水中病毒分析方法及水处理过程病毒去除特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球范围内由病毒污染环境水体而引起疾病暴发事件不断发生,严重威胁着水质安全和人类健康,建立水环境中感染性病毒快速分析方法,综合分析水处理过程对病毒的去除特性,对预防控制病毒暴发、保障水质安全及防范健康风险具有重要的意义。
     本研究建立了轮状病毒(Rotavirus,RV)和腺病毒(Adenovirus,Ad)定量PCR(qPCR)方法,检测限约为102 copies/反应(约0.2 PFU/反应),定量区间为10~2-10~8 copies/反应;建立了细胞培养与qPCR相结合(ICC-RT-qPCR)方法测定感染性RV,最低检测限为0.2 PFU/mL,定量区间为0.2-200 PFU/mL(R~2>0.95);研究建立了利用荧光计数细胞(Fluorescence-activated cell sorting,FACS)方法快速检测感染性Ad,最低检测限为1 PFU/mL Ad,定量区间为1-10~4 PFU/mL(R~2 > 0.95)。ICC-RT-qPCR和FACS方法将传统空斑法检测感染性病毒的时间从7-14天缩短至2-3天,且灵敏性有所提高。
     采用ICC-RT-qPCR评价不同消毒方法效果结果表明,在紫外线剂量为360 mJ/cm~2和初始氯浓度为20 mg/L时(接触60 min),仍能检测出具有感染性的RV和其基因片段。由于该方法比空斑法灵敏,与空斑法评价结果相比,达到相同的灭活率,紫外线剂量需要由42 mJ/cm~2增加到117 mJ/cm2(4 log10),初始氯浓度由1 mg/L增加至5 mg/L(接触60 min)(1.7 log10)。不同初始氯浓度下,自由氯与病毒反应的主要部位不同,浓度低时主要是病毒衣壳蛋白,浓度高时主要是病毒核酸,浓度中等时,是两者共同与氯反应导致病毒灭活。
     研究中对北京市三个污水处理厂进出水进行一年(2007.05-2008.04)的监测。结果表明,污水中RV秋冬季浓度高,夏季浓度低,污水一级和二级处理出水中感染性RV冬季平均浓度分别为:288-689 PFU/L和0.6-2.9 PFU/L;不同处理工艺对RV的去除率从高到低依次是:二级处理工艺:A~2/O(2.65-2.83 log10)>传统活性污泥法(2.22 log10),三级处理工艺:反渗透(1.29 log10)>膜过滤(0.91 log10)>砂滤系统(0.78 log10)。本研究在雨季对美国洛杉矶Segundo海湾某海水淡化厂进出水进行检测,结果表明降雨对海水中Ad污染无明显影响。
Waterborne viral infection is one of the most important causes of human morbidity and mortality, and epidemics associated with waterborne viruses are well documented worldwide. Therefore, it’s urgent to develop rapid and sensitive detection methods in order to determine the concentration profiles of waterborne viruses in the environments, and to evaluate the efficiency of viral removal and inactivation during wastewater treatment processes.
     Quantitative PCR (qPCR) for rapid detection of rotaviruses (RV) and adenoviruses (RV) were established, the detection limits are approximately 102 copies /reaction, and the quantitative ranges are from 10~2 to 108 copies /reaction; An integrated cell culture and qPCR (ICC-RT-qPCR) was developed to detect infectious RV, which can detect as few as 0.2 PFU/mL, a linear correlation was obtained by plotting RV copies detected by ICC-RT-qPCR versus the logarithm of initial RV inoculated at concentrations ranging from 0.2 to 200 PFU/mL. In addition, a fluorescence-activated cells sorting (FACS) was established to rapidly and sensitively determine and quantify infectious Ad, with a detection limit of 1 PFU/mL and a linear correlation obtained by plotting the percentages of hexon-positive cells versus the logarithm of initial Ads inoculated ranging from 1 to 104 PFU/mL. Both the ICC-RT-qPCR and FACS assays reduced the detection time of infectious virus from 7-14 day by conventional plaque assay to 2-3 days with better sensitivities.
     The newly developed ICC-RT-qPCR method was applied to investigate the inactivation and resistance of RV to UV and free chlorine disinfection, and to compare the results with those obtained by conventional assays. The results showed that RV evaluated by ICC-RT-qPCR was more resistant to UV and free chlorine disinfection than that evaluated by plaque assay. Infectious RV and gene segments were detectable at UV dose of 360 mJ/cm2 and chlorine dose of 1200 mg·min/L. To achieve the same removal efficiency evaluated by plaque assay, the required UV dose and chlorine dose evaluated by ICC-RT-qPCR increased from 42 to 117 mJ/cm2 (4 log10) and from 60 to 300 mg·min/L (1.7 log10), respectively. The key target of RV during chlorine disinfection varies with different initial free chlorine concentrations. The damage of outside protein is pivotal target at low concentration, while the damage of nucleic acid is crucial at high concentration, and both the damages of protein and nucleic acid result in the inactivation of rotavirus at moderate concentration of free chlorine.
     The contaminations of waterborne viruses may be impacted by the epidemics, urban runoff and the waterbody quality. A one-year monthly monitoring of RV in raw and treated wastewater from three typical municipal wastewater treatment plants (WWTPs) in Beijing of China was conducted. Results showed that RVs were abundant in autumn and winter but rare in summer. During autumn and winter seasons, the average removal efficiencies of infectious RV in primary and secondary treated wastewater were 288-689 and 0.6-2.9 PFU/L, respectively. Among the different types of secondary and tertiary treatment processes, the anaerobic-anoxic-oxic (A2/O) process had higher removal efficiency than conventional activated sludge process, and the reverse osmosis (RO) was more efficient to remove infectious RV than membrane ultrafiltration and conventional flocculation-sedimentation and sand filtration process. The viral quantity of seawater intaked into the desalination plant at West Basin Desalination Plant at El Segundo, Los Angeles of USA, were evaluated during periods of coastal storms, which are used for drinking water production by reverse osmosis (RO). The results indicated that the adenoviral contamination in the seawater intake was not significantly impacted by the storm or urban runoff.
引文
[1] Adler, M., Schulz, S., Fischer, R., Niemeyer, C.M., 2005. Detection of rotavirus from stool samples using a standardized immuno-PCR ("Imperacer") method with end-point and real-time detection. Biochem Bioph Res Co. 333, 1289-1294.
    [2] Alfieri, A.A., Leite, J.P.G., Alfieri, A.F., Jiang, B.M., Glass, R.I., Gentsch, J.R., 1999. Detection of field isolates of human and animal group C rotavirus by reverse transcription-polymerase chain reaction and digoxigenin-labeled oligonucleotide probes. J Virol Methods. 83, 35-43.
    [3] Alvarez, M.E., Obrien, R.T., 1982. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine. Appl Environ Microb. 44, 1064-1071.
    [4] American Public Health Association, 1985. Standard methods for the examination of water and wastewater, 17th ed. American Public Health Association, Washington, DC.
    [5] American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater,20th Ed.. APHA,Washington,DC. , USA , 1998.
    [6] American Water Works Association. 2000. Committee report: disinfection at large and medium-sized systems. J. Am. Water Works Assoc. 92, 32–43.
    [7] Avery, R.M., Shelton, A.P., Beards, G.M., Omotade, O.O., Oyejide, O.C., Olaleye, D.O., 1992. Viral Agents Associated with Infantile Gastroenteritis in Nigeria - Relative Prevalence of Adenovirus Serotype-40 and Serotype-41, Astrovirus, and Rotavirus Serotype-1 to Serotype-4. J Diarrhoeal Dis Res. 10, 105-108.
    [8] Baert, L., Wobus, C.E., Van Coillie, E., Thackray, L.B., Debevere, J., Uyttendaele, M., 2008. Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appl Environ Microb. 74, 543-546.
    [9] Barbeau, B., Desjardins, R., Mysore, C. & Prevost, M., 2005, Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters. Water Res. 39, 2024-2033.
    [10] Baxter, C.S., Hofmann, R., Templeton, M.R., Brown, M., Andrews, R.C., 2007. Inactivation of adenovirus types 2, 5, and 41 in drinking water by UV light, free chlorine, and mlonochlorarnine. J Environ Eng-Asce. 133, 95-103.
    [11] Bedner, E., Burfeind, P., Hsieh, T., Wu, J.M., Aguero-Rosenfeld, M.E., Melamed, M.R., Horowitz, H.W., Wormser, G.P., Darzynkiewicz, Z., 1998. Cell cycle effects and induction of apoptosis caused by infection of HL-60 cells with human granulocytic ehrlichiosis pathogen measured by flow and laser scanning cytometry. Cytometry. 33,47-55.
    [12] Belnap, D.M., Filman, D.J., Trus, B.L., Cheng, N.Q., Booy, F.P., Conway, J.F., Curry, S., Hiremath, C.N., Tsang, S.K., Steven, A.C., Hogle, J.M., 2000. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol. 74, 1342-1354.
    [13] Blackmer, F., Reynolds, K.A., Gerba, C.P. and Pepper, I.L., 2000. Use of integrated cell culture-PCR to evaluate the effectiveness of poliovirus inactivation by chlorine. Appl Environ Microb. 66, 2267-2268.
    [14] Brassard, J., Seyer, K., Houde, A., Simard, C. and Trottier, Y.L. 2005. Concentration and detection of hepatitis A virus and rotavirus in spring water samples by reverse transcription-PCR. J Virol Method. 123, 163-169.
    [15] Broor, S., Husain, M., Chatterjee, B., Chakraborty, A., Seth, P., 1995. Direct-detection and characterization of rotavirus into subgroups by dot-blot hybridization and correlation with long and short electropherotypes. Clin Diagn Virol. 3, 29-38.
    [16] Brown, M., Wilsonfriesen, H.L., Doane, F., 1992. A Block in Release of Progeny Virus and a High Particle-to-Infectious Unit Ratio Contribute to Poor Growth of Enteric Adenovirus Type-40 and Type-41 in Cell-Culture. J Virol. 66, 3198-3205.
    [17] Brussaard, C.P.D., 2004. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microb. 70, 1506-1513.
    [18] Cardinale F,Gentile V,Brunetti L,Hanson LA,Armenio L., 2001.Titres of specific antibodies to poliovirus type 3 and tetanus toxoid in saliva and serum of children with recurrent upper respiratory tract infections .Pediatr Allergy Immunol,12(1):42-48.
    [19] Casas, N., Sunen, E., 2001. Detection of enterovirus and hepatitis A virus RNA in mussels (Mytilus spp.) by reverse transcriptase-polymerase chain reaction. J Appl Microbiol. 90, 89-95.
    [20] Casteel M J, S.C.E., Sobsey M.D., 2008. Chlorine disinfection of produce to inactivate hepatitis A virus and coliphage MS2. Int J Food Microbiol. 125, 267-273.
    [21] Chaibi, C., Cotte-Laffitte, J., Sandre, C., Esclatine, A., Servin, A.L., Quero, A.M., Geniteau-Legendre, M., 2005. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology 332(2), 480-490.
    [22] Chang, J.C.H., Ossoff, S.F., Lobe, D.C., Dorfman, M.H., Dumais, C.M., Qualls, R.G., Johnson, J.D., 1985. Uv Inactivation of Pathogenic and Indicator Microorganisms. Appl Environ Microb. 49, 1361-1365.
    [23] Chapron, C.D., Ballester, N.A., Fontaine, J.H., Frades, C.N., Margolin, A.B., 2000. Detection of astroviruses, enteroviruses, and adenovirus types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cellculture-nested PCR procedure. Appl Environ Microb. 66, 2520-2525.
    [24] Chizhikov, V., Wagner, M., Ivshina, A., Hoshino, Y., Kapikian, A.Z., Chumakov, K., 2002. Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol. 40, 2398-2407.
    [25] Choi, S., Chu, W.P., Brown, J., Becker, S.J., Harwood, V.J., Jiang, S.C., 2003. Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Mar Pollut Bull. 46, 748-755.
    [26] Churn, C.C., Bates, R.C., Boardman, G.D., 1983. Mechanism of chlorine inactivation of DNA-containing Parvovirus-H-1. Appl Environ Microb. 46, 1394-1402.
    [27] Compton, J., 1991. Nucleic-acid sequence-based amplification. Nature. 350, 91-92.
    [28] Cook, N., 2003. The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbiol Meth. 53, 165-174.
    [29] Cooper, R.C., Straube, D., 1979. Reverse-Osmosis reduces viral count in the influent stream. Water Sewage Works, 162-166.
    [30] Costan-Longares, A., Montemayor, M., Payan, A., Mendez, J., Jofre, J., Mujeriego, R., Lucena, F., 2008. Microbial indicators and pathogens: removal, relationships and predictive capabilities in water reclamation facilities. Water Res. 42, 4439-4448.
    [31] Crabtree, K.D., Gerba, C.P., Rose, J.B., Haas, C.N., 1997. Waterborne adenovirus: A risk assessment. Water Sci Technol. 35, 1-6.
    [32] Cruz, J.R., Caceres, P., Cano, F., Flores, J., Bartlett, A., Torun, B., 1990. Adenovirus Type-40 and Type-41 and rotaviruses associated with diarrhea in children from guatemala. J Clin Microbiol. 28, 1780-1784.
    [33] de Jong, R.N., van der Vliet, P.C., 1999. Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. Gene. 236, 1-12.
    [34] Denis-Mize, K., Fout, G.S., Dahling, D.R., Francy, D.S., 2004. Detection of human enteric viruses in stream water with RT-PCR and cell culture. J Water Health. 2, 37-47.
    [35] Dennis, W.H., Olivieri, V.P. and Kruse, C.W. 1979. Mechanism of disinfection - incorporation of Cl-36 into F2 Virus. Water Res. 13(4), 363-369.
    [36] Dietrich, J.P., Basagaoglu, H., Loge, F.J., Ginn, T.R., 2003. Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms. Water Res. 37, 139-149.
    [37] Divizia, M., Gabrieli, R., Donia, D., Macaluso, A., Bosch, A., Guix, S., Sanchez, G., Villena, C., Pinto, R.M., Palombi, L., Buonuomo, E., Cenko, F., Leno, L., Bebeci, D., Bino, S., 2004. Waterborne gastroenteritis outbreak in Albania. Water Sci Technol. 50, 57-61.
    [38] Duan, S.M., Zhao, X.S., Wen, R.F., Huang, J.J., Pi, G.H., Zhang, S.X., Han, J., Bi, S.L.,Ruan, L., Dong, X.P., 2003. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. biomed. Environ. Sci. 16, 246-255.
    [39] Duizer, E., Bijkerk, P., Rockx, B., Groot, A. de, Twisk, F., Koopmans, M., 2004. Inactivation of caliciviruses. Appl Environ Microb. 70, 4538-4543.
    [40] Espinosa, A.C., Mazari-Hiriart, M., Espinosa, R., Maruri-Avidal, L., Mendez, E., Arias, C.F., 2008. Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res. 42, 2618-2628.
    [41] Fiksdal, L., Leiknes, T., 2006. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J Membrane Sci. 279, 364-371.
    [42] Flint, S. J. 2000. Principles of virology: molecular biology, pathogenesis, and control. ASM Press, Washington, D.C.
    [43] Fong, T.T., Lipp, E.K., 2005. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol R. 69, 357-362.
    [44] Fuhrman, J.A., Liang, X.L., Noble, R.T., 2005. Rapid detection of enteroviruses in small volumes of natural waters by real-time quantitative reverse transcriptase PCR. Appl Environ Microb. 71, 4523-4530.
    [45] Gajardo, R., Bouchriti, N., Pinto, R.M., Bosch, A., 1995. Genotyping of rotaviruses isolated from sewage. Appl Environ Microb. 61, 3460-3462.
    [46] Gantzer, C., Senouci, S., Maul, A., Levi, Y., Schwartzbrod, L., 1997. Enterovirus genomes in wastewater: concentration on glass wool and glass powder and detection by RT-PCR. J Virol Methods. 65, 265-271.
    [47] Gerba, C. P., Rose J.B., Haas C.N., Crabtree K.D. 1996. Waterborne rotavirus: a risk assessment. Water Res. 30, 2929–2940.
    [48] Gerba, C.P., Gramos, D.M. and Nwachuku, N. 2002. Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Appl Environ Microb. 68(10), 5167-5169.
    [49] Gilgen, M., Wegmuller, B., Burkhalter, P., Buhler, H.P., Muller, U., Luthy, J., Candrian, U., 1995. Reverse transcription PCR to detect enteroviruses in surface-water. Appl Environ Microb. 61, 1226-1231.
    [50] Gilpatrick, S.G., Schwab, K.J., Estes, M.K., Atmar, R.L., 2000. Development of an immunomagnetic capture reverse transcription-PCR assay for the detection of Norwalk virus. J Virol Methods. 90, 69-78.
    [51] Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type-5. J Gen Virol. 36, 59-72.
    [52] Gratacap-Cavallier, B., Genoulaz, O., Brengel-Pesce, K., Soule, H., Innocenti-Francillard,P., Bost, M., Gofti, L., Zmirou, D., Seigneurin, J.M., 2000. Detection of human and animal rotavirus sequences in drinking water. Appl Environ Microb. 66, 2690-2692.
    [53] Green, D.H., Lewis, G.D., 1999. Comparative detection of enteric viruses in wastewaters, sediments and oysters by reverse transcription PCR and cell culture. Water Res. 33, 1195-1200.
    [54] Gutierrez, M.F., Alvarado, M.V., Martinez, E., Ajami, N.J., 2007. Presence of viral proteins in drinkable water - Sufficient condition to consider water a vector of viral transmission? Water Res. 41, 373-378.
    [55] Haider, T., Sommer, R., Knasmuller, S., Eckl, P., Pribil, W., Cabaj, A., Kundi, M., 2002. Genotoxic response of Austrian groundwater samples treated under standardized UV (254 nm)-disinfection conditions in a combination of three different bioassays. Water Res. 36, 25-32.
    [56] Hammes, F., Berney, M., Wang, Y.Y., Vital, M., Koster, O., Egli, T., 2008. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 42, 269-277.
    [57] Hansen, J.J., Warden, P.S., Margolin, A.B., 2007. Inactivation of adenovirus type 5, rotavirus WA and male specific coliphage (MS2) in biosolids by lime stabilization. Int J Environ Res Public Health. 4(1), 61-67.
    [58] Harakeh, M. and Butler, M. 1984. Inactivation of human rotavirus, Sa11 and other enteric viruses in effluent by disinfectants. J of Hyg. 93(1), 157-163.
    [59] Haramoto, E., Katayama, H., Oguma, K., Ohgaki, S., 2005. Application of cation-coated filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno viruses in the Tamagawa River in Japan. Appl Environ Microb. 71, 2403-2411.
    [60] Haramoto, E., Katayama, H., Oguma, K., Ohgaki, S., 2007. Recovery of naked viral genomes in water by virus concentration methods. J Virol Methods. 142, 169-173.
    [61] Haramoto, E., Katayama, H., Oguma, K., Yamashita, H., Nakajima, E., Ohgaki, S., 2005. One-year monthly monitoring of Torque teno virus (TTV) in wastewater treatment plants in Japan. Water Res. 39, 2008-2013.
    [62] Haramoto, E., Katayama, H., Ohgaki, S., 2004. Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Appl Environ Microb. 70, 2154-2160.
    [63] Haramoto, E., Katayama, H., Ohgaki, S., 2008. Quantification and genotyping of Torque Teno Virus at a wastewater treatment plant in Japan. Appl Environ Microb. 74, 7434-7436.
    [64] Haramoto, E., Katayama, H., Utagawa, E., Ohgaki, S., 2009. Recovery of human norovirus from water by virus concentration methods. J Virol Methods. 160, 206-209.
    [65] Hariharan, J., Estes, M.K., Prasad, B.V.V., 2004. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res. 101, 67-81.
    [66] Hawkins, C.L., Pattison, D.I. and Davies, M.J. 2003. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acid. 25(3-4), 259-274.
    [67] He, J.W., Jiang, S., 2005. Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Appl Environ Microb. 71, 2250-2255.
    [68] Herrmann, J.E., Perronhenry, D.M., Blacklow, N.R., 1987. Antigen-detection with monoclonal-antibodies for the diagnosis of adenovirus gastroenteritis. J Infect Dis. 155, 1167-1171.
    [69] Hijnen, W.A.M., Beerendonk, E.F., Medema, G.J., 2006. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 40, 3-22.
    [70] Hiroshi, S., Kumiko O , Hiroyu Ki K, et al . Effect s of low or medium pressure ultraviolet lamp irradiation on Microcystis aeruginosa and A nabaena variabilis. Water Res. 2007, 41 (1) :11218.
    [71] Hitt, D.C., Booth, J.L., Dandapani, V., Pennington, L.R., Gimble, J.M., Metcalf, J., 2000. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein. Mol Biotechnol. 14, 197-203.
    [72] Hoebe, C.J.P.A., Vennema, H., Husman, A.M.D., van Duynhoven, Y.T.H.P., 2004. Norovirus outbreak among primary schoolchildren who had played in a recreational water fountain. J Infect Dis. 189, 699-705.
    [73] Hogle, J.M., Chow, M., Filman, D.J., 1985. 3-Dimensional structure of poliovirus at 2.9 a resolution. Science. 229, 1358-1365.
    [74] Hot, D., Legeay, O., Jacques, J., Gantzer, C., Caudrelier, Y., Guyard, K., Lange, M., Andreoletti, L., 2003. Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water. Water Res. 37, 4703-4710.
    [75] Huang, D.B., White, A.C., 2006. An updated review on Cryptosporidium and Giardia. Gastroenterol Clin N. 35, 291-314.
    [76] Ijzerman, M.M., Dahling, D.R., Fout G.S., 1997. A method to remove environmental inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-polymerase chain reaction. J of Virol Method. 63, 145-153.
    [77] Ikehata, K.I., Pui, O., 2008. Health effects associated with wastewater treatment, reuse, and disposal. Water Environ Res. 80, 1980-1996.
    [78] Ivanov A,Dragunsky E,Ivanova O,Rezapkin G,Potapova S,Chumakov K., 2005. Determination of poliovirus-specific IgA in saliva by ELISA tests.J Virol Methods,126(1-2): 45-52.
    [79] Jean, J., Blais, B., Darveau, A. and Fliss, I. 2002. Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification (NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. FEMS Microbiol Lett. 210(1), 143-147.
    [80] Jean, J., Blais, B., Darveau, A., Fliss, I., 2002. Simultaneous detection and identification of hepatitis A virus and rotavirus by multiplex nucleic acid sequence-based amplification (NASBA) and microtiter plate hybridization system. J Virol Methods. 105, 123-132.
    [81] Jiang, S., Dezfulian, H., Chu, W.P., 2005. Real-time quantitative PCR for enteric adenovirus serotype 40 in environmental waters. Can J Microbiol. 51, 393-398.
    [82] Jiang, S., Noble, R., Chui, W.P., 2001. Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California. Appl Environ Microb. 67, 179-184.
    [83] Jiang, S.C., 2006. Human Adenoviruses in water: Occurrence and health implications: A critical review. Environ Sci Technol. 40, 7132-7140.
    [84] Jothikumar, N., Khanna, P., Paulmurugan, R., Kamatchiammal, S., Padmanabhan, P., 1995. A simple device for the concentration and detection of enterovirus, hepatitis-E Virus and rotavirus from water samples by reverse transcription-polymerase chain-reaction. J Virol Methods. 55, 401-415.
    [85] Kalyuzhniy, O., Di Paolo, N.C., Silvestry, M., Hofherr, S.E., Barry, M.A., Stewart, P.L., Shayakhmetov, D.M., 2008. Adenovirus serotype 5 hexon is critical for virus infection of heptocytes in vivo. P Natl Acad Sci USA. 105, 5483-5488.
    [86] Kaneko, M., 1997. Virus removal by the domestic wastewater treatment system named Johkasou. Water Sci Technol. 35, 187-191.
    [87] Karim, M.R., Rhodes, E.R., Brinkman, N., Wymer, L., Fout, G.S., 2009. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microb. 75, 2393-2399.
    [88] Karmakar, S., Rathore, A.S., Kadri, S.M., Dutt, S., Khare, S., Lal, S., 2008. Post-earthquake outbreak of rotavirus gastroenteritis in Kashmir (India): An epidemiological analysis. Public Health. 122, 981-989.
    [89] Kidd, A.H., Erasmus, M.J., Tiemessen, C.T., 1990. Fiber Sequence Heterogeneity in Subgroup-F Adenoviruses. Virology. 179, 139-150.
    [90] Kim, S.H., Cheon, D.S., Kim, J.Y., Lee, D.H., Jheong, W.H., Heo, Y.J., Chung, H.M., Jee, Y., Lee, J.S., 2005. Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus. J Clin Microbiol. 43, 4836-4839.
    [91] Kittigul, L., Ekchaloemkiet, S., Utrarachkij, F., Siripanichgon, K., Sujirarat, D., Pungchitton, S., Boonthum, A., 2005. An efficient virus concentration method and RT-nested PCR for detection of rotaviruses in environmental water samples. J Virol Methods. 124, 117-122.
    [92] Ko, G., Cromeans, T. L., Sobsey, M. D. 2003. Detection of infectious adenovirus in cell culture by mRNA reverse transcription-PCR. Appl Environ Microb. 69, 7377–7384.
    [93] Ko, G., Cromeans, T.L., Sobsey, M.D., 2005. UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR. Water Res. 39, 3643-3649.
    [94] Ko, G., Jothikumar, N., Hill, V.R., Sobsey, M.D., 2005. Rapid detection of infectious adenoviruses by mRNA real-time RT-PCR. J Virol Methods. 127, 148-153
    [95] Koepke, J.A., Landay, A.L., 1989. Precision and accuracy of absolute lymphocyte counts. Clin Immunol Immunop. 52, 19-27.
    [96] Kukkula, M., Arstila, P., Klossner, M.L., Maunula, L., vonBonsdorff, C.H., Jaatinen, P., 1997. Waterborne outbreak of viral gastroenteritis. Scand J Infect Dis. 29, 415-418.
    [97] Lakhe, S.B., Paunikar, W.N., and Parhad N.M., 2002. Use of bituminous coal for concentration of enteroviruses from sewage and effluent, Water Res. 36: 3298-3306.
    [98] Landry, M.L., Garner, R., Ferguson, D., 2003. Comparison of the nucliSens basic kit (Nucleic acid sequence-based amplification) and the argene biosoft enterovirus consensus reverse transcription-PCR assays for rapid detection of enterovirus RNA in clinical specimens. J Clin Microbiol. 41, 5006-5010.
    [99] Lee, S.H., Kim, S.J., 2002. Detection of infectious enteroviruses and adenoviruses in tap water in urban areas in Korea. Water Res. 36, 248-256.
    [100] Letesson, J.J., Vandenbroecke, A., Marbaixcleuter, Y., Delcommenne, M., Mager, A., Mammerickx, M., Burny, A., Depelchin, A., 1991. Facs analysis of bovine Leukemia-Virus (Blv)-Infected Cell-Lines with Monoclonal-Antibodies (Mabs) to B-Cells and to Monocytes Macrophages. Vet Immunol Immunop. 27, 207-213.
    [101] Leveque, L., Crance, J.M., Beril, C., Schwartzbrod, L., 1995. Virucidal effect of UV light on hepatitis A virus in sea water: evaluation with cell culture and RT-PCR. Water Sci Technol. 31, 157-60.
    [102] Li, D., Gu, A.Z., He, M., Shi, H.C. and Yang, W., 2009. UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res. 43(13), 3261-3269.
    [103] Li, D, He M, Hu X, Shi H C. 2007. Rapid and sensitive detection of infectious rotaviruses in environmental water by an integrated cell culture and RT-PCR (ICC-RT-PCR). Proceedings of International Workshop on Monitoring and Sensor for Water Pollution Control. Beijing: p: 117-129.
    [104] Li, D., H. C. Shi. and S. Jiang. Concentration of viruses from environmental waters usingNanoalumina fiber filters. Journal of Micro. Methods. 2010, 81:33–38
    [105] Li, J.W., Wang, X.W., Rui, Q.Y., Song, N., Zhang, F.G., Ou, Y.C., Chao, F.H., 1998. A new and simple method for concentration of enteric viruses from water. J Virol Methods. 74, 99-108.
    [106] Li, J.W., Xin, Z.T., Wang, X.W., Zheng, J.L. and Chao, F.H. 2002. Mechanisms of inactivation of hepatitis A virus by chlorine. Appl Environ Microb. 68(10), 4951-4955.
    [107] Liltved, H., Vogelsang, C., Modahl, I., Dannevig, B.H., 2006. High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater. Aquacult. Eng. 34, 72-82.
    [108] Lin, M., Imai, M., Ikegami, N., Bellamy, A.R., Summers, D., Nuss, D.L., Deibel, R., Furuichi, Y., 1987. Cdna probes of individual genes of human rotavirus distinguish viral subgroups and serotypes. J Virol Methods. 15, 285-289.
    [109] Linden, K.G., Shin, G., Faubert, G., Cairns, W., Sobsey, M.D., 2002. UV disinfection of Giardia lamblia cysts in water. Environ. Sci. Technol. 36, 2519-2522.
    [110] Logan, C., O'Leary, J.J., O'Sullivan, N., 2006. Real-time reverse transcription-PCR for detection of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. J Clin Microbiol. 44, 3189-3195.
    [111] Lucena, F., Duran, A.E., Moron, A., Calderon, E., Campos, C., Gantzer, C., Skraber, S., Jofre, J., 2004. Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. J Appl Microbiol. 97, 1069-1076.
    [112] Lucio-Forster, A., Bowman, D.D., Lucio-Martinez, B., Labare, M.P., Butkus, M.A., 2006. Inactivation of the avian influenza virus (H5N2) in typical domestic wastewater and drinking water treatment systems. Environ Eng Sci. 23, 897-903.
    [113] Ma, J.F., Straub, T.M., Pepper, I.L., Gerba, C.P., 1994. Cell-culture and PCR determination of poliovirus inactivation by disinfectants. Appl Environ Microb. 60, 4203-4206.
    [114] Macartney, L., Cavanagh, H.M.A., Spibey, N., 1988. Isolation of canine adenovirus-2 from the feces of dogs with enteric disease and its unambiguous typing by restriction endonuclease mapping. Res Vet Sci. 44, 9-14.
    [115] Maiti, N.K., Baruah, G.K., Sharma, S.N., Singh, B., 1987. A study on fowl adenovirus type-I infection in the chicken. Acta Vet-Beograd. 37, 293-298.
    [116] Mayr, C., Strohe, G., Contzen, M., 2009. Detection of rotavirus in food associated with a gastroenteritis outbreak in a mother and child sanatorium. Int J of Food Microb. 135,179–182.
    [117] Mcsharry, J.J., Costantino, R., Mcsharry, M.B., Venezia, R.A., Lehman, J.M., 1990. Rapid Detection of herpes-simplex virus in clinical-samples by flow-cytometry afteramplification in tissue-culture. J Clin Microbiol. 28, 1864-1866.
    [118] Mehnert, D.U., Stewien, K.E., Harsi, C.M., Queiroz, A.P.S., Candeias, J.M.G., Candeias, J.A.N., 1997. Detection of rotavirus in sewage and creek water: Efficiency of the concentration method. Mem I Oswaldo Cruz. 92, 97-100.
    [119] Meng, Q.S., and Gerba, C.P., 1996. Comparative inactivation of enteric adenoviruses, polioviruses and coliphages by ultraviolet irradiation. Water Res. 30, 2665-2668.
    [120] Min, B.S., Noh, Y.J., Shin, J.H., Baek, S.Y., Min, K.I., Ryu, S.R., Kim, B.G., Park, M.K., Choi, S.E., Yang, E.H., Park, S.N., Hur, S.J. and Ahn, B.Y., 2006. Assessment of the quantitative real-time polymerase chain reaction using a cDNA standard for human group A rotavirus. J Virol Method. 137(2), 280-286.
    [121] Mulrooney, P.M., Michalak, T.I., 2003. Quantitative detection of hepadnavirus-infected lymphoid cells by in situ PCR combined with flow cytometry: Implications for the study of occult virus persistence. J Virol. 77, 970-979.
    [122] Myrmel, M., Rimstad, E., 2000. Antigenic diversity of Norwalk-like viruses: expression of the capsid protein of a genogroup I virus, distantly related to Norwalk virus. Arch Virol. 145, 711-723.
    [123] Nemerow, G.R., Pache, L., Reddy, V., Stewart, P.L., 2009. Insights into adenovirus host cell interactions from structural studies. Virology. 384, 380-388.
    [124] Neubert, S., 2009. Wastewater reuse: how "integrated" and sustainable is the strategy? Water Policy. 11, 37-53.
    [125] Nishikiori, R., Nomura, Y., Sawajiri, M., Masuki, K., Hirata, I. and Okazaki, M., 2008. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts. J of Dentistry. 36(12), 993-998.
    [126] Nocker, A., Cheung, C.Y., Camper, A.K., 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of lives vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth. 67, 310-320.
    [127] Nocker, A., Mazza, A., Masson, L., Camper, A.K., Brousseau, R., 2009. Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology. J Microbiol Meth. 76, 253-261.
    [128] Nocker, A., Sossa, K.E., Camper, A.K., 2007. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Meth. 70, 252-260.
    [129] Nocker, A., Sossa-Fernandez, P., Burr, M.D., Camper, A.K., 2007. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microb. 73, 5111-5117.
    [130] Noel, J.S., Parker, S.P., Choules, K., Phillips, A.D., Walkersmith, J., Cubitt, W.D., 1994.Impact of rotavirus infection on a pediatric hospital in the east-end of London. J Clin Pathol. 47, 67-70.
    [131] Nordgren, J., Matussek, A., Mattsson, A., Svensson, L., Lindgren, P.E., 2009. Prevalence of norovirus and factors influencing virus concentrations during one year in a full-scale wastewater treatment plant. Water Res. 43, 1117-1125.
    [132] Noss C.I., Hauchman F.S., Olivieri V.P. 1986. Chlorine dioxide reactivity with proteins. Water Res. 20, 351-356.
    [133] Nuanualsuwan, S. and Cliver, D.O., 2003. Capsid functions of inactivated human picornaviruses and feline calicivirus. Appl Environ Microb. 69, 350-357.
    [134] Okomo-Adhiambo, M., Beattie, C., Rink, A., 2006. cDNA microarray analysis of host-pathogen interactions in a porcine in vitro model for Toxoplasma gondii infection. Infect Immun. 74, 4254-4265.
    [135] Orenstein, E.W., Fang, Z.Y., Xu, J., Liu, C., Shen, K., Qian, Y., Jiang, B., Kilgore P.E., Glass, R.I., 2006. The epidemiology and burden of rotavirus in China: A review of the literature from 1983 to 2005. Vaccine. 25, 406-413.
    [136] Ottosona, J., Hansena, A., Bjorleniusc, B., Norderd, H., Stenstroma, T.A., 2006. Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Res. 40: 1449–1457.
    [137] Page, G.S., Mosser, A.G., Hogle, J.M., Filman, D.J., Rueckert, R.R., Chow, M., 1988. 3-Dimensional structure of poliovirus serotype-1 neutralizing determinants. J Virol. 62, 1781-1794.
    [138] Page, M.A., Shisler, J.L. and Marinas, B.J. 2009. Kinetics of adenovirus type 2 inactivation with free chlorine. Water Res. 43(11), 2916-2926.
    [139] Pang, X.L.L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J.K., Ip, C.C.Y., 2004. Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. J Med Virol. 72, 496-501.
    [140] Pantazis, V.N., Kalavrouziotis, I.K., Deligiannakis, Y., 2009. Reuse of Wastewater and sludge utilization on Pinus Pinea L. And Pinus Halepensis Mill. Fresen Environ Bull. 18, 335-345.
    [141] Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A. and Glass, R.I. 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Diseas. 9(5), 565-572.
    [142] Park, T.J., Yoo, S.M., Keum, K.C., Lee, S.Y., 2009. Microarray of DNA-protein complexes on poly-3-hydroxybutyrate surface for pathogen detection. Anal Bioanal Chem. 393, 1639-1647.
    [143] Parshionikar, S.U., Willian-True, S., Fout, G.S., Robbins, D.E., Seys, S.A., Cassady, J.D., Harris, R., 2003. Waterborne outbreak of gastroenteritis associated with a norovirus. Appl Environ Microb. 69, 5263-5268.
    [144] Pina, S., Puig, M., Lucena, F., Jofre, J., Girones, R., 1998. Viral pollution in the environment and in shellfish: Human adenovirus detection by PCR as an index of human viruses. Appl Environ Microb. 64, 3376-3382.
    [145] Pusch, D., Oh, D.Y., Wolf, S., Dumke, R., Schroter-Bobsin, U., Hohne, M., Roske, I., Schreier, E., 2005. Detection of enteric viruses and bacterial indicators in German environmental waters. Arch Virol. 150, 929-947.
    [146] Quiros, C., Herrero, M., Garcia, L.A., Diaz, M., 2007. Application of flow cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl Environ Microb. 73, 3993-4000.
    [147] Rab, M.A., Bile, M.K., Mubarik, M.M., Asghar, H., Sami, Z., Siddiqi, S., Dil, A.S., Barzgar, M.A., Chaudhry, M.A., Burney, M.I., 1997. Water-borne hepatitis E virus epidemic in Islamabad, Pakistan: A common source outbreak traced to the malfunction of a modern water treatment plant. Am J Trop Med Hyg. 57, 151-157.
    [148] Rakotomalala, L., Gregori, G.J., Andrisani, O., Robinson, J.P., 2004. Effect of hepatitis B virus X protein on the cell cycle of mouse hepatocytes: Evidence by DNA staining and analysis by flow cytometry. Cytom Part A. 59A, 112-113.
    [149] Ramanujan, K., 2007. Avian-flu virus unlikely to spread through wastewater and drinking-water treatment systems. J Environ Health. 69, 64-64.
    [150] Ramos, A.P.D., Stefanelli, C.C., Elisa, R., Linhares, C., de Brito, B.G., Santos, N., Gouvea, V., Lima, R.D., Nozawa, C., 2000. The stability of porcine rotavirus in feces. Vet Microbiol. 71, 1-8.
    [151] Ranheim, T., Mathis, P.K., Joelsson, D.B., Smith, M.E., Campbell, K.M., Lucas, G., Barmat, S., Melissen, E., Benz, R., Lewis, J.A., Chen, J., Schofield, T., Sitrin, R.D., Hennessey, J.P., 2006. Development and application of a quantitative RT-PCR potency assay for a pentavalent rotavirus vaccine (RotaTeq?). J Virol Methods. 131(2), 193-201.
    [152] Rasooly, A., Herold, K.E., 2008. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis. 5, 531-550.
    [153] Re, M.C., Furlini, G., Gibellini, D., Vignoli, M., Ramazzotti, E., Lolli, S., Ranieri, S., Laplaca, M., 1994. Quantification of human-immunodeficiency-virus type 1-infected mononuclear-cells in peripheral-blood of seropositive subjects by newly developed flow-cytometry analysis of the product of an in-situ PCR assay. J Clin Microbiol. 32, 2152-2157.
    [154] Ritzi, E.M., 1992. Quantitative flow-cytometry of mouse mammary-tumor virus envelope glycoprotein (Gp52)-alternative measures of hormone-mediated change in a viralcell-surface antigen. J Virol Methods. 40, 11-30.
    [155] Rodriguez, R.A., Pepper, I.L., Gerba, C.P., 2009. Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl Environ Microb. 75, 297-307.
    [156] Rodriguez, W.J., Kim, H.W., Brandt, C.D., Arrobio, J., Gardner, M.K., Jeffries, B., Parrott, R.H., 1985. Enteric adenovirus 40 and 41 (Eads) in gastroenteritis of infants and young-children. Pediatr Res. 19, 208-208.
    [157] Roy, D., Wong, P.K.Y., Engelbrecht, R.S., Chian, E.S.K., 1981. Mechanism of enteroviral inactivation by ozone. Appl Environ Microb. 41, 718-723.
    [158] Saag, M.S., Holodniy, M., Kuritzkes, D.R., OBrien, W.A., Coombs, R., Poscher, M.E., Jacobsen, D.M., Shaw, G.M., Richman, D.D., Volberding, P.A., 1996. HIV viral load markers in clinical practice. Nat Med. 2, 625-629.
    [159] Sandhu, K.S., Al-Rubeai, M., 2008. Monitoring of the adenovirus production process by flow cytometry. Biotechnol Progr. 24, 250-261.
    [160] Sano, T., Smith, C.L., Cantor, C.R., 1992. Immuno-PCR very sensitive antigen-detection by means of specific antibody-DNA conjugates. Science. 258, 120-122.
    [161] Santiago, C., Abad, F.X., Loisy, F., Le Guyader, F.S., Cohen, J., Pinto, R.M., Bosch, A., 2004. Rotavirus virus-like particles as surrogates in environmental persistence and inactivation studies. Appl Environ Microb. 70, 3904-3909.
    [162] Sashihara, J., Burbelo, P.D., Savoldo, B., Pierson, T.C., Cohen, J.I., 2009. Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology. 391, 249-256.
    [163] Schalk, J. A.C., Vries, C., Orzechowski, T. J.H., Rots, M. G., 2007. A rapid and sensitive assay for detection of replication-competent adenoviruses by a combination of microcarrier cell culture and quantitative PCR. Appl Environ Microb. 145, 89-95.
    [164] Schneider, E.M., Wernet, P., Buehring, H.J., Sarin, P., Brackmann, H.H., Kessler, M., Egli, H., 1986. Quantitative-determination of Lav Htlv-Iii Virus production in cultured T-Cells from antibody-positive hemophilic patients by Gp24 and Gp41 specific monoclonal lav Htlv-Iii antibodies employing flow-cytometry. Res Clin Lab. 16, 92-92.
    [165] Schulze-Horsel, J., Schulze, M., Agalaridis, G., Genzel, Y., Reichl, U., 2009. Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production-Flow cytometry and mathematical modeling. Vaccine. 27, 2712-2722.
    [166] Schwarz, B.A., Bange, R., Vahlenkamp, T.W., Johne, R., Müller, H., 2002. Detection and quantitation of group A rotaviruses by competitive and real-time reverse transcription-polymerase chain reaction. J Virol Method. 105, 277-285.
    [167] Selas, B., Lakel, A., Andres, Y., Le Cloirec, P., 2003. Wastewater reuse in on-site wastewater treatment: bacteria and virus movement in unsaturated flow through sand filter. Water Sci Technol. 47, 59-64.
    [168] Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., Mayes, A.M., 2008. Science and technology for water purification in the coming decades. Nature. 452, 301-310.
    [169] Shimizu, H., Phan, T.G., Nishimura, S., Okitsu, S., Maneekarn, N., Ushijima, H., 2007. An outbreak of adenovirus serotype 41 infection in infants and children with acute gastroenteritis in Maizuru City, Japan. Infect Genet Evol. 7, 279-284.
    [170] Shin, G.A. and Sobsey, M.D. 2003. Reduction of norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water. Appl Environ Microb. 69(7), 3975-3978.
    [171] Shaban, A. M., EITAWEEL G E. 1997. UV ability to inactivate microorganisms combined wit h factors affecting radiation. Water Sci. Tech. 35: 107-112.
    [172] Simonet, J., and Gantzer, C., 2006. Inactivation of poliovirus 1 and F-Specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers. Appl Environ Microb. 72, 7671-7677.
    [173] Sirikanchana, K., Shisler, J.L., Marinas, B.J., 2008. Effects of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication. Appl Environ Microb. 74, 3774-3782.
    [174] Skraber, S., Gassilloud, B., Gantzer, C., 2004. Comparison of coliforms and coliphages as tools for assessment of viral contamination in river water. Appl Environ Microb. 70, 3644-3649.
    [175] Skraber, S., Gassilloud, B., Schwartzbrod, L., Gantzer, C., 2004. Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome. Water Res. 38, 2927-2933.
    [176] Smith, E.M., Estes, M.K., Graham, D.Y. and Gerba, C.P. 1979. Plaque-assay for the simian rotavirus-SA11. J General Virol. 43, 513-519.
    [177] Sorber, C.A., Sagik, B.P., Malina, J.F., 1972. Virus rejection by reverse osmosis-ultrafiltration processes. Water Res. 6, 1377-1381.
    [178] Souvras M, Montagnon B, Fanget B, van Wezel AL, Hazendonk AG.Direct enzyme linked immunosorbent assay (ELISA)for quantification of poliomyelitis virus D-antigen. Dev Biol Stand. 1980,46:197-202.
    [179] Svraka, S., Duizer, E., Vennema, H., de Bruin, E., van der Veer, B., Dorresteijn, B., Koopmans, M., 2007. Etiological role of viruses in outbreaks of acute gastroenteritis in the Netherlands from 1994 through 2005. J Clin Microbiol. 45, 1389-1394.
    [180] Tai, J.H., Ewert, M.S., Belliot, G., Glass, R.I., Monroe, S.S., 2003. Development of a rapid method using nucleic acid sequence-based amplification for the detection of astrovirus. J Virol Methods. 110, 119-127.
    [181] Taylor, M.B., Cox, N., Vrey, M.A., Grabow, W.O.K., 2001. The occurrence of hepatitis A and astroviruses in selected river and dam waters in South Africa. Water Res. 35, 2653-2660.
    [182] Thompson, A., Rolfe, M.D., Lucchini, S., Schwerk, P., Hinton, J.C.D., Tedin, K., 2006. The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. J Biol Chem. 281, 30112-30121.
    [183] Thurston-Enriquez, J.A., Haas, C.N., Jacangelo, J. and Gerba, C.P., 2003. Chlorine inactivation of adenovirus type 40 and feline calicivirus. Appl Environ Microb. 69 (7), 3979-3985.
    [184] Thurston-Enriquez, J.A., Haas, C.N., Jacangelo, J., Riley, K., Gerba, C.P., 2003. Inactivation of feline calicivirus and adenovirus type 40 by UV radiation. Appl Environ Microb. 69, 577-582.
    [185] Tiemessen, C.T., Nel, M.J., Kidd, A.H., 1996. Adenovirus 41 replication: cell-related differences in viral gene transcription. Mol Cell Probe. 10, 279-287.
    [186] Tiemessen, H.L.G.M., Vandermaarel, J.R.C., Bodde, H.E., Jousma, H., Junginger, H.E., 1990. Probing the microstructure of liquid-crystalline surfactant systems - a physicochemical study using rheometry, dta and O-17 Nmr. J Control Release. 13, 73-81.
    [187] Tree, J.A., Adams, M.R. and Lees, D.N. 1997. Virus inactivation during disinfection of wastewater by chlorination and UV irradiation and the efficacy of F+ bacteriophage as a viral indicator. Water Sci Tech. 35(11-12), 227-232.
    [188] Tree, J.A., Adams, M.R. and Lees, D.N. 2003. Chlorination of indicator bacteria and viruses in primary sewage effluent. Appl Environ Microb. 69(4), 2038-2043.
    [189] U.S. Environmental Protection Agency Office of Water, 2006. Ultraviolet disinfection guidance manual for the final long term enhanced surface water treatment rule. EPA 815-R-06-007, November 2006, EPA, Washington, DC, USA.
    [190] U.S. Environmental Protection Agency. 2001. National primary drinking water standards. EPA816.-F-01–007. Office of Water, U.S. Environmental Protection Agency, Washington, D.C.
    [191] U.S. Environmental Protection Agency. the USEPA Manual of Methods for Virology. 1984.
    [192] U.S.EPA. Manual of methods for virology, Chapter 16 Procedures for detecting coliphages. 2001.
    [193] Vaughn, J.M., Chen, Y.S. and Thomas, M.Z. 1986. Inactivation of human and simian rotaviruses by chlorine. Appl Environ Microb. 51(2), 391-394.
    [194] Vengatesan, D., Raj, G.D., Raja, A., Ramadass, P., Gunaseelan, L., 2006. Detection of rabies virus antigen or antibody using flow cytometry. Cytom Part B-Clin Cy. 70B, 335-343.
    [195] Venkobachar, C., Iyengar, L. and Rao, A.V.S.P. 1977. Mechanism of disinfection - effect of chlorine on cell-membrane functions. Water Res. 11(8), 727-729.
    [196] Verheyen, J., Timmen-Wego, M., Laudien, R., Boussaad, I., Sen, S., Koc, A., Uesbeck, A., Mazou, F. and Pfister, H. 2009. Detection of adenoviruses and rotaviruses in drinking water sources used in rural areas of Benin, West Africa. Appl Environ Microb. 75 (9), 2798-2801.
    [197] Videla, C., Carballal, G., Misirlian, A., Aguilar, M., 1998. Acute lower respiratory infections due to respiratory syncytial virus and adenovirus among hospitalized children from Argentina. Clin Diagn Virol. 10, 17-23.
    [198] Vora, G.J., Meador, C.E., Stenger, D.A., Andreadis, J.D., 2004. Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl Environ Microb. 70, 3047-3054.
    [199] Wang, F., Z. Liang, and Z. Yang. 1995. Comparative study of chlorine on the HAV antigen and infectivity. Chin. J. Disinfect. 12, 94–96.
    [200] Weaver, L.S., Kadan, M.J., 2000. Evaluation of adenoviral vectors by flow cytometry. Methods. 21, 297-298.
    [201] White, G. C. 1999. Handbook of chlorination and alternative disinfectants, 4th ed. John Wiley & Sons, Inc., New York, N.Y.
    [202] Winward, G.P., Avery, L.M., Stephenson, T. and Jefferson, B., 2008. Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Res. 42, 483-491.
    [203] Wommack, K.E., Hill, R.T., Colwell, R.R., 1995. A simple method for the concentration of viruses from natural-water samples. J Microbiol Meth. 22, 57-67.
    [204] Wong, C.W., Heng, C.L.W., Yee, L.W., Soh, S.W.L., Kartasasmita, C.B., Simoes, E.A.F., Hibberd, M.L., Sung, W.K., Miller, L.D., 2007. Optimization and clinical validation of a pathogen detection microarray. Genome Biol. 8, 102-117.
    [205] World Health Organization (WHO). Waterborne Zoonoses: Identification, Causes and Control. Edited by J.A. Cotruvo, A. Dufour, G. Rees, J. Bartram, R. Carr, D.O. Cliver, G.F. Craun, R. Fayer, and V.P.J. Gannon. Published by IWA Publishing, London, UK. ISBN: 1843390582.
    [206] World Health Organization. Emerging issues in water and infectious disease. Switzerland:WHO, 2003.
    [207] Xu, W., M. C. McDonough, and D. D. Erdman. 2000. Species-specific identification of human adenoviruses by a multiplex PCR assay. J. Clin. Microbiol. 38:4114–4120.
    [208] Xu, Z., Tuo, W., Clark, K., Woode, G., 1996. A major rearrangement of the VP6 gene of a strain of rotavirus provides replication advantage. Veterinary Microbiology 52: 235-247.
    [209] Zimmer, J.L., and Slawson, R.M., 2002. Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment. Appl Environ Microb. 68, 3293-3299.
    [210]常汝虚,何翠娟, 2000.腹泻患儿粪便标本中轮状病毒检测方法比较.中华儿科杂志, 38(11):703-704.
    [211]崔刚,徐文佳. 2008. 2004年新疆塔城市某乡甲肝暴发流行调查报告.地方病通报. 23 (2) : 47-48.
    [212]陈盛鹏,田琦琦, 2009.军营腺病毒暴发流行防治工作的思考与建议.白求恩军医学院学报. 5: 320-321
    [213]何苗,李丹,施汉昌,杨万,胡昕.一种浓集污水和污水处理厂尾水中病毒的方法.专利号:ZL 200710175738.1.
    [214]胡洪营,魏东斌,王丽莎,等译. 2008.污水再生利用指南.北京:化学工业出版社
    [215]胡秀华,何苗,刘丽,李丹,施汉昌, 2008.水中轮状病毒实时定量PCR外标准品的构建.环境科学. (29): 380-385.
    [216]黄海燕,韩金祥,王健伟, 2005.膜芯片检测A组轮状病毒的初步研究.生物技术通讯, (16):138-140.
    [217]黄海燕,韩金祥,王健伟, 2005.膜芯片检测人B组、C组轮状病毒的初步研究.山东医药, (20):1-3.
    [218]李丹,何苗,胡秀华,施汉昌.水环境中轮状病毒分子生物学检测技术.安全与环境学报. 2007, 7(3): 17-21.
    [219]李海涛. 2007.膜-生物反应器去除SC噬菌体特性的研究: [硕士论文].北京:清华大学
    [220]李梅,胡洪营,张薛,等. 2006.城市污水处理工艺对噬菌体的去除效果.环境科学, 27(1): 80-84
    [221]李梅,胡洪营. 2005.噬菌体作为水中病毒指示物的研究进展.中国给水排水, 21(2):23-26
    [222]刘佳,黄翔峰,沈捷,吴志超. 2007.污水紫外消毒微生物光复活原理及其控制技术.环境污染与防治. 29 (11): 841-843.
    [223]曾四清. 2005.游泳引起的传染病流行及预防.中国热带医学, 5(8): 1727-1729
    [224]吴国刚,周升,唐光鹏,吉光辉. 2005.一起水源污染引起甲肝流行的调查报告.疾病监测, 20 (2): 76-77.
    [225]张文福. 2004.病毒灭活检验技术.中国消毒学杂志, 21(3): 260.
    [226]杨万,何苗.免疫磁珠分离技术在环境病原微生物检测中的应用.安全与环境学报.2008, 8 (6):18- 22.
    [227]杨万,何苗,李丹,施汉昌,刘丽.免疫磁珠分离与实时定量PCR技术联合检测水中轮状病毒的研究.环境科学. 2009, 30 (5): 1368- 1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700