空气源热泵蓄能热气除霜动态实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家自然科学基金项目“空气源热泵除霜系统创新及其机理研究(NO.50606007)”。
     本文在对空气源热泵除霜机理进行充分研究的基础上,设计空气源热泵除霜新系统的动态实验台,提出了蓄能除霜时系统不同的实验流程。
     自主设计并建造了双套螺旋铜管的套筒形蓄热器—蓄能除霜系统的重要部件,实现了铜管与相变材料的充分接触。基于相变温度和热容量的考虑,选用CaCl2·6H2O相变材料,并以少量的SrCl2·6H2O和Ba(OH)2作为调节剂,从而消除了过冷和分层现象,保证了蓄放热的及时进行。
     根据设计的实验流程,在分析选择实验设备、测量仪表、数据采集装置等基础上,成功搭建空气源热泵除霜系统动态实验台;基于对常规除霜和蓄能除霜两种除霜模式时系统的温度、压力、功率、结霜量、除霜量、过程变化时间等除霜参数的测定、整理与分析,研究了蓄能热气除霜系统运行动态特性(尤其是除霜换向时,压力温度的变化)、系统恢复制热响应特性及除霜对室内环境的影响;得到了系统各部件在常规除霜与蓄能除霜时的特性变化规律;分析了不同的蓄热模式、除霜的模式下系统的能耗以及对室内温度和供热量的影响。结果表明:蓄能除霜时可以很好的提高吸气压力、缩短除霜时间、提高室内送风舒适度、改善除霜效果等。此外,通过实验还发现了蓄能换热器、高压贮液器、气液分离器在除霜过程中的作用机理与耦合关系及制冷剂迁移规律,据此对实验台提出了改进建议。为进一步开发高可靠性空气源热泵提供了理论支持和技术储备。
     本文最后对除霜实验中直接测量和间接测量的参数进行了详尽的误差分析,结果表明:实验结果的误差可以接受,测试结果满足要求。
This subject is supported by the national natural science foundation item“The system innovation and mechanism research of ASHP defrost(NO. 50606007)”.
     Dynamic test bed of the new ASHP defrost system is designed ,and different experimental processes are provided on the basis of the system research.
     Sleeve type energy storage tank with double spiral brass that is one of the most important parts is designed by ourselves.The brass tube and the PCM are plenitudinously contact in this energy storage tank. CaCl2·6H2O is chosen to be the Phase change material based on consideration of phase change temprature and heat capacity. In addition, a few of SrCl2·6H2O and Ba(OH)2 are chosen to avoid the overcolding and Stratification.
     According to the design of the trial process,dynamic test bed of the new ASHP defrost system is designed on the basic of Choice of test equipment, measurement meter and data Acquisition Device. On the basic of measuring data processing and analysing of the system temperature, pressure, power, frost quantity,defrost quantity and Changes in the course of time , Dynamic Characteristics of the ASHP energy storage system, respone of system heating resume and the defrosting on the impact of indoor environment are researched.
     System components characteristic change rule between conventional defrost and energy storage defrost are getten. Energy consumption and the impact to the indoor temperature and heating capacity in defferent enengy storage and defrsot mode are analysised. The results show that suction press is risen ,defrost time is shorten, air Supply comfort is improved, defrosting result is improved in the mean of energy storage defrost. Furthermore, Coupled with the mechanism of relations of the energy storage tank, high-pressure liquid receiver and gas-liquid separator in the defrost are discovered.so is the refrigerants migration law.Next we give our advice to the text bed alteration. Theoretical support and technical reserves are given to design high reliability of air-source heat pump.
     Detailed error analysis is given to the direct and indirect measurement of measurement parameters of the defrost experiment. The results show that the results of error can be accepted, test results are Satisfactory.
引文
1李先瑞.热泵的现状与展望.北京节能, 1999,4:11~14
    2蒋能照.空调用热泵技术及应用.机械工业出版社. 1997:4~5
    3张建中,龚延风.空气源热泵冷热水机组在南京的应用.现代空调,2001,(3):141~156
    4钟婷,龙惟定.风冷热泵在若干城市制热运行的调研与分析. 2002年全国暖通空调制冷学术年会论文集,410~413
    5 Sauer Jr., Harry J., Howell, Ronald H., 1991. Heat Pump Systems.Krieger Pub. Co. p. 621.
    6 Langly, Billy C, 2002. Heat Pump Technology, third. Prentice Hall, p.15.
    7 S.M.Sami, T.Duong. Mass and Heat Transfer During Frost Growth. ASHRAE Trans, 1989,95(1):158~164
    8 S.P.Oskarasson, K.I.Krakow. Evaporator Models for Operation with Dry, Wet and Frosted Finned Surface. ASHRAE Trans, 1990,96(1):373~380
    9程卫红,姚杨.空气源热泵冷热水机组结霜研究,工程技术, 2006,(27):117
    10 K.I.Krakow,S.Lin,L.Yan.A Model of hot-Gas defrosting of Evaporators-part 1:Heat and Mass Transer Theory. ASHRAE Trans,1992,98(1):451~461
    11 D.L.O`Neal,K.Peterson.A comparison of orifice and txv control characteristics during the reverse-cycle defrost.ASHRAE Trans,1990,96(1):337~342
    12 D.L.O`Neal,K.Peterson.Effect of short-tube orifice size on the performance of an air source heat pump during the reverse-cycle defrost.Int.J.of Refrigeration,1991,14(1):52-57
    13黄东,袁秀玲,陈蕴光.截留机构对风冷热泵冷热水机组逆循环除霜时间的影响.西安交通大学学报, 2003,37(5):512~518
    14 Shi Jianchun. The influence of two different throttle mode to defrosting. Fluid Machinery 2004;7:60~65.
    15 Ding Y.J,Ma G.Y,Chai Q.H. and Jiang Y Experiment investigation of reverse cycle defrosting methods on air source hest pump with TXV as the throttle regulator.2004:671~678
    16 Wang Zhiyi, Wang Xinmin, Dong Zhiming. Defrost improvement by heat pump refrigerant charge compensating. Applied Energy.2008:1~10
    17 Shi Wenxing, Li Xianting, Shao Shuangquan. Experimental research on hot vapor bypass defrosting method. J Refrig 2000;2:29~35.
    18何志龙,黄东,袁秀玲.衡量结霜时间的指标――湿温比.流体机械, 2000, 28(7): 55~57
    19 Thierry ARGAUD. Experimental Comparison of Two Method for Triggering The Defrosting of Reversible Air/Water Heat Pumps Time Delay & Air And Evaporator Temperature Difference. 20th International Congress pf Refrigeration, IIR/IIF, Sydney, 1999, (3): 201~208
    20罗鸣,谢军龙,沈国民.风冷热泵冷热水机组除霜研究.建筑热能通风空调, 2002, (6): 15~17
    21王铁军,唐景春,刘向农.风源热泵空调器除霜技术实验研究.低温与超导, 2003, 31(4): 65~68
    22陈汝东,许东晟.风冷热泵空调器除霜控制的研究.流体机械, 1999, 27(2): 55~57
    23雷江杭,丁小江.热泵空调器除霜分析.制冷. 1999, 18(4): 26~28
    24 Byun Ju-Suk, Jeon Chang-Duk, Jung Ji-Hoon, Lee Jinho. The application of photo-coupler for frost detecting in an air source heat pump. Int J Refrig 2006;29:191~198.
    25任乐,陈旭峻,袁秀玲.关于风冷热泵除霜问题的研究.制冷, 2003, 22(3): 13~21
    26 J.Allard, R.Heinzen. A Daptive Defrost. IEEE Transactions on Industry Application, 1988, 24(1): 39~42
    27 LG Electrinics INC. Method for Controlling Defrosting of Heat Pump, Particularly in Concerned with Preventing Waste of Power Consumption and Improving the Heating Capacity. Korea Patient. KR2005005875-A
    28 Toshiba Kiki KK (TSKI), Hot-water Supply Apparatus Circulates Hot Water Obtained From Upper Portion of Tank Storing Hot water, Through Heating Circuit, to Lower Portion of Tank,Through Defrosting Circuit of Evaporator of Heat Pump. Japan Patient: JP2004183908-A
    29 Hitachi Home& Life Solition KK. Heat Pump Type Water Heater Controls Hot Water Supply Circuit to Provide Hot Water Supply over Entire Day andNight During Defrosting of Evaporator in Heat Pump Circuit. Japan Patient: JP2005106416-A
    30 Nishihara Y, Takeuchi A. Heat Pump Hot-water Supply Apparatus for e.g. Bathtub, Has Expansion Valve Which Is Opened After Opening Fluid Circulation Selector Valve at Time of Defrost Startup. Japan Patient: JP2005147610-A.
    31王少为,刘震炎,赵可可,王志刚.蓄能和热水器复合空调器冬季运行实验研究.流体机械, 2004, 32(9): 45~48
    32陈超,欧阳红,王秀丽.空气源热泵机组冬季除霜热量补偿新方法.制冷学报,2006,27(4):37~40
    33张寅平,康艳兵,江亿.相变和化学反应储能在建筑供暖空调领域的应用研究[J].暖通空调, 1999, 29(5): 34~37
    34林坤平,张寅平.电加热相变材料蓄热地板采暖的热性能模拟[J].太阳能学报, 2003, 24(5): 633~637
    35李晓燕.适用于空调蓄冷的新型相变蓄冷介质的研究,应用科技,2004,31(7):66~68
    36徐云龙,刘栋.六水氯化钙相变材料过冷性质的研究,材料工程, 2006,增刊1:218~221
    37剧霏,刘超.蓄热材料在热泵及其它方面的应用.制冷,2006 , 25(1):40~43
    38邹复炳,章学来.石蜡类相变蓄热材料研究进展,能源技术,2006,27(1):29~34
    39韩志涛.空气源热泵常规除霜与蓄能除霜特性实验研究.哈尔滨工业大学博士论文. 2007:29~30
    40 Ibrahim Dincer On Thermal Energy Storage Systems and Application in Building.Energy and Building.2002,(4):377~388
    41 B.Zalba,J.M.Marin et al.Review on Thermal Energy Storage Heat with Phase Change:Heat transfer Analysis and Applications. Thermal Engineering.2003,23,251~283
    42徐云龙,刘栋.六水氯化钙相变材料过冷性质的研究.材料工程, 2006,增刊1:218~221
    43滕召胜.智能检测系统与数据融合.机械工业出版社, 2000, 9~11
    44方修睦.建筑环境测试技术.中国建筑工业出版社, 2002, 135~137
    45姚杨,空气源热泵冷热水机组冬季结霜工况的模拟与分析.哈尔滨工业大学博士学位论文. 2002:3~4
    46陆亚俊.空调工程中的制冷技术.哈尔滨工程大学出版社. 1997:33~34
    47田胜元,肖曰嵘.实验设计与数据处理.北京:中国建筑工业出版社.1988:40~44
    48丁振良.误差理论与数据处理.哈尔滨工业大学出版社.1987:70~72
    49陆亚俊,马最良.标定型房间热平衡法实验装置的误差分析.哈尔滨建筑工程学院学报.1981(3) :29~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700