30(4):562~572
    [80] Ibertin-Blanc C. Cooperative Nets. in Proceedings of15th International Conferenceon the Application and Theory of Petri Nets. LNCS815, Zaragoza, Spain,Springer-Verlag,1994:471~490
    [81] Lakos C A. From Coloured Petri Nets to Object Petri Nets. in Proceedings of16thInternational Conference on the Application and Theory of Petri Nets,1995:278~297
    [82] Kinuyama M, Murata T. Generating Siphons and Traps by Petri net Representationof Logic Equations. in Proceedings of the2nd Conference of the Net TheorySIG-IECE.1986:93~100
    [83] Li Z W, Zhou M C. Elementary Siphons of Petri nets and Their Application toDeadlock Prevention in Flexible Manufacturing Systems. IEEE Transaction onSystems, Man, and Cybernetics-Part A: Systems and Humans,2004,34(1):38~51
    [84] Alexander E K. Reachability Analysis in T-invariant-Less Petri Nets. IEEETransactions on Automatic Control.2003,48(6):1019~1024
    [85] Alexander E K. A Reachability Algorithm for General Petri Nets Based onTransition Invariants. in R.Kralovic, P.Urzyczyn, eds. proc. of MFCS, BerlinHeidelberg, Springer-Verlag, LNCS,2006,4162:608~621
    [86] Yu F, Luo J Z, Li W. Determining Algorithm for Legal Firing Transition Sequenceof Petri Net Based on T-invariant Eliminating. Journal of PLA University of Scienceand Technology(Natural Science Edition),2008,9(5):522~527
    [87] Minoux M, Barkaoui K. Deadlocks and Traps in Petri Nets as Horn-satisfiabilitySolutions and Some Related Polynomially Solvable Problems. Discrete AppliedMathematics,1990,29(2):195~210
    [88] Lautenbach K. Linear Algebraic Calculation of Deadlocks and Traps, in concurrencyand Nets-advances in Petri Nets, New York, Springer-Verlag,1987:315~336
    [89] Billington J. Petri Net Markup Language: Concepts, Technology, and Tools. in ProcInt'l Conf. Applications and Theory of Petri Nets2003, W. van der Aalst and E. Besteds, LNCS, Springer,2003,2679:483~505
    [90] Ezpeleta J, Couvreur J M. A new technique for finding a generating family ofsiphons, traps and st-components. Application to colored Petri nets. in Proceedingsof the12th Conference on Application and Theory of Petri Nets. Aarhus, Denmark,1991:126~147
    [91] Jamshidi M. Systems of Systems Engineering: Innovations for the21st Century.Hoboken, New Jersey: John Wiley&Sons Inc,2009.
    [92] Sage A P, Cuppan C D. On the Systems Engineering and Management of Systems ofSystems and Federations of Systems. Information, Knowledge, and SystemsManagement,2001,2(4):325~345.
    [93] Sage A P. Conflict and Risk Management in Complex System of Systems Issues. inIEEE International Conference on Systems, Man and Cybernetics,2003,(4):3296~3301.
    [94] Delaurentis D A. Understanding Transportation as System of Systems DesignProblem. in43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno,NV:American Institute of Aeronautics and Astronautics,2005.
    [95] Sage A P, Biemer S M. Processes for System Family Architecting, Design, andIntegration. IEEE Systems Journal,2007,1(1):5~16.
    [96] Dickerson C, Mavris D. Architecture and Principles of Systems Engineering.Auerbach Publications,2009.
    [97] Jamshidi M. Systems of Systems Engineering: Principles and Applications. Florida,Boca Raton: CRC,2009.
    [98] US Department of Transportation: National ITS Architecture version7.0. January2012, http://www.iteris.com/itsarch/index.htm.
    [99] Belinova Z, Bures P, Jesty P. Intelligent Transport System Architecture-DifferentApproaches and Future Trends. in Third Lakeside Conference: Data and Mobility,October6-8,2010Austria:115~120.
    [100]DoD Architecture Framework Version2.0Volume1: Introduction, Overview, andConcepts. http://www.us.army.mil/suite/page/454707,2009.
    [101]DoD Architecture Framework Version2.0Volume2: Architectural Data and Models.http://www.us.army.mil/suite/page/454707,2009.
    [102]DoD Architecture Framework Version2.0Volume3: DoDAF Meta-model.http://www.us.army.mil/suite/page/454707,2009.
    [103]Dandashi F, Ang H, Bashioum C. Tailoring DoDAF to Support a Service OrientedArchitecture. White paper, Mitre Corp,2004.
    [104]Saurabh M. Extending DoDAF to Allow Integrated DEVS-Based Modeling andSimulation. Journal of Defense Modeling and Simulation: Applications,Methodology, Technology,2006,3(2):95~123
    [105]Albin J, Marcos D, Del F, et al. Model Integration with Model Weaving: a CaseStudy in System Architecture. in Proceedings of the2007International Conferenceon Systems Engineering and Modeling,2007:79~84
    [106]Ramos A, Ferreira J, Barcelo J. Model-Based Systems Engineering: An EmergingApproach for Modern Systems. IEEE Transaction on Systems, Man and CyberneticsPart C,42(1),2011:101~111.
    [107]Levis A H, Wagenhals L W. C4ISR Architectures: Developing a Process for C4ISRArchitecture Design. Systems Engineering,2000,3(4):225~247.
    [108]Handley A, Levis A H. Organization Architectures and Mission Requirements: AModel to Determine Congruence. Systems Engineering,2003,6(3):112~154.
    [109]Wagenhals L W, Shin I, Kim D, et al. C4ISR Architectures: II: A StructuredAnalysis Approach for Architecture Design. Systems Engineering,2000,3(4):248~286.
    [110]Maier M W. Architecting Principles for Systems-of-systems. Systems Engineering,1998,1(4):267-284.
    [111]Brooks R T, Sage A P. System of Systems Integration and Test. InformationKnowledge&Systems Management.2006,5(4):261~280.
    [112]Zaidi A K, Levis A H. Computational Verification of System Architectures. in:Proceeding of IEEE Symposium on Computational Intelligence for Security andDefense Applications, Honolulu,2007.
    [113]Friedenthal S, Moore A, Steiner R. A Practical Guide to SysML, The SystemsModeling Language. Burlington: Morgan Kaufmann/OMG, Elsevier,2008.
    [114]Lee J, Choi M, Jang J, et al. The Integrated Executable Architecture ModelDevelopment by Congruent Process, Method, and Tools. in Proceedings of the2005Command and Control Research and Technology Symposium, Paper259, Tyson'sCorner, Virginia,2005.
    [115]Wagenhals L W, Shin I, Kim D, et al. Synthesizing Executable Models of ObjectOriented Architectures. Systems Engineering,2003,6(4):266~300.
    [116]Wagenhals L W, Liles S W, Levis A H. Toward Executable Architectures to SupportEvaluation. International Symposium on Collaborative Technologies and Systems,2009:502-511.
    [117]Vapnik V N. Statistical Learning Theory. New York: Wiley,1998.
    [118]Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines.Cambridge, MA: Cambridge Univ. Press,2000.
    [119]Phan T, Kwan B W, Tung L J. Magnetoresistors for vehicle detection andidentification. in IEEE International Conference,1997,4:12~15
    [120]Kang M H, Choi B W, Koh K C, et al. Experimental study of a vehicle detectorwith an AMR sensor. Sens Actuators A,2005,118(2):278
    [121]Stencel M. Signal Parameterization vs. Ortogonalization on Example of Vehicle’sMagnetic Signature Recognition. in Instrumentation and Measurement TechnologyConference Corno, Italy,2001
    [122]Klausner A, Tengg A, Rinner B. Vehicle Classifcation on Multi-sensor SmartCameras using Feature-and Decision-fusion. in Proceedings of the ACM/IEEEInternational Conference on Distributed Smart Cameras,2007
    [123]Gupte S, Masoud O, Martin R F K, et al. Detection and Classification of Vehicles.IEEE Transaction on Intelligent Transportation Systems,2002,3(1):37~47
    [124]Abramczuk T. A Microcomputer based TV Detector for Road Traffic. in Symposiumon Road Research Program, T,1984,3(2):145~147.
    [125]裴玉龙,刘广萍.自适应信号控制下交叉口延误计算方法研究.公路交通科技,2005,22(7):110~114
    [126]游小荣,尹征琦.一种基于延误模型的区域交通控制方法.交通科技,2005,209(2):81~84
    [127]刘玥,杨晓光.多相位信号交叉口最优控制模型及求解算法.交通与计算机,2004,22(2):12~15
    [128]Wang J, J C, Deng Y. Performance Analysis of Traffic Networks based onStochastic Timed Petri Net Models. in Proc IEEE Int Conf, Engineering of ComplexComputer Systems,1999
    [129]Wang H T, George F. Modeling and Evaluation of Traffic Signal Control UsingTimed Petri Nets. IEEE,1995:180~185
    [130]George F. Modeling Traffic Signal Control Using Petri Nets. IEEE Transactions onIntelligent Transportation Systems,2004,5(3):177~187
    [131]Papageorgiou M. A New Approach to Time-of-day Control based on a DynamicFreeway Traffic Model. Transportation Research Part B,1980,14:349~360
    [132]Head L, Gettman D, Wei Z P. Decision Model for Priority Control of Traffic Signals.Journal of the Transportation Research Board,2006:169~177
    [133]Nguyen H. Comparison of Discharge Patterns at Traffic Signals. in85th AnnualMeeting of the Transportation Research Board. Washington D C,2006
    [134]Tsin H H, Tin K H. Coordinated Road-Junction Traffic Control. IEEE Transactionson Intelligent Transportation Systems,2005,6(3):341~350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700