地海面微波散射和传播特性研究及其在雷达和遥感中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在雷达设计和性能分析以及微波遥感应用等研究领域,十分关注地球陆地和
    海洋表面的微波电磁散射和传播特性。本文从以下几方面对地海面微波散射和传
    播特性进行了分析和研究,并讨论了在有关方面的具体应用:
     首先介绍了我国第一部地基多波段全极化微波散射计、第一部L波段单通道
    HH极化机载杂波雷达和第一部L波段多通道VV极化机载杂波雷达的系统组成、
    校准、测试和性能分析方法。基于以上测量系统,组织了多次大规模的地面和空
    中试验,为本文研究内容和其它相关课题提供了大量有价值的数据。
     散射计和雷达系统的校准是决定散射系数测量数据可靠性的关键问题。本文
    对散射计和机载杂波雷达的绝对校准技术进行了详细分析,采用无源或有源校准
    器(ARC)分别对其进行了实际测试、误差分析和修正,保证了多波段散射计数据
    2.0dB和机载雷达杂波数据2.5dB的较高精度。
     对多波段全极化散射计的时—频域测量方法进行了研究,分析了典型地物的
    杂波特性并评价了相关模型的适用性;首次对海面散射特性(杂波)进行了长时间、
    多海态、多波段、多极化、大范围入射角的系统观测,对数据进行了统计处理并
    与Rayleigh分布、Log-normal分布、Rice分布、Weilbull分布和K分布进行了比
    较,揭示了海杂波特性与有关参数的一般关系。
     使用机载杂波雷达对我国多种典型地形地貌和东南海域进行了多航线多架次
    系统的杂波测量,分别给出了不同类型下地海杂波的统计特性,提取了统计模型
    的特征参数。进一步用分形模型和Gaussian模型(Gaussian相关和指数相关)下的
    Kirchhoff近似并结合常数γ模型、指数模型和实测数据进行了分析比较,测量数
    据和研究结果对我国机载预警雷达的试飞区域选取和机载雷达的性能检验具有重
    要意义。
     将电磁场数值算法即抛物型波方程(PE)的分步Fourier变换方法和空-时二维
    动态分形地海面的非线性动力学模型相结合,在考虑实际大气环境指数折射率模
    型情况下,分析计算了传播损耗或传播因子与大气参数和地海面分形参数的统计
    关系。结果表明,场强起伏可达20dB,传播距离越远、收发天线相对高度越大起
    伏越强且呈现与地海面相似的分形特征。
     地海面散射特性的产生和演化可以从非线性混沌现象中得到解释,其外在几
    何表现又可以用分形来描述。本文运用混沌理论和分形几何对散射计和机载雷达
    杂波数据进行了混沌和分形特性分析,计算了Lyapunov指数、相关维数、谱维
    数、分形和多重分形参数,首次指出杂波的动态变化不仅对海杂波小擦地角同极
    化,而且对多波段较大入射角交叉极化地、海杂波特别是机载雷达杂波都可以用
    非线性方法来处理,但地、海杂波可能具有不同的特点和参数,揭示了杂波的短
    期可预测性和对杂波中目标检测的重要意义。
    
    
     地海面微波散射和传播特性研究及其在雷达和遥感中的应用
     小波分析优于Fourier分析之处在于它的时频二维自适应高分辨特点,本文
    利用小波的自相似性对杂波的多尺度分形特征进行分析。通过比较随机函数、确
    定性函数、分形函数以及杂波数据的连续小波变换特征,表明分形函数和杂波在
    较大尺度范围内都能表现出明显的自相似性。结果进一步揭示了杂波的分形特征
    和小波分析检测分形杂波的有效性,同时比较分析了对检测分形特征效果明显的
    小波基特点。根据分形杂波在多尺度小波变换域上的特征可以重构或生成杂波,
    为杂波的仿真提供了又一有效途径。
     基于理论和实际测试,本文对任意姿态机载PD雷达体制下的三维地杂波算
    法进行了研究和实现。这种模拟方法根据雷达功率方程,综合考虑了三维数字地
    形信息、散射回波的频率模糊和距离模糊、地形地物散射特性建模、任意姿态载
    机和雷达坐标的变换以及地形遮蔽算法等,可以仿真出与理论分析和实际测试相
    一致的二维距离-多普勒杂波图以及散射系数图像和雷达可视区图像。
     作为对理论和实验成果的具体应用,本文提出了对地球表面微波散射特征的
    遥感分类方法,基于多波段多极化多入射角相关测试数据和散射模型,利用人工
    神经网络(ANN)对八种地形地物进行了分类实验。结果表明AN-N在一定噪声干
    扰或散射系数的一定变化范围内仍然能够作出较好分类,显示了ANN作为遥感
    分类器的优越性和实用性。
     在本文的最后,利用欧空局 ERS-l/2遥感卫星平台上的散射计所测得的全球
    范围C波段VV极化散射系数分布数据,结合中国陆地表面地形地貌特征,分析
    了我国散射系数宏观的分布特点和变化趋势,统计和比较了三种典型环境散射系
    数随时间的变化规律和动态范围等参数,首次提出我国陆地五种散射类型和相关
    地理区域的划分及环境特征。其结果可为我国陆地环境的微波遥感和军事雷达特
    别是机载和星载雷达的目标检测杂波背景评估提供重要的依据。
Microwave scattering and propagation characteristics of terrain and sea surfaces are
     paid more attention in the design and performance analysis of radar and remote sensing.
     These problems are studied and some applications are discussed as follows:
     The first ground-based multi-band polarization microwave scatterometer, the first L-
     band single-channel HH polarization airborne radar and the first L-band multi-channel
     VV polarization airborne radar are developed in China to meet the needs for the theory
     study and applications. The specifications of system, calibration, measurement and
     analysis methods are introduced. Many tests have been made on the ground and in the
     air with these measurement systems and provide this paper and other research subjects
     with a lot of valuable data.
     The calibration of scatterometer and radar system is a key problem to the precision
     and reliability for the determination of scattering coefficient from experiment data. The
     absolute calibration techniques of scatterometer and airborne clutter radar are analyzed
     by using passive and active calibrators. The data precision is within 2.0dB or 2.5dB by
     means of error modification.
     The measurement methods of scattering coefficient in time and frequency domain are
     studied. Four kinds of terrain clutter and some models are analyzed. The scattering
     characteristics of sea surfaces are observed with long-term, multi-state, multi-band,
     multi-polarization, and multi-angle using the same one scatterometer for the first time.
     The obtained data are processed and compared with Rayleigh distribution, Log-normal
     distribution, Rice distribution, Weilbull distribution and K distribution. The general
     relation between clutter and the parameters of radar and sea states is obtained.
     Multi-course and multi-sortie airborne clutter measurement of many kinds of typical
     terrain and southeast sea area in China has been carried out. The statistical
     characteristics for different kinds of terrain and sea clutter are given and the model
     parameters are extracted. The Kirchhoff approximation based on fractal model and
     Gaussian model (Gaussian or exponent correlation) are analyzed and compared with
     constant y model, exponent model and experiment data. The data and results derived are
     more important to the choice of flight-test area of our AEW radar and to the test of
     airborne radar performance.
     Combined the Split-step Fourier transform of parabola equation (PE) with non-linear
     dynamic model of space-time 2D fractal terrain and sea surfaces, statistical relationships
     between propagation factors and fractal parameters are calculated and analyzed
     considering the exponent model of atmospheric refractive index. The results show that
     the field can vary as high as 20dB. The variation becomes stronger and shows some
    
     III
    
    
    
    
    
    
    
    
    
     fractal characters for longer transmitter-receiver distance and altitude difference.
     The production and evolvement of terrain and sea scattering may be explained from
     non-linear chaos and the geometry may be described with fractal. The chaos and fractal
     characteristics are analyzed using the data measured by scatterometer and airborne radar.
     Lyapunov index, correlation dimension, spectral dimension, fractal or multi-fractal
     parameters are calculated. It is pointed out for the first time that the clutters also show
     chaos and fracta~ character at larger grazing angles, multi-band, cross-polarization and
     in the conditions of airborne measurement, but their characters may be different. This is
     important to t
引文
[1] A.Arneodo and G.Grassea, " Wavelet transform of multifractals," Physical Review Letters, Vol.61, No,20, Nov. 1998.
    [2] A.D.Keckler, D.L.Stadelman and D.D.Weiner, "Non-Gaussian clutter modeling and application to radar target detection," 1997 IEEE National Radar Conference.
    [3] A.D.Woode, Y. L. Desnos and H. Jackson, "The development and first results from the ESTEC ERS-1 active radar calibration unit," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.6, Jan. 1992.
    [4] A.E.Barrios, "Terrain modelling using the split-step parabolic equation method," Radar'92.
    [5] A.E.Barrios, "Parabolic equation modeling in horizontally inhomogeneous environments," IEEE Trans. on AP, Vol.40, No.7, July 1992.
    [6] A.E.Barrios, "A terrain parabolic equation models for propagation in the troposphere," IEEE Trans. on AP, Vol.42, No.1, Jan. 1994.
    [7] A.E.Robertson, D.V.Arnold, D.G.Long, "Computer simulation of synthetic aperture radar data," IEEE IGARSS'98.
    [8] A.Farina, et al., "High resolution sea clutter data: statistical analysis of recorded live data," IEE Proc.-Radar Sonar Navig., Vol.144, No.3, 1997.
    [9] A.Freeman, "SAR calibration: an overview," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.6, Jan. 1992.
    [10] A.H.Tewfik, M.kim, "Correlation structure of the discrete wavelet coefficients of fractional Brownian motion," IEEE Trans. on Information Theory, Vol.38, No.2, March 1992.
    [11] A.K.Fung. Microwave Scattering and Emission: Models and Their Applications. Norwood, MA: Artech House, 1994.
    [12] A.Nashashibi, K.Sarabandi and F.T.Ulaby, "A calibration technique for polarimetric coherent-on-receive radar systems," IEEE Trans, on AP, Vol.43, No.4, April 1995.
    [13] A.Stjernman, J.Vivekanandan and A.Nystrom, "Dual-channel and multifrequency radar system calibration," IEEE Trans. on Geo. and Remote Sensing, Vol.33, No.2, March 1995.
    [14] B.Rao, L.Carin, "A hybrid (parabolic equation)-(Gaussian beam) algorithm for wave propagation through large inhomogeneous regions. IEEE Trans. on AP, Vol.46, No.5, May 1998.
    [15] C.A.Darrah, D.W.Luke, "Site-specific clutter modeling using DMA digital terrain elevation data (DTED), digital feature analysis data (DFAD), and LINCOLN laboratory five frequency clutter amplitude data," IEEE 1996 National Radar Conference.
    [16] C.Bouvier, L.Martinet, et al., "Simulation of radar sea clutter using autoregressive modelling and K-distribution," IEEE International Radar Conference 1997.
    
    
    [17] D.G.Long and G.B.Skouson, "Calibration of spaceborne scatterometers using tropical rain forests," IEEE Trans, on Geo. and Remote Sensing, Vol.34, No.2, Mar. 1996.
    [18] D.J.Mclaughlin, N.Allan, E.M.Twarog, D.B.Trizna, "High resolution polarimetric radar scattering measurement of low grazing angle sea clutter," IEEE Journal of Oceanic Engineering, Vol.20, No.3, July 1995.
    [19] D.J.Donohue and J.R.Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. on AP, Vol.48, No.2, Feb. 2000.
    [20] D.J.Thomson, N.R.Chapman, "A wide-angle split-step algorithm for the parabolic equation," J. Acoust. Soc. Am., Vol.74, No.6, Dec. 1983.
    [21] D.K.Barton, et al..Radar Evaluation Handbook. Artech House, Inc., 1991.
    [22] D.L.Jaggard, X.Sun, "Scattering from bandlimited fractal fibers," IEEE Trans. on AP, Vol.37, No. 12, Dec. 1989.
    [23] D.L.Jaggard, X.Sun, "Scattering from fractally corrugated surfaces," J. Opt. Soc. Am. A, Vol.7, No.6, June 1990.
    [24] D.L.Jaggard, X.Sun, "Fractal surface scattering: a generalized Rayleigh solution," J. Appl. Phys., Vol.68, No.11, Dec. 1990.
    [25] D.Zahn, K.Sarabandi, K.F.Sabet, and J.F.Harvey, "Numerical simulation of scattering from rough surfaces: a wavelet-based approach," IEEE Trans, on AP, Vol.48, No.2, Feb. 2000.
    [26] E.Bahar and Y.Zhang, "A new unified full wave approach to evaluate the scatter cross sections of composite random rough surfaces," IEEE Trans, on Geo. and Remote Sensing, Vol.34, No.4, July 1996.
    [27] E.R.Thews, "Timely prediction of low-altitude radar performance in operational environments using in situ atmospheric refractivity data," IEE Proceedings, Vol.137, Pt.F, No.2, April 1990.
    [28] E.Schepers et al., "Four methods to estimate the fractal dimension from self-affine signals," IEEE Engineering in Medicine and Biology, P57, 1992.
    [29] F.Berizzi and E.Dalle Mese, "Fractal theory of sea scattering," IEEE RADAR 97.
    [30] F.Berizzi and E.Dalle Mese, "Scattering analysis from fractal sea surfaces," IEEE IGARSS'98.
    [31] F.D.Hastings, J.B.Schneider and S.L.Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. on AP, Vol.43, No.11, Nov. 1995.
    [32] F.D.Tappert, "The parabolic approximation method," Chapter V, Wave Propagation and Underwater Acoustics, 1977.
    [33] F.M.Breon, D.Tanre, et al., "Polarized reflectance of bare soils and vegetation: measurements and models," IEEE Trans. on Geo. and Remote Sensing, Vol.33, No.2, March 1995.
    [34] F.T.Ulaby, M.C. Dobson. Handbook of Radar Scattering Statistics for Terrain. Artech House, Inc., 1989.
    [35] F.T.Ulaby, T.F.Haddock, et al., "A millimeterwave network analyzer based scatterometer," IEEE Trans. on Geo. and Remote Sensing, Vol.26, No.l, Jan. 1988.
    
    
    [36] F.T.Ulaby, R.K.Moore and A.K.Fung. Microwave Remote Sensing, Vol.II: Radar Remote Sensing and Surface Scattering and Emission Theory. Artech House, Inc., 1982.
    [37] F.T.Ulaby, R.K.Moore and A.K.Fung. Microwave Remote Sensing, Vol.III: From Theory to Applications. Artech House, Inc., 1986.
    [38] G.D.Dockery, "Modeling electromagnetic wave propagation in the troposphere using the parabolic equation," IEEE Trans. on AP, Vol.36, No. 10, Oct. 1988.
    [39] G.D.Dockery, "Method for modelling sea surface clutter in complicated propagation environments," IEE Proceedings, Vol.137, Pt.F, No.2, April 1990.
    [40] G.D.Dockery, J.R.Kuttler, "An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation," IEEE Trans. on AP, Vol.44, No. 12, Dec. 1996.
    [41] G.Franceschetti, "Simulation of SAR interferometric raw signal pairs corresponding to real scenes," IEEE IGARSS'98.
    [42] G.Franceschetti, A.Iodice, M.Migliaccio, "Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes," IEEE Trans. on AP, Vol.47, No.9, Sep. 1999.
    [43] G.Le.Hellard, J.Ph. Henry, E. Agnesina, M.Moruzzis, "Ground clutter simulation for surface-based radars," IEEE International Radar Conference, 1995.
    [44] G.Li, Kai-Bor Yu, "Modelling and simulation of coherent Weibull clutter," IEE Proceedings, Vol.136, Pt.F, No.1, Feb. 1989.
    [45] G.Pelosi, S.Selleri, R.D.Graglia, "The parabolic equation model for the numerical analysis of the diffraction at an impedance wedge: skew incidence case," IEEE Trans. on AP, Vol.44, No.2, Feb. 1996.
    [46] G.W.Wornell, A.V.Oppenheim, "Estimation of fractal signals from noisy measurements using wavelets," IEEE Trans. on Signal Proceeding, Vol.40, No.3, March 1992.
    [47] G.W.Wornell, A.V.Oppenheim, "Wavelet-based representations for a class of self-similar signals with application to fractal modulation," IEEE Trans. on Information Theory, Vol.38, No.2, March 1992.
    [48] G.W.Wornell, "Wavelet-based representations for the 1/f family of fractal processes," Proceedings of the IEEE, Vol.81, No. 10, Oct. 1993.
    [49] G.W.Wornell. Signal Processing with Fractals: A Wavelet-Based Approach. Prentice Hall, 1996.
    [50] H.C.Chan, "Radar sea-clutter at grazing angles," IEE Proceedings, Vol.137, Pt.F, No.2, April 1990.
    [51] H. Kimura and N. Kodaira, "Antenna pattern and penetration measurement using spectrum analyzers," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.6, Nov. 1992.
    [52] H.Leung, S.Haykin, "Is there a radar clutter attractor," Appl. Phys. Lett., Vol.30, No.6, Feb. 1990.
    [53] H.V.Hitney, "Hybrid ray optics and parabolic equation methods for radar
    
    propagation modeling," Radar'92.
    [54] H.Yamasaki, J.Awaka, et al., "Measurement of soil backscattering with a 60-GHz scatterometer," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.4, July 1992.
    [55] I.Jouny, F.D.Garber, S.C.Ahalt, "Classification of radar targets using synthetic neural networks," IEEE Trans. on Aero. and Electro. Sys., Vol.29, No.2, April 1993.
    [56] J.Chen, T.Lo and J.Lita, H.Leung, "Scattering of electromagnetic waves from a time-varying fractal surface," Microwave and Optical Technology Letters, Vol.6, No. 1, Jan. 1993.
    [57] J.Chen, T.Lo, H.Leung and J.Litva, "The use of fractals for modeling EM waves scattering from rough sea surface," IEEE Trans. on Geo. and Remote Sensing, Vol.34, No.4, July 1996.
    [58] J.C.Kirk," Using the fractal dimension (FD) to discriminate between targets and clutter," Proceedings of the IEEE, 1993.
    [59] J.C.West, J.M.Sturm, "Numerical study of shadowing in electromagnetic scattering from rough dielectric surfaces," IGARSS'97.
    [60] J.K.Jao and W.B.Gogginst," Efficient closed-form computation of airborne pulse-Doppler radar clutter," IEEE International Radar Conference, 1985.
    [61] J.I.Butterfield, "Fractal interpolation of radar signatures for detecting stationary targets in ground clutter," IEEE AES Systems Magazine, July 1991.
    [62] J.M.Keller, R.M.Crownover and R.Y.Chen, "Characteristics of natural scenes related to the fractal dimension," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.PAMI-9, No.5, Sep. 1987.
    [63] J.M.Sturm and J.C.West, "Numerical study of shadowing in electromagnetic scattering from rough dielectric surfaces," IEEE Trans on Geo. and Remote Sensing, Vol.36, No.5, Sept. 1998.
    [64] J.P.Reilly, C.C.Lin, S.A.Rudie, "Land clutter and shadowing with consideration of propagation in coastal regions," Radar'92.
    [65] J.P.Reilly and C.C.Lin, "A radar clutter model and its verification," IEEE International Radar Conference, 1994.
    [66] J.Ramanathan, O.Zeitouni, "On the wavelet transform of fractional Brownian motion," IEEE Trans. on Information Theory, Vol.37, No.4, July 1991.
    [67] J.R.Kutter, G.D.Dockery, "Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Science, Vol.26, No.2, March-April 1991.
    [68] J.T.Johnson, R.T.Shin, J.A.Kong, L.Tsang, et al., "A numerical study of the composite surface model for ocean backscattering," IEEE Trans. on Geo. and Remote Sensing, Vol.36, No. 1, Jan. 1998.
    [69] K.D.Ward, et al., "Maritime surveillance radar Part 1:Radar scattering from the ocean surface," IEE Proc. Pt. F, Vol. 137, No.2, 1990.
    [70] K.H.Craig, "Propagation modelling in the troposphere: parabolic equation method," Electronics Letters, No. 18,1988.
    
    
    [71] K.H.Craig, M.F.Levy, "Field strength forecasting with the parabolic equation: wideband applications," ICAP'89.
    [72] K.H.Craig, "Parabolic equation modelling of the effects of multipath and ducting on radar systems," IEE Proceedings-F, Vol.138, No.2, April 1991.
    [73] K.H.Craig, "Impact of numerical methods on propagation modelling," Modern Radio Science 1996.
    [74] K.L.Shlager and J.B.Schneider, "A selective survey of the Finite-Difference Time-Domain Literature," IEEE AP Magazine, Vol.37, No.4, August 1995.
    [75] K. Rajalakshmi Menon, N. Balakrishnan, et al., "Characterization of fluctuation statistics of radar clutter for Indian terrain," IEEE Trans. on Geo. and Remote Sensing, Vol.33, No.2, March 1995.
    [76] K.Uchida et al., "FVTD analysis of electromagnetic wave scattering by rough surface," IEEE IGARSS'98.
    [77] K.Yoshitomi and A.Ishimaru, "Surface roughness determination using spectral correlations of scattered intensities and an artificial neural network technique," IEEE Trans. on AP, Vol.41, No.4, April 1993.
    [78] Lauterborn and U.Parlitz. Nonlinear Physics and Chaos. Modern Radio Science, 1996.
    [79] Leontovich, Fock, "Solution of the problem of propagation of electromagnetic waves along the earth's surface by the method of parabolic equations," Chapter 11, Electromagnetic Diffraction and Propagation Problems, 1965.
    [80] L.Tsang, J.A.Kong, R.T.Shin. Theory of Microwave Remote Sensing. John Wiley & Sons, Inc., 1985.
    [81] L.Tsang, Zhengxiao Chen, et al., "Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.5, Sep. 1992.
    [82] M.Diani, G.Corsini, F.Berizzi and D.Calugi, "Ground clutter model for airborne MPRF radar in look-down search mode," IEE Proc.-Radar Sonar Navig., Vol.143, No.2, April 1996.
    [83] M. Dottling, W. Wiesbeck, "A hierarchical electromagnetic land use parameter database for wave propagation modeling," IEEE Trans. on Geo. and Remote Sensing Newsletter, March ,1999.
    [84] M.F.Levy, "Parabolic equation modelling of propagation over irregular terrain," Electronics Letters, Vol.26, No. 15, July 1990.
    [85] M.F.Levy, "Diffraction studies in urban environment with wide-angle parabolic equation method," Electronics Letters, Vol.28, No. 16, July 1992.
    [86] M.F.Levy, "Horizontal parabolic equation solution of radiowave propagation problems on large domains," IEEE Trans. on AP, Vol.43, No.2, Feb. 1995.
    [87] M.F.Levy, "Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems," IEEE Trans. on AP, Vol.45, No.1, Jan. 1997.
    [88] M.F.Levy, "Parabolic equation techniques for wave propagation," URSI'97.
    
    
    [89] M.Levitas et al., "High fidelity propagation modelling in real time," 1997 IEEE National Radar Conference.
    [90] M.Rangaswamy, D.Weiner and A.Ozturk, "Computer generation of correlated non-Gaussian radar clutter," IEEE Trans. on Aerospace and Electronic systems, Vol.31, No. 1, Jan. 1995.
    [91] M.Satake, et al., "Corner reflectors' responses observed by X-band polarimetric airborne synthetic aperture radar," IGARSS'1999.
    [92] M.W.Long. Radar Reflectivity of Land and Sea. Artech House, Inc., 1983.
    [93] N.Jeremy Kasdin, "Discrete simulation of colored noise and stochastic processes and 1/ fα power law noise generation," Proceeding of the IEEE, Vol.83, No.5, May 1995.
    [94] N.He, S.Haykin, "Chaotic modelling of sea clutter," Electronics Letters, Vol.28, No.22, Oct. 1992.
    [95] N.Lin, H.P.Lee, S.P.Lim and K.S.Lee, "Wave scattering from fractal surfaces," Journal of Modern Optics, Vol.42, No.1, 1995.
    [96] N.Yokoya, K.Yamamoto," Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling," Computer Vision, Graphics, and Image Processing, Vol.46, 1989.
    [97] P.Beckmann and A.Spizzichino. The Scattering of Electromagnetic Waves from Rough Surface. Norwood, MA: Artech House, 1987.
    [98] P.Flandrin, "Wavelet analysis and synthesis of fractional Brownian motion," IEEE Trans. on Information Theory, Vol.38, No.2, March 1992.
    [99] P.Maragos, F.K.Sun, "Measuring the fractal dimension of signals: morphological covers and iterative optimization," IEEE Trans. on Signal Proceeding, Vol.41, No.1, Jan. 1993.
    [100] P.R.Chakravarthi, "Radar target detection in chaotic clutter," 1997 IEEE National Radar Conference.
    [101] P.Seifert, H.Lentz, M.Zink and F.Heel, "Ground-based measurements of inflight antenna patterns for imaging radar systems," IEEE Trans. on Geo. and Remote Sensing, Vol.30, No.6, Nov. 1992.
    [102] R.A.Paulus, "Tropospheric scatter simulations and measurements," URSI'97.
    [103] R.Awadallah, G.Brown, "Parabolic equation formulation via a singular perturbation technique and its application to scattering from irregular surfaces," Waves in Random Medem 8, 1998.
    [104] R.G.Kennett and F.K.Li, "Seasat over-land scatterometer data, part I: global overview of the Ku-band backscatter coefficients," IEEE Trans. on Geo. and Remote Sensing, Vol.27, No.5, Sep. 1989.
    [105] R.G.Kennett and F.K.Li, "Seasat over-land scatterometer data, part II: selection of extendent area land-target sites for the calibration of spaceborne scatterometers," IEEE Trans. on Geo. and Remote Sensing, Vol.27, No.6, Sep. 1989.
    [106] R.H.Ott, "Sea backscatter at low grazing angles including atmospheric effects,"
    
    URSI'97.
    [107]R.Janaswamy. Efficient Parabolic Equation Solution of Radiowave Propagation in An Inhomogeneous Atmosphere and Over Orregular Terrain: Formulation. Naval Postgraduate School, Monterey, CA., NPS-EC-94-004, June 1994.
    [108]R.J.Barton, H.Vincent Poor, "Signal dection in fractional Gaussian noise," IEEE Trans. on Information Theory, Vol.34,No.5, Sep. 1988.
    [109]R.J.Mcarthur, "Propagation modelling over irregular terrain using the split-step parabolic equation method," Radar'92.
    [110]R.L.Haupt, "An introduction to genetic algorithms for electromagnetics," IEEE AP Magazine, Vol.37, No.2, April 1995.
    [111]R.L.Wagner, J.Song and W.C.Chew, "Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces," IEEE Trans. on AP, Vol.45, No.2, Feb. 1997.
    [112]R.N.Treuhaft, et al., "Vegetation characteristics and underlying topography from interferometric radar," Radio Science, Vol.31, No.6, Nov.-Dec. 1996.
    [113]T.Marchand, G.S.Brown, "Inferring rough surface parameters from average scattering data approximate scattering models 1:Gaussian spectrum," Radio Science, Vol.33, No.4, August 1998.
    [114]R.T.Marchand, G.S.Brown, "Inferring rough surface parameters from average scattering data approximate scattering models 2:Pierson-Moskowitz spectrum," Radio Science, Vol.33, No.4, July-August 1998.
    [115]S.E.Noel, Y. Gohel and H.H.Szu, "Wavelet detection of singularities in the presence of fractal noise," SPIE Vol.3078, 1997.
    [116]S.Haykin and Xiao Bo Li, "Detection of signals in chaos," Proceedings of the IEEE, Vol.83, No. 1, Jan. 1995.
    [117]S.Haykin, S.Puthusserypady, "Chaotic dynamics of sea clutter: an experimental study," IEE RADAR 97.
    [118]S.Haykin, "Radar clutter attractor: implications for physics, signal processing and control," IEE Proc.-Radar, Sonar, Navig., Vol. 146, No.4, August 1999.
    [119]S.Savaidis, P.Frangos, "Scattering from fractally corrugated surfaces: an exact approach," Optics Letters, Vol.20, No.23, Dec. 1995.
    [120]S.W. Marcus, "A hybrid (finite difference-surface Green's function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain," IEEE Trans. on AP, Vol.40, No. 12, Dec. 1992.
    [121]S.W. Min, S.P. Lim, K.S.Lee, "A fractal surface and its measurement by computer simulation," Optics & Laser Technology, Vol.27, No.5, 1995.
    [122]T.Chiu, K.Sarabandi, "Electromagnetic scattering from targets above rough surfaces," IGARSS'97.
    [123]T.Lo, H.Leung, J.Litva and S.Haykin, "Fractal characterization of sea-scattered signals and detection of sea-surface targets," IEE Proceedings-F, Vol.140, No.4, Aug.1993.
    [124][美]杰里L.伊伏斯等,卓荣邦等译.现代雷达原理.电子工业出版社,1991.
    
    
    [125][美]R.L.米切尔,雷达系统模拟.科学出版社,1982.
    [126][美]G.V.莫里斯等.机载脉冲多普勒雷达.航空工业出版社,1990.
    [127]焦李成.神经网络系统理论.西安电子科技大学出版社,1996.
    [128]张济忠.分形.清华大学出版社,1995.
    [129]秦前清、扬宗凯.实用小波分析.西安电子科技大学出版社,1994.
    [130]赵松年、熊小芸.子波变换与子波分析.电子工业出版社,1996.
    [131]鲜明,庄钊文,肖顺平,郭桂蓉,“基于混沌、多重分形理论的雷达信号分析和目标识别,”电子科学学刊,Vol.20,No.4,July 1998.
    [132]扬宗凯,“激光雷达探潜背景信号的混沌和分形行为研究,”华中理工大学学报,Vol.25,No.5,May 1998.
    [133]金亚秋,刘长龙,“人工神经网络模型反演植被生物量参数,”遥感学报,Vol.1,No,2,May 1998.
    [134]金亚秋等,“星载微波 ERS-1 和多通道SSM/I观测海洋的相关性和随机粗糙面复合模型的数值模拟,”地球物理学报,Vol.42,No.4,July 1999.
    [135]王玉平,蔡元龙,彭玉华,“电磁后向散射波数据的小波包变换分析,”电子科学学刊,Vol.18,No.5,Sep.1996.
    [136]张戊宝,“现代雷达杂波模拟的一些新方法,”信号处理,Vol.10,No.2,June 1994.
    [137]陈晓初,“机载雷达二维杂波特征谱研究,”现代雷达,No.3,1994.
    [138]谢文录.雷达信号处理中的分形模型和方法研究,西安电子科技大学博士论文,1997.
    [139]保铮,张玉洪,廖桂生等,“机载雷达空时二维信号处理,”现代雷达,No.1-2,1994.
    [140]任迎舟,张玉洪,“机载相控阵雷达时空二维杂波的仿真,”现代雷达,No.2,1994.
    [141]张玉洪,保铮,任迎舟,“平面相控阵机载预警雷达的二维杂波谱,”现代雷达,No.2,1993.
    [142]王俊,李进峰,张守宏,“时变高分辨雷达海杂波的数据仿真,”西安电子科技大学学报,Vol.24,Sup.,Dec.1997.
    [143]康士峰,孙芳,罗贤云,张忠治,“地物介电常数测量和分析,”电波科学学报,Vol.12,No.2,June,1997.
    [144]罗贤云,张忠治,“小麦水稻后向地磁散射建模研究σ~o与入射角的关系,”电波科学学报,Vol.9,No.2,1994.
    [145]汤明,尹志盈,“地物散射特性的实验研究,”科学通报,Vol.41,No.7,1996.
    [146]郦能敬.预警机系统导论.国防工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700