智能功率集成电路中部分模块的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能功率集成电路是指将输出功率器件信息处理系统及其外围接口电路、保护电路、检测诊断电路等都集成在同一芯片上。智能功率集成电路的应用无处不在,从日常生活中的家电照明、电子计算机、各种消费电子产品,到工业应用控制、航空航天仪器、军事电子产品等领域,市场非常广阔。随着电能处理领域的不断扩大,以及社会对环保问题的日益重视,效率和成本问题逐渐成为关注热点,智能功率集成电路成为整个半导体产业中最为活跃的领域之一。人们对降低电子产品的功耗和降低成本的广泛需求,将推动智能功率集成电路的稳步发展。
     本论文正是在充分了解国内外智能功率集成电路研究现状的基础上,对智能功率集成电路中离线式开关电源芯片中所需的部分模块进行了深入的研究。开发一款离线式开关电源芯片,需要工艺、器件、电路的紧密配合。本文的研究重点在于,开发离线式开关电源芯片所用的工艺平台;设计芯片中需要的高压启动电流源;设计芯片中的控制电路;对芯片中功率器件做出改进,使其具有更好的电压电流特性。
     本文的主要工作有:
     1.开发离线式开关电源芯片采用的工艺平台。芯片采用的C1工艺是采用陈星弼院士发明的“优化横向变掺杂”技术,在成熟的CMOS工艺基础上发展而来,此工艺可以国内主流的CMOS/BiCMOS工艺平台兼容。工艺平台可实现的器件包括耐压800V的VDMOS、LDMOS,耐压50V的NMOS、PMOS,耐压10V的NMOS、PMOS,以及各种稳压管、双极管、电阻、电容等。文中对多次扩散后的杂质分布的表达式进行了推导,此表达式可以在工艺设计中帮助预先估计杂质扩散的最终分布。
     2.设计了芯片需要的高压启动电流源。在离线式开关电源芯片中通常需要一个高压启动电流源来给芯片中的控制电路提供启动电流。通常的办法是外接一些元件或者利用额外的掩模板来构成此电流源。本文在陈星弼院士专利“一种半导体器件及其提供的低压电源的应用”的基础上,实现了两种高压启动电流源,其中一种适合输出5V左右的输出电压,另一种适合输出大于10V的输出电压。实验结果证明,在未使用外界元件和额外的掩模板的情况下,高压启动电流源能正常的启动和重启动,并在电流源关闭的情况下从市电抽取很少电流或者不抽取电流。
     3.设计了芯片里控制电路。芯片中的功率管需要控制电路来控制其开关以及保护电路来保障其安全工作。文中对控制电路中的稳压器模块、基准源模块、振荡器模块和逻辑模块做了介绍。文中对流片后的芯片搭电路板进行测试。实验结果表明,控制电路中各电路模块能够实现其设计功能;芯片能够正常的启动、重启动;在100V的交流市电下,芯片能够按照要求输出一定功率。但是,芯片中控制电路并没有完全达到设计指标,需要根据实验结果进一步修改。
     4.提出了一种快速关断的新型LIGBT器件。IGBT由于在导通时在耐压区引入电导调制效应,可以降低导通电阻,增大导通电流密度,可以极大的降低芯片面积,但是IGBT的缺点是慢的关断速度。本文提出一种新结构的LIGBT,新结构在器件发射极并联了一个PMOS晶体管,用于在器件关断时短路器件发射结。相比传统结构的LIGBT,新结构在未降低导通特性的情况下,将器件关断时间从120ns降低到12ns,关断功耗从2mJ/cm2降到1.43mJ/cm2。
Smart power integrated circuits (SPIC) means power devices, signal processingsystem, interface circuits, protect circuits and detection circuits are integrated in amonolithic chip. SPICs are used everywhere, like consumer electronics, computer,domestic appliance, lightning, industrial control, aerospace, military area and so on.With the increase of the area which needs electricity and the focus on the environment,efficiency of processing electricity and cost are becoming the hot spot. SPIC hasbecome one of the most active areas of the whole semiconductor industry. The demandof decreasing of the energy cost and economic cost of the electronic products will boostthe development of SPIC.
     An off-line switched mode power supply (SMPS) chip CXB1101is studied in thedissertation. To design an off-line SMPS chip, the technology, the power devices andthe circuits need to be designed carefully together. The research of the dissertationfocuses on the following parts: design of the technology process, design of the highvoltage start-up current source, design of the control circuits and improvement of thepower devices.
     The author’s original main work is as follows.
     1. The technology process for the off-line SMPS chip is designed. The C1process,on which the chip is designed, is based on the OPT VLD technology proposed byProfessor Chen and is compatible with the main stream micron/submicron technologyprocess. The devices contain VDMOS and LDMOS which sustain800V breakdownvoltage, NMOS and PMOS which sustain50V breakdown voltage, NMOS and PMOSwhich sustain10V breakdown voltage and zener diodes, resistors, capacitors. Theimpurity distribution after multiple diffusion processes is analyzed and a simpleexpression for describing the distribution is given. The expression is helpful andinstructive to the design and fabrication of devices.
     2. The high voltage start-up current source needed in the SMPS chip is designed. Ahigh voltage start-up current source is always needed in a SMPS to provide start-up current for the control ICs. Usually external components or extra masks are used toform the current device. Based on Professor Chen’s patent “Method of producing alow-voltage power supply in a power integrated circuit”, two types of current source aredesigned. One of them provides output voltage about5V; the other provides outputvoltage larger than10V. The second one is used in the chip. Experimental results show,without using external components and extra mask, the high voltage start-up currentsource can start up and re-startup as designed. The current sources draw little current orno current from the line when shut down.
     3. The control ICs in the chip are designed. The power device in the chip needscontrol ICs to control its switch on and off, and to protect it. The regulator part,reference part, oscillator part and logic part are introduced in the dissertation. Thefabricated chip is tested. Experimental results show, the control ICs are able to functionas designed; the chip is able to start up and re-startup as designed; under a line voltageof100V, the chip is able to provide an amount of power as required. However, theelectrical characteristics are not fully accomplished and the chip needs to be altered.
     4. A novel LIGBT structure with a shorting PMOST driven by a p-island in the driftregion is presented. As the shorting PMOST turns on and off automatically during turnoff and on state, low on state voltage and fast switching capability are combined in onestructure. Simulated results show no increase of on state voltage and a drastic drop offall time for emitter current from120ns to12ns compared to the one with the shortingPMOST turned off all the time. A drop of turn off loss from2mJ/cm2to1.43mJ/cm2isobtained compared to the conventional LIGBT.
引文
[1] T. G. Wilson. The Evolution of Power Electronics. IEEE Transactions on Power Electronics,2000,15(3):439-446
    [2] P. Biczel, A. Jasinski, J. Lachecki. Power Electronic Devices in Modern Power Systems. TheInternational Conference on “Computer as a Tool”,2007,1586
    [3] F. C. Lee. The state-of-the-art power electronics technologies and future trends. IEEE PowerEngineering Society Summer Meeting,2000, Vol.2:1183-1193
    [4] B. K. Bose. Advances in power electronics-its impact on the environment. IEEE InternationalSymposium on Industrial Electronics,1998, Vol.1:28-30
    [5] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi. Power electronics and its applications to renewableenergy in Japan. Circuits and Systems Magazine, IEEE,2008,8(3):52-66
    [6] F. Blaabjerg, A. Consoli, J. A. Ferreira. The future of electronic power Processing andconversion. IEEE Transactions on Power Electronics,2005,20(3):715-720
    [7] H. Ohashi. Power electronics innovation with next generation advanced power devices.Telecommunications Energy Conference,2003,9-13
    [8]李先允.电力电子技术.北京:中国电力出版社,2006,1-10
    [9] E. Newell William. Power Electronics---Emerging from Limbo. IEEE Transactions on IndustryApplications,1974,1(1):7-11
    [10]洪乃刚.电力电子技术基础.北京:清华大学出版社,2008,15-20
    [11] W. Erickson Robert, Dragan Maksimovic. Fundamentals of Power Electronics. KluwerAcademic Publishers,2001,25-35
    [12]陈坚.电力电子变换和控制技术.北京:高等教育出版社,2004,50-60
    [13] H. Rashid Muhammad. Power electronics: circuits, devices, and applications.北京:人民邮电出版社,2007,60-65
    [14]王云亮.电力电子技术.北京:电子工业出版社,2004,20-30
    [15]廖东初.电力电子技术.武汉:华中科技大学出版社,2007,30-40
    [16]李现兵,师宇杰.现代电力电子器件的发展现状.世界电子元器件,2005,5:24-28
    [17]袭素文.电力电子技术.北京:北京理工大学出版社,2009,50-60
    [18]龚熙国.智能功率模块在电动汽车中的应用.电力电子技术,2010,44(11):122-124
    [19] P. K. Steimer, O. Apeldoorn, B. Odegard. Very High Power IGCT PEBB technology. PowerElectronics Specialists Conference,2005,1-7
    [20]林德曼,弗利德里奇.大功率砷化镓(GaAs)碳化硅(SiC)器件在电源中的应用.电力电子,2003,1(3):50-54
    [21]杨学斌.现代电力电子技术应用的探讨.中国新技术新产品,2010,18:31
    [22]冷增祥.电力电子技术基础.南京:东南大学出版社,1999,60-70
    [23]林辉.电力电子技术.武汉:武汉理工大学出版社,2002,35-50
    [24]杜逸.一种新型变流电路拓扑的智能照明节电器.电力电子技术,2007,41(10):27-30
    [25]黄俊,王兆安.电力电子变流技术.北京:机械工业出版社,1997,50-70
    [26]陈亚爱.带有谐振PFC的单级AC/DC变换器研究.电力电子技术,2009,43(1):3-5
    [27]王智慧.DC-AC型非接触电能传输系统变换器设计.重庆大学学报,2011,34(2):38-43
    [28]翁振明,张友军,王阿敏.三相Boost型AC/AC交流变换器的研究实现.电源世界,2011,1:26-29
    [29]孙铁成,高婷,曲慧星.一种采用辅助变压器的ZVS三电平DC-DC变换器.中国电机工程学报,2011,31(3):28-33
    [30]冯朵生.电力电子技术.北京:机械工业出版社,2008,56-62
    [31]刘毅,谭国俊,洪书娟.三电平PWM整流器控制研究.电力电子技术,2011,45(9):74-75
    [32]薛锋.PWM开关电源及技术改进.科技传播,2011,20:107-110
    [33] J. Holtz. Pulse width modulation-a survey. IEEE Transactions on Industrial Electronics,1992,39(5):410-420
    [34] T. Matsukawa, H. Chikaraishi, Y. Sato. Basic study on conductive characteristics of SiC powerdevice for its application to AC/DC converter. IEEE Transactions on AppliedSuperconductivity,2004,14(2):690-692
    [35]王正元.新世纪电力半导体器件发展的一个新特点.电力电子,2003,1(6):13-16
    [36]李柏龄.电力半导体器件的发展.半导体技术,2001,26(6):20-24
    [37]王彩琳.电力半导体器件的最新发展动向.半导体情报,1999,36(1):27-32
    [38]王彩琳,陈力才.电力半导体器件在汽车工业中的应用.半导体情况,1998,35(4):39-42
    [39]陈烨,吴济钧.电力半导体器件的现状及发展趋势.半导体技术,1996,4:33-39
    [40] M. S. Adler, K. W. Owyang, B. J. Baliga. The evolution of power device technology. IEEETransactions on Electron Devices,1984,31(11):1570-1591
    [41] Wang Hongfang, F. Wang, Zhang Junhong. Power Semiconductor Device Figure of Merit forHigh-Power-Density Converter Design Applications. IEEE Transactions on Electron Devices,2008,55(1):466-470
    [42] K. Takao, Y. Hayashi, S. Harada. Study on advanced power device performance under realcircuit conditions with an exact power loss simulator. European Conference on PowerElectronics and Applications,2007,1-10
    [43] Liu Ying-Kun, Zhao Tong, Li Song-Fa. Silicon power devices: RF power transistor&electricpower device. International Conference on Solid-State and Integrated-Circuit Technology,2001,149-154
    [44] P. Friedrichs, R. Rupp. Silicon carbide power devices-current developments and potentialapplications. European Conference on Power Electronics and Applications,2005,1-11
    [45] G. A. J. Amaratunga, F. Udea. The new generation of power semiconductor devices.International Semiconductor Conference,1996,469-478
    [46] B. J. Baliga. Power Semiconductor Devices. Boston: PWS Publishing Company,1995,3-6
    [47]正田英介.电力电子学.北京:科学出版社,2001,1-10
    [48]刘志刚.电力电子学.北京:清华大学出版社,2004,50-70
    [49] C. W. Mueller, J. Hilibrand. The “Thyristor” A new high-speed switching transistor. IRETransactions on Electron Devices,1958,5(1):2-5
    [50] J. C. Read. Rectifiers and rectifier applications, A review of progress. Proceedings of theInstitution of Electrical Engineers,1963,110(4):714-738
    [51]乔恩明,薛玉均,刘敏.电力电子器件知识讲座(三)晶闸管.电子元器件应用,2011,13(6):46-49
    [52] Runge Wolfgang.交流传动技术(GTO IGBT)的发展.国外内燃机车,2006,2:26-36
    [53] T. Nakagawa, F. Tokunoh, M. Yamamoto, S. Koga. A new high power low loss GTO.International Symposium on Power Semiconductor Devices and ICs,1995,84-88
    [54]李双美,王为民,王维.大功率GTO门极驱动电路的优化设计仿真分析.沈阳工程学院学报(自然科学版),2007,3(1):38-40
    [55]张昌利.新型阳极短路环GTO晶闸管:[博士学位论文].西安:西安理工大学,2000
    [56]张昌利.国产600A,1000~1800V大功率GTO晶闸管.电器应用,1992,6:41-42
    [57] P. Rossel,刘光耀.功率MOS器件.微电子学,1986,6:19-35
    [58]华伟.新型功率MOS器件的结构性能特点.半导体技术,2001,26(7):27-32
    [59]姚永明.功率MOSFET用于开关电源.集成电路应用,1990,5:17-19
    [60] Chen Xingbi. Semiconductor power devices with alternating conductivity type high-voltagebreakdown regions. US Patent,5216275,1993-06-01
    [61] Chen Xingbi, J. K. O. Sin. Optimization of the specific on-resistance of the COOLMOSTM.IEEE Transactions on Electron Devices.2001,48(2):344-348
    [62] L. Lorenz, G. Deboy, A. Knapp. COOLMOSTM-a new milestone in high voltage power MOS.International Symposium on Power Semiconductor Devices and ICs,1999,3-10
    [63]吴滔.绝缘栅双极晶体管(IGBT)的研究和设计:[硕士学位论文].杭州:浙江大学,2005
    [64]陆秀洪.新结构低功耗IGBT研究:[硕士学位论文].北京:北京工业大学,2001
    [65] B. J. Baliga, M. S. Adler, R. P. Love. The insulated gate transistor: A new three-terminalMOS-controlled bipolar power device. IEEE Transactions on Electron Devices,1984,31(6):821-828
    [66] E. Suekawa, Y. Tomomatsu, T. Enjoji. High voltage IGBT (HV-IGBT) having p+/p-collectorregion. International Symposium on Power Semiconductor Devices and ICs,1998,249-252
    [67] J. G. Fossum, R. J. McDonald. Charge-control analysis of the COMFET turn-off transient.IEEE Transactions on Electron Devices,1986,33(9):1377-1382
    [68]陈星弼.一种高速IGBT.中国专利,ZL200910119961.3,2009-10-11
    [69]霰军宪,邵立群.一种新型智能功率模块(IPM).现代电子技术,2011,34(3):171-175
    [70]李志宇.智能功率模块IPM.科技创新导报,2009,28:12-13
    [71]徐长军.IPM智能功率模块的设计分析.世界电子元器件,2008,9:82-84
    [72] Chen Wanjun, Zhang Bo, Li Zehong. Design and Optimization of a Versatile700V SPICProcess Using a Fully Implanted Triple-well Technology. IEEE International Symposium onPower Semiconductor Devices and ICs,2006,1-4
    [73] L. F. Latham. Automotive power integrated circuit processes. Automotive Power Electronics,1989,106-108
    [74] D. Patti, G. Franzo, V. Privitera. A new high energy implantation based technology for powerintegrated circuit devices. IEEE International Symposium on Power Semiconductor Devicesand ICs,1999,329-331
    [75] Jingmeng Sun, F. X. C. Jiang, Guan Lingpeng. A New Isolation Technology for AutomotivePower-Integrated-Circuit Applications. IEEE Transactions on Electron Devices,2009,56(9):2144-2149
    [76] B. J. Baliga. Power integrated circuits-A brief overview. IEEE Transactions on ElectronDevices,1986,33(12):1936-1939
    [77] S. Pawel, M. Rossberg, R. Herzer.600V SOI gate drive HVIC for medium power applicationsoperating up to200°C. IEEE International Symposium on Power Semiconductor Devices andICs,2005,55-58
    [78]张波,李肇基.功率半导体器件技术的研究进展.中国集成电路,2003,50:8-12
    [79] B. J. Baliga. Evolution and status of smart power technology. Applied Power ElectronicsConference and Exposition,1992,19-22
    [80] M. Yoshino, K. Shimizu, T. Terashima. A new1200V HVIC with a novel high voltagePch-MOS. IEEE International Symposium on Power Semiconductor Devices and ICs,2010,93-96
    [81] B. J. Baliga. An overview of smart power technology. IEEE Transactions on Electron Devices,1991,38(7):1568-1575
    [82]陈星弼.功率MOSFET高压集成电路.南京:东南大学出版社,1989,183-358
    [83]李观启,骆桂良,曾勇彪.用“三步扩散法”实现PN结隔离工艺的研究.华南工学院学报,1983,11(4):126-131
    [84]袁泉.基于自隔离技术的可集成SOI高压(>600V)器件研究:[硕士学位论文].成都:电子科技大学,2009
    [85]杨春,刘勇,罗萍.800V SOI介质隔离技术研究.微电子学,2006,36(3):265-268
    [86] B. Murari, C. Contiero, R. Gariboldi. Smart power technologies evolution. IndustryApplications Conference,2000, Vol.1:10-19
    [87] C. Contiero, A. Andreini, P. Galbiati. Experimental and Numerical Analysis of the HighVoltage Structures Implemented in the New Mixed Process Multipower BCD250V. HighVoltage and Smart Power Devices Symposium Proceedings,1987,120-125
    [88] Castello Rinaldo, Lari Ferdinando, Siligoni Marco.100V high-performance amplifiers in BCDtechnology for SLIC applications, IEEE Journal of Solid-State Circuits,1992,27(9):1255-1263
    [89] Chen X. B., Song Z.Q., Li Z. J.. Theory of optimum design of reversed-biased p-n junctionsusing resisitive field plates and variational lateral doping. Solid State Electronics,1992,35(9):1165-1170
    [90] Chen X. B., Fan X. F.. Optimum VLD makes SPIC better and cheaper. InternationalConference on Solid-State and Integrated-Circuit Technology,2001,104-108
    [91] Chen X. B., P. A. Mawby, C. A. T. Salama. Lateral high-voltage devices using an optimizedvariational lateral doping. International Journal of Electronics,1996,80(3):449-459
    [92] Chen Xingbi. Surface Voltage Sustaining Structure for Semiconductor Devices. US Patent,5726429,1998-03-10
    [93] Namkyu Park, Jaehan Cha, Kyungho Lee. aBCD18-An advanced0.18um BCD technologyfor PMIC application. IEEE International Symposium on Power Semiconductor Devices andICs,2009,231-234
    [94] G. Majumdar. Recent technologies and trends of power devices. International Workshop onPhysics of Semiconductor Devices,2007,787-792
    [95] D. P. Kennedy, R. R. O’Brien. Analysis of the impurity atom distribution near the diffusionmask for a planar p-n junction. IBM Journal,1965,9(3):179-186
    [96] K. L. Kasley, G. M. Oleszek, J. P. Zigadlo. A model for the lateral junction contour ofdouble-diffused Gaussian profiles. IEEE Transaction on Electron Devices,1984,31(9):1341-1343
    [97] Akiyama, T. Hosoi, I. Ishihara. Computer Simulation of Impurity Diffusion in Semiconductorsby the Monte Carlo Method. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems,1987,6(2):185-189
    [98] B. Balakrishnan. Self powering technique for integrated switched power supply. US Patent5014178,1990-05-14
    [99] J. C. Hallberstadt. On chip current source. US Patent,6504352,2001-04-06
    [100]陈志军.一种用于离线式开关电源的内部电源电路.中国集成电路,2006,87:18-21
    [101] J. Lei, S. Jose. High voltage start-up circuit and method therefore. US Patent,5640317,1995-06-15
    [102] J. Lei, S. Jose, High voltage start-up circuit and method therefore. US Patent,5815383,1996-12-27
    [103] B. Balakrishnan. Switched mode power supply integrated circuit with start-up self-biasing.US Patent,5285369,1992-09-01
    [104] E. W. Tisinger, D. M. Okada. Off-line boot strap startup circuit. US Patent,5477175,1993-10-25
    [105]陈星弼.一种半导体器件及其提供的低压电源的应用.中国专利,ZL200810097388.6,2008-10-09
    [106] Liu Jizhi, Chen Xingbi. A novel self-generated low-voltage power supply for the gate-driverof high-voltage off-line SMPS. International Symposium on Power Semiconductor Devicesand ICs,2009,184-187
    [107]幸新鹏.一个新型CMOS电流模带隙基准源.半导体学报,2008,29(7):1249-1253
    [108]刘剑.影响基准源性能的因素研究:[硕士学位论文].成都:电子科技大学,2005
    [109]胡滨.低压带隙基准源的设计:[硕士学位论文].西安:西安电子科技大学,2011
    [110]崔磊.CMOS带隙基准源的研究设计:[硕士学位论文].合肥:合肥工业大学,2010
    [111]拉扎维.模拟CMOS集成电路设计.西安:西安交通大学出版社,2003,254-257
    [112] N. Thaper, B. J. Baliga. A new IGBT structure with a wider safe operating area (SOA).International Symposium on Power Semiconductor Devices and ICs,1994,177-182
    [113] T. P. Chow, B. J. Baliga, D.N. Pattanayak, M.S. Adler. The effect of substrate doping on theperformance of anode-shorted n-channel lateral insulated-gate bipolar transistors. ElectronDevice Letters, IEEE,1988,9(9):450-452
    [114] M. Kinzer Daniel. High Speed IGBT. US patent,5808345,1997-01-16
    [115] T. Terashima, J. Moritani. High Speed Lateral-IGBT with A Passive Gate. InternationalSymposium on Power Semiconductor Devices and ICs,2005,91-94
    [116] T. Terashima. A Novel Driving Technology for a Passive Gate on a Lateral-IGBT.International Symposium on Power Semiconductor Devices and ICs,2009,45-48
    [117] B. Jayant Baliga. Enhancement-and depletion-mode vertical-channel M.O.S. gated thyristors.Electronics letters,1979,15(20):645-647
    [118] M. Darwish, K. Board. Lateral resurfed COMFET. Electronic Letter,1984,20(12):519-520
    [119] H. Akiyama, T. Minato, M. Harada. Effects of shorted collector on characteristics of IGBTs.International Symposium on Power Semiconductor Devices and ICs,1990,131-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700