在轨卫星远程诊断关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在轨卫星系统的正常运行主要依靠高可靠性和冗余保证,但在真空、失重、高低温、强辐射且充满未知因素的太空环境下长期运行,不可避免会出现系统故障。对于在轨卫星来说,为了避免某些单机部件发生故障而引起整个系统瘫痪,必须在故障发生时迅速予以隔离修复,维持系统功能正常,保证其安全可靠地完成任务。由于卫星系统的设计、制造运行管理相对独立,故障出现时需要不同部门的人员进行联合故障决策。显然,在这种背景下,依靠以人员现场交流方式实施的卫星故障诊断难以满足航天事业发展的技术需求。为此,开展在轨卫星远程诊断技术研究,实现卫星诊断信息及专家知识的共享实时交互,对于提高卫星测试诊断能力具有重要意义。
     本文以某型卫星为研究对象,对在轨卫星远程诊断关键技术展开研究,主要研究内容包括以下几个方面:
     1.以某型卫星姿控系统为具体对象,在系统地分析其诊断需求的基础上,提出了在轨卫星远程诊断体系整体构架,划分了系统功能层次模型,设计了以B/S模式为主,C/S相结合的系统网络结构。
     2.研究了多信号模型技术在卫星系统诊断建模中的应用,基于TEAMS环境建立了某卫星姿控分系统多信号诊断模型,研究了基于遥测参数的实时诊断算法并提出了改进思路,设计了基于决策树遍历算法的远程专家交互系统。
     3.研究了支持远程诊断的网络技术,以SQL Server 2005为平台设计了诊断系统数据库知识库,运用ADO.NET技术实现了数据库访问,基于ASP.NET技术实现了系统网络平台设计。
     4.综合运用所研究的关键技术,开发和实现了在轨卫星远程诊断系统各功能模块。在局域网范围内以某卫星姿控分系统为例,模拟实现和验证了在轨卫星远程诊断系统的数据远程传输、实时状态监控、故障实时诊断、数据库远程访问、远程交互诊断等功能。
The reliabilities of satellites are relatively high because of redundant designs. However, after running several years, the in-orbit satellite is very likely to suffer system failures due to harsh outer space environment factors, such as, vacuum, high temperature, strong radiation and even some other unknown factors. For in-orbit satellite, in order to avoid catastrophic system failure caused by of component faults, the faults must be isolated and repaired as quickly as possible, so that the system functions can resume normal, and the satellite can complete its mission safely and reliably. Since the design, manufacturing and running managements of satellite system are relatively independent of each other, when a fault occurs, it needs timely joint decision-making by technicians from different departments. Obviously, in such background, the way of satellite diagnostic depends on personnels’manual communication cannot meet the requirements of space technology development. Therefore, it is of great significance in carrying out research on in-orbit satellite remote diagnostic technology, which can set up an effective way of diagnostic information sharing and interaction to replace the manual knowledge exchange process of technical personnel, through which the capabilities of satellite test and diagnosis can be improved greatly.
     In this thesis, taking an in-orbit satellite system as the research object, researches on key technologies of satellite remote diagnostic are carried out. The main contents are as follows:
     1. After systematically analyzing of the diagnostic requirements of the satellite attitude control subsystem, the architecture of in-orbit satellite remote diagnostic system is proposed. A system functions hierarchical model is put forward, and the system network structure based on B/S and C/S mode is designed.
     2. The principles and implementation steps of fault modeling method based on multi-signal model method are introduced, and the multi-signal diagnostic model of the attitude control subsystem is built via TEAMS software. A real-time diagnosis algorithm based on remote sensing parameters is introduced and some ideas to improve it are put forward. An expert diagnostic interactive system based on ergodic algorithm of decision tree is designed.
     3. The network-related technology that supporting remote diagnosis is analyzed. The fault database and knowledge base is designed using SQL Server2005 software, and the database accessing is implemented by ADO. NET technology. Based on ASP. NET technology, the design of system network platform is achieved.
     4. At last, based on the researched key technologies, the functional modules of in-orbit satellite remote diagnostics system is developed and implemented. By taking an example of the satellite attitude control subsystem in LAN network, the functions of this remote diagnosis system such as remote data transfer, status monitoring, real-time diagnosis, data access and remote interactive diagnosis are achieved and verified.
引文
[1]徐福祥.卫星工程[M].北京:中国宇航出版社,2002.
    [2]赵海涛,张云彤.东方红三号系列卫星在轨故障统计分析[J].航天器工程,2007,16(1):33-37.
    [3] R. Walker.Long-Term Collision Risk Prediction for Low Earth Orbit Satellite Constellations[J].Acta Astronautica, 2000,47(707717).
    [4]李航.卫星综合信息网故障检测、诊断及自修复技术研究[D].东北大学,2004.
    [5]闵士权.中星-6B卫星突发故障随感[J].卫星电视宽带多媒体,2009,5:18-19.
    [6]王环,郭义琪,秦魏.构建多航天器在轨管理支持平台[J].航天器工程,2007,16(3):114-119.
    [7]多利华,杨拥民.装备远程协同诊断服务共享框架及其关键技术研究[J].设备管理维修,2006,3:35-37.
    [8]姜连祥,李华旺,杨根庆.航天器自主故障诊断技术研究进展[J].宇航学报,2009,30(4):1320-1324.
    [9]何岭松,王峻峰,杨叔子.基于因特网的设备故璋远程协作诊断技术[J].中国机械工程,1999,10(3):336-339.
    [10]陈幼平,张国辉,袁楚明.远程故障诊断系统体系结构研究[J].计算机应用研究,2005,12(8):88-90.
    [11]王道平,张义忠.故障智能诊断系统的理论方法[M].北京:冶金工业出版社,2001.
    [12] Donald.L.Simon.An overview of the NASA aviation safety program propulsion health monitoring element[C].AIAA,2000:3624.
    [13]蒋伟近,许宇胜,孙星明.多智能体的分布式智能故障诊断[J].控制理论应用,2004,21(6):945-950.
    [14]梁芬,王改云,朱名日.远程故障诊断技术的发展及应用研究综述[J].机电工程,2007,24(8):1-4.
    [15]李智斌,李果.航天器自主控制智能信息处理技术[J].航天控制,2004,22(5):20-26.
    [16]吴英建.基于.NET的发动机网络化故障诊断专家系统研究[D].西北工业大学,2007.
    [17]龙兵,宋立辉,荆武兴.国内外航天器故障诊断技术回顾展望[J].导弹航天运载技术,2003(3):31-37.
    [18]张新邦,索旭华.卫星故障诊断技术.全国仿真技术学术会议, 2001.
    [19]郝岩.航天测控网[M].北京:国防工业出版社,2004.
    [20]王环,郭义琪,秦魏.专家知识在在轨管理中应用的设想[J].航天器工程,2008.07,17(4):67-71.
    [21]张维洲,蒋孟虎,杨平会.卫星遥测信息自动监视处理系统设计[J].航天器工程,2008,17(5):51-57.
    [22] Deb.S,Pattipati.K.R,Shrestha.R. Model-based testability assessment anddirected troubleshooting of shuttle wiring systems. In Proceedings of the SPIE Aerosense Conference (Orlando, SPIE), 2001.
    [23] S.Deb, Pattipati, Shrestha. QSI’s Integrated Diagnostics Toolset[C].Proc.IEEE AUTOTESTCON,1997:408-421.
    [24] MacDonald M..NET分布式应用程序:集成XML Web服务.NET远程处理[M].北京:清华大学出版社,2003.
    [25]袁杰.基于.NET的网络化检测诊断系统设计及在航天器上的应用[D].西北工业大学,2004.
    [26] Joseph.ActiveX轻松进阶[M].北京:电子工业出版社, 1999.
    [27] S.Deb,K.R.Pattipati,V Raghavan.Mufti-signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis[J]. IEEE Aerospace and Electronics Magazine,1995,10(5):1425.
    [28] Patterson-Hine.A,S.Deb.A model-based health monitoring and diagnostic system for the UH-60 helicopter[C] . Proceedings of the IEEE AUTOTESTCON,1997:137-142.
    [29] S.Deb,K.R.Pattipati,V.Raghavan.Multi-signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault diagnosis[J].IEEE Aerospace and Electronics Magazine,1995,10(5):14-25.
    [30]高鑫宇,刘冠军,邱静.基于模糊概率多信号流图的故障传播模型研究[J].测试技术学报,2009,23(4):354-357.
    [31]龙兵,姜兴渭,宋政吉.基于多信号模型航天器多故障诊断技术研究[J].宇航学报,2004,25(5):591-593.
    [32]刘海明,易晓山.多信号流图的测试性建模分析[J].中国测试技术,2007,33(1)
    [33] S.Deb,S G,A M.Multisignal modeling for diagnosis,FMECA,and reliability[A][C] . Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics,1998:3026-3031.
    [34]于劲松,徐波,李行善..基于遗传算法的序贯诊断测试策略生成[J]..系统仿真学报,2004,16(4):833-836.
    [35] S.Deb,M.Amit,K.R.Pattipati. De-centralized Real-Time Monitoring and Diagnosis. In Proc of the IEEE International Conference on SMC, 1998.
    [36]安若铭,谷吉海,何传严.粗糙集在卫星电源系统故障诊断中的应用研究[J].中国空间科学技术,2008(4):59-64.
    [37]杨鹏.基于相关性模型的诊断策略优化设计技术[D].国防科技大学,2008.
    [38]蔡竞峰,蔡自兴.决策树技术及其当前研究方向[J].控制工程,2005,12(1):15-18.
    [39]王洪立,吴继娟.基于SQL Server2000下数据挖掘算法的研究[J].计算机工程设计,2008,29(3):759-761.
    [40]段立功.遥感卫星地面系统中数据管理的若干关键技术的研究[D].中国科学院研究生院,2005.
    [41]胡国雄.基于TCP/IP协议的远程故障诊断系统的研究[D].华中科技大学,1998.
    [42]阳建坤.基于Internet的远程智能故障诊断系统研究[D].中南大学,2004.
    [43]束长宝,于照,张继勇.基于TCP/IP的网络通信及其应用[J].网络通信,2006,22(12):157-159.
    [44]明日科技.SQL Server 2005开发技术大全[M].北京:人民邮电出版社,2007.
    [45] J.Reilly.ASP.NET Web应用程序开发新思维[M].北京:清华大学出版社,2002.
    [46] Dewson R.SQL Server 2005[M].北京:人民邮电出版社,2006.
    [47]马颖华,苏贵洋,袁艺.ASP.NET2.0网络编程从基础到实践[M].北京:电子工业出版社,2006.
    [48] Yao P,Durant D..NET精简程序框架设计-C#版[M].北京:电子工业出版社,2006.
    [49]戴特尔.H.M.Visual C# 2005大学教程[M].北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700