核苷糖生物合成对棉花纤维和拟南芥根毛伸长的重要性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花纤维是从胚珠外表皮细胞分化而来的单细胞结构,是纺织工业的重要原料,具有重要的经济价值。同时,棉纤维细胞也是研究细胞伸长、分化和细胞壁合成等重要生物学现象的理想系统。
     植物初生细胞壁主要由果胶、半纤维素和纤维素等多糖组成。本研究利用蛋白质双向电泳技术,建立了棉花纤维快速伸长期的银染电泳图谱,发现了101个在棉纤维中高表达的蛋白点。又通过MALDI-TOF MS技术鉴定了其中的93个蛋白点,它们由66个基因编码而成。其中43条cDNA全长是首次报道的。继而,又引入了一种代谢途径分析软件KOBAS用于分析这些纤维优势表达蛋白,发现了17条野生型显著上调的生物代谢途径,其中核苷糖转换代谢途径是纤维伸长过程中最显著上调的生物代谢途径。核苷糖是合成细胞壁多糖的活化底物。利用Nano-LC-FTICR-MS技术进一步鉴定了与核苷糖转换相关的7个蛋白点,确定它们是由四个基因UER1、UGD1、UGP1和UGP2编码而成的。乙烯和C24:0处理的蛋白质组学和转绿水平分析表明:乙烯和24碳饱和脂肪酸(C24:0)能诱导UER1、UGD1和UGP1的蛋白和转录水平的显著提高。暗示二者能够通过诱导某些特殊细胞壁多糖的合成,从而导致纤维细胞的伸长。气相色谱分析细胞壁非纤维素多糖成分发现,与胚珠组织相比,快速伸长的纤维初生细胞壁含有显著多的阿拉伯糖、鼠李糖和半乳糖醛酸,而木糖和葡萄糖较少。
     在胚珠体外培养的培养液中添加UDP-鼠李糖能显著速进纤维的伸长,而加入鼠李糖对纤维伸长没有影响。UER基因的拟南芥突变体uer1-1根毛变短,并且这种表型能够被拟南芥UER1和棉花UER1所互补。MS培养基中添加UDP-鼠李糖能够回复突变体uer1-1的表型,而鼠李糖则不能。在拟南芥乙烯信号突变体ein2-5和超长链脂肪酸合成突变体cut1植株内,AtUER1基因的表达丰度显著降低。UDP-鼠李糖处理能够回复ein2-5和cut1根毛变短的表型。结果表明乙烯和C24:0能够调控UER的表达,从而导致棉纤维和拟南芥根毛的伸长。蛋白质组学、代谢组学和遗传学证据均表明UDP-鼠李糖的合成对棉花纤维和拟南芥根毛的伸长有重要作用。
     进一步的分析表明,合成果胶多糖前体核苷糖UDP-阿拉伯糖和UDP-半乳糖醛酸的关键基因GAE1和UXE1在纤维快速伸长期显著高调。在胚珠体外培养的培养液中添加果胶前体核苷糖UDP-阿拉伯糖和UDP-半乳糖醛酸能显著速进纤维的伸长,而加入半纤维素前体核苷糖UDP-木糖对纤维伸长没有影响。实时定量PCR结果显示乙烯能够诱导GAE1和UXE1的表达。综合分析表明,果胶前体核苷糖的生物合成对棉纤维细伸长非常重要,并且受乙烯信号的调控。
Cotton fibers are single-celled trichomes differentiated from outer integuments of the ovule. As the most prevalent natural raw materials used in the textile industry, cotton fibers plays a significant role in the global economy. Also, fiber serves as an excellent single-celled model for studying fundamental biological proc esses, such as cell elongation and differentiation Plant primary cell walls consist of mainly pectin, hemicellulose and cellulose, and are deposited during the cell expansion phase. Here, upon 2-DE separation and MALDI-TOF MS analyses, we identified 93 of 101 protein spots that were preferentially accumulated in wild-type cotton ovules,encoded by 66 genes, from wild-type cotton samples. We subjected this dataset to KOBAS and found that cell wall polysaccharide biosynthesis was the most significantly up-regulated bioc hemical pathway in wild-type samples. Proteomic data of 7 protein spots potentially related to nucleotide sugar inter-conversions identified further by Nano-LC-FTICR-MS. The same set of enzymes were accumulated when presence of 0.1μM ethylene, with their transcripts increased after the treatment. Exogenous lignoceric acid (C24:0) showed a similar effect on protein accumulation and gene activation, indicating that these two compounds may indeed promote fiber elongation by sequentially modulating the production of specific cell wall polymers. GC/MS analysis of sugar compositions from non-cellulose wall polysaccharide fractions revealed that fiber primary cell walls contained significantly higher amounts of arabinose, rhamnose and galacturonic acids (GalA) whereas more xylose and glucose were found in ovule samples.
     When applied in ovule culture media, UDP-rhamnose, precursor of pectic polymer, was able to stimulate significant fiber elongation, while rhamnose was inactive in the same growth assay. The short-root-hair phenotype of Arabidopsis uer1 knock-out mutant was genetically complemented by the cotton UER1 cDNA. Exogenous UDP-rhamnose, not free rhamnose, produced a similar effect when it was included in MS media for Arabidopsis culture. Molecular studies revealed that, in cut1 and ein2-5 Arabidopsis mutants that are known to involve in biosynthesis of C24:0 and ethylene signaling, respectively, the amount of AtUER1 transcripts was significantly reduced. The short root hairs found in the mutants were also rescued only by exogenous UDP-rhamnose, suggesting that C24:0 and ethylene may promote cotton fiber and Arabidopsis root hair growth by upregulating UER1 expression required for production of pectic polymers. Proteomic, metabolomic and genetic studies indicate that biosynthesis of UDP-Rhamnose is important for cotton fiber and Arabidopsis root hair elongation
     Further analysis indicate that GAE1 and UXE1 required for biosynthesis of UDP-arabinose and UDP-GalA were preferentially accumulated in cotton fiber cell. When applied in ovule culture media, UDP-arabinose and UDP-GalA, precursors of pectic polymers, were able to stimulate significant fiber elongation, while UDP-xylose, a hemicellulose precursor was inactive in the same growth assay. GAE1 and UXE1 transcripts were increased when 1 dpa wild-type ovules were cultured in the presence of ethylene. Our results indicate that biosynthesis of UDP-sugars that are precursors of pectic polymers is important for cotton fiber elongation.
引文
1. Aebersold R, and Mann M: Mass spectrometry-based proteomics. Nature 2003, 422: 198-207.
    2. Ahn JW, Verma R, Kim M, Lee JY, Kim YK, Bang JW, Reiter WD, Pai HS: Depletion of UDP-D-apiose/UDP-D-xylose synthases results in rhamnogalacturonan-II deficiency, cell wall thickening, and cell death in higher plants. J Biol Chem 2006, 281:13708-13716.
    3. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ: Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 2005, 17: 2954-2965.
    4. Alonso JM, Stepanova AN: The ethylene signaling pathway. Science 2004, 306: 1513-1515.
    5. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP: A membrane-assoc iated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A 1995, 92: 9353-9357.
    6. Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA: Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 2004, 54: 911-929.
    7. Bacic A: Breaking an impasse in pectin biosynthesis. Proc Natl Acad Sci U S A 2006, 103: 5639-5640.
    8. Bae MS, Cho EJ, Choi EY, Park OK: Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 2003, 36: 652-663.
    9. Basra AS, Malik CP: Development of the Cotton Fiber. Int Rev Cytol. 1984, 89: 65-113.
    10. Beasley CA, and Ting IP: The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Amer. J. Bot. 1973, 60: 130-139.
    11. Beasley CA, and Ting IP: The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Amer. J. Bot. 1974, 61: 188-194.
    12. Beasley CA: In vitro culture of fertilized cotton ovules. BioScience 1971, 21: 906-907.
    13. Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N: Comparative proteomics analysis of differentially expressed proteins in Chickpea extracellular matrix during dehydration stress. Mol. Cell. Proteomics 2007, 6: 1868-1884.
    14. Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD: The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 2007, 19: 509-523.
    15. Bonin CP, Freshour G, Hahn MG, Vanzin GF, Reiter WD: The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-mannose 4,6-dehydratase with cell type-specific expression patterns. Plant Physiol 2003, 132:883-892.
    16. Bonin CP, Potter I, Vanzin GF, Reiter WD: The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci U S A 1997, 94:2085-2090.
    17. Bonin CP, Reiter WD: A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis. Plant J 2000, 21:445-454.
    18. Burget EG, Reiter WD: The mur4 mutant of arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose. Plant Physiol 1999, 121: 383-389.
    19. Burget EG, Verma R, Molhoj M, Reiter WD: The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-loc alized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 2003, 15: 523-531.
    20. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB: The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 2004, 134: 224-236.
    21. Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Moc k HP, Rossignol M: Plant proteome analysis. Proteomics 2004, 4: 285-298.
    22. Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS: Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 2007, 143: 707-719.
    23. Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, et al. : Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 2008, 20: 1519-1537.
    24. Chanliaud E, Gidley MJ: In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 1999, 20: 25-35.
    25. Cosgrove DJ: Growth of the plant cell wall. Nat Rev Mol Cell Biol 2005, 6: 850-861.
    26. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J: A proteomic analysis of cold stress responses in rice seedlings. Proteomics 2005, 5: 3162-3172.
    27. Dai SJ, Li L, Chen TT, Chong K, Xue YB, Wang T: Proteomic analyses of Oryza sativa mature pollen reveal novel proteins assoc iated with pollen germination and tube growth. Proteomics 2006, 6: 2504-2529.
    28. Dai SJ, Li L, Chen TT, Chong K, Xue YB, Liu SQ, Wang T: Proteomic identification of differentially expressed proteins assoc iated with pollen germination and tube growth reveals characteristics germinated Oryza sativa pollen. Mol. Cell. Proteomics 2007, 6: 207-230.
    29. Desprez T, Juraniec M, Crowell EF, Jouy H, Poc hylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S: Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007, 104: 15572-15577.
    30. Diet A, Link B, Seifert GJ, Schellenberg B, Wagner U, Pauly M, Reiter WD, Ringli C: The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase. Plant Cell 2006, 18: 1630-1641.
    31. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP: Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 2002, 43: 1407-1420.
    32. Egelund J, Petersen BL, Motawia MS, Damager I, Faik A, Olsen CE, Ishii T, Clausen H, Ulvskov P, Geshi N: Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-loc alized: 1,3, -alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 2006, 18: 2593-2607.
    33. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N: Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2003, 2: 325-345.
    34. Fu, Q, Wang BC, Jin X, Li HB, Han P, Wei KH, Zhang XM, Zhu YX. . Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. J. Biochem. Mol. Biol.: 2005, 38: 650-660.
    35. Fukao T, Xu K, Ronald PC, Bailey-Serres J: A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 2006, 18: 2021-2034.
    36. Gallardo K, Job C, Groot SP. C, Puype M, Demol H, Vandekerckhove J, Job, D: Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol.: 2001, 126: 835-848.
    37. Gallardo K, Job C, Groot SP. C, Puype M, Demol H, Vandekerckhove J, Job, D: Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 2002, 129: 823-837.
    38. Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T, Poindexter P, Somerville C: Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 2005, 17: 1128-1140.
    39. Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY: Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 2007, 17: 422-434.
    40. Gu X, Bar-Peled M: The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase. Plant Physiol 2004, 136: 4256-4264.
    41. Guo H, Ecker JR: Plant responses to ethylene gas are mediated by SCF (sup)EBF1/EBF2, -dependent proteolysis of EIN3 transcription factor. Cell 2003, 115: 667-677.
    42. Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 1990, 2:513-523.
    43. Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, et al. : Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 2007, 63: 815-832.
    44. Haigler CH, Zhang DS, Wilkerson CG: Biotechnological improvement of cotton fiber maturity. Physiol. Plant. 2005, 124: 285-294.
    45. Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH: Proteome analysis of sugar beet leaves under drought stress. Proteomics 2005, 5: 950-960.
    46. Harper AD, Bar-Peled M: Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 2002, 130: 2188-2198.
    47. Herbik A, Giritch A, Horstmann C, Becker R, Balzer HJ, Baumlein H, Stephan UW: Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol 1996, 111: 533-540.
    48. Huang B, Jin L, Liu JY: Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton: Gossypium hirsutum, . J Plant Physiol 2008, 165: 214-223.
    49. Huang, X, and Madan, A: CAP3: A DNA sequence assembly program. Genome Res. 1999, 9: 868-877.
    50. Humphries JA, Walker AR, Timmis JN, Orford SJ: Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1: TTG1, gene. Plant Mol Biol 2005, 57: 67-81.
    51. Jacob-Wilk D, Kurek I, Hogan P, Delmer DP: The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci U S A 2006, 103: 12191-12196.
    52. Jensen JK, Sorensen SO, Harholt J, Geshi N, Sakuragi Y, Moller I, Zandleven J, Bernal AJ, Jensen NB, Sorensen C, et al. : Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 2008, 20: 1289-1302.
    53. Ji S, Lu Y, Li J, Wei G, Liang X, Zhu Y: A beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Bioc hem Biophys Res Commun 2002, 296: 1245-1250.
    54. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX: Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res 2003, 31: 2534-2543.
    55. John ME, Keller G: Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc . Natl. Acad. Sci. USA 1996, 93: 12768-12773.
    56. Jones L, Milne JL, Ashford D, McQueen-Mason SJ: Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci U S A 2003, 100: 11783-11788.
    57. Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R: The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 2005, 221:243-254.
    58. Kawamura Y, Uemura M: Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves assoc iated with cold acclimation. Plant J 2003, 36: 141-154.
    59. Kim HJ, Triplett BA: Characterization of GhRac1 GTPase expressed in developing cotton: Gossypium hirsutum L. , fibers. Bioc him Biophys Acta 2004, 1679: 214-221.
    60. Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 2001, 127: 1361-1366.
    61. Kleczkowski LA, Geisler M, Ciereszko I, Johansson H: UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 2004, 134: 912-918.
    62. Klinghammer M, Tenhaken R: Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J Exp Bot 2007, 58: 3609-3621.
    63. Koc hanowski, N, Blanchard, F, Cacan, R, Chirat, F, Guedon, E, Marc, A, and Goergen, J. -L: Intracellular nucleotide and nucleoside sugar contents of cultured CHO cells determined by as fast, sensitive, and high-resolution ion-pair RP-HPLC. Anal. Bioc hem. 2006, 348: 243-251.
    64. Kohel RJ, Yu J, Park YH, Lazo GR,: Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 2001, 121: 163-172.
    65. Kotake T, Hojo S, Tajima N, Matsuoka K, Koyama T, Tsumuraya Y: A bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase activities salvages free L-fucose in Arabidopsis. J Biol Chem 2008, 283:8125-8135.
    66. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP: Proteomic approach to identify novel mitoc hondrial proteins in Arabidopsis. Plant Physiol 2001, 127: 1694-1710.
    67. Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D: Dimerization of cotton fiber cellulose synthase catalytic subunits oc curs via oxidation of the zinc-binding domains. Proc Natl Acad Sci U S A 2002, 99: 11109-11114.
    68. Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ, Chen XY, Payton P, Sze SH, Stelly DM, Chen ZJ: Developmental and gene expression analyses of a cotton naked seed mutant. Planta 2006, 223: 418-432.
    69. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K: Biosynthesis of plant cell wall polysaccharides - a complex proc ess. Curr Opin Plant Biol 2006, 9: 621-630.
    70. Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, and Zhu YX: A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol 2007, 175: 462-471.
    71. Li XB, Cai L, Cheng NH, Liu JW: Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 2002, 130: 666-674.
    72. Li XB, Fan XP, Wang XL, Cai L, Yang WC: The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 2005, 17: 859-875.
    73. Li Y, Smith C, Corke F, Zheng L, Merali Z, Ryden P, Derbyshire P, Waldron K, Bevan MW: Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana. Plant Cell 2007, 19: 2500-2515.
    74. Li YL, Sun J, Xia GX: Cloning and characterization of a gene for an LRR receptor-like protein kinase assoc iated with cotton fiber development. Mol Genet Genomics 2005, 273: 217-224.
    75. Liepman AH, Wilkerson CG, Keegstra K: Expression of cellulose synthase-like: Csl, genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 2005, 102: 2221-2226.
    76. Liu HC, Creech RG, Jenkins JN, Ma DP: Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Bioc him Biophys Acta 2000, 1487: 106-111.
    77. Liu Y, He J, Ji S, Wang Q, Pu H, Jiang T, Meng L, Yang X, Ji J: Comparative studies of early liver dysfunction in senescence-accelerated mouse using mitoc hondrial proteomics approaches. Mol Cell Proteomics 2008, 7: 1737-1747.
    78. Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR: Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci U S A 2001, 98: 2262-2267.
    79. Ma DP, Tan H, Si Y, Creech RG, Jenkins JN: Differential expression of a lipid transfer protein gene in cotton fiber. Bioc him Biophys Acta 1995, 1257: 81-84.
    80. Majoul T, Bancel E, Triboi E, Ben Hamida J, Branlard G: Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics 2003, 3: 175-183.
    81. Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH: A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc Natl Acad Sci U S A 2002, 99: 15228-15233.
    82. Mann M, Jensen ON: Proteomic analysis of post-translational modifications. Nat Biotechnol 2003, 21: 255-261.
    83. Mao X, Cai T, Olyarchuk JG, Wei L: Automated genome annotation and pathway identification using the KEGG Orthology: KO, as a controlled voc abulary. Bioinformatics 2005, 21: 3787-3793.
    84. Meinert MC, Delmer DP: Changes in Biochemical Composition of the Cell Wall of the Cotton Fiber During Development. Plant Physiol 1977, 59:1088-1097.
    85. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L: CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 1999, 11:825-838.
    86. Millar AH, Sweetlove LJ, Giege P, Leaver CJ: Analysis of the Arabidopsis mitoc hondrial proteome. Plant Physiol 2001, 127: 1711-1727.
    87. Mohnen D: Pectin structure and biosynthesis. Curr Opin Plant Biol 2008, 11: 266-277.
    88. Molhoj M, Verma R, Reiter WD: The biosynthesis of D-Galacturonate in plants. functional cloning and characterization of a membrane-anchored UDP-D-Glucuronate 4-epimerase from Arabidopsis. Plant Physiol 2004, 135:1221-1230.
    89. Molhoj M, Verma R, Reiter WD: The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 2003, 35: 693-703.
    90. Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt WF, Lerouge P, Farrant JM, Driouich A: Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol 2006, 141: 651-662.
    91. Nakayama K, Maeda Y, Jigami Y: Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 2003, 13:673-680.
    92. Nguema-Ona E, Andeme-Onzighi C, Aboughe-Angone S, Bardor M, Ishii T, Lerouge P, Driouich A: The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides. Plant Physiol 2006, 140:1406-1417.
    93. Nolte KD, Hendrix DL, Radin JW, Koc h KE: Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol 1995, 109: 1285-1293.
    94. Nuhse TS, Stensballe A, Jensen ON, Peck SC: Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 2004, 16: 2394-2405.
    95. O'Farrell PZ, Goodman HM, O'Farrell PH: High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 1977, 12: 1133-1141.
    96. Oka T, Nemoto T, Jigami Y: Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 2007, 282: 5389-5403.
    97. Ookawara R, Satoh S, Yoshioka T, Ishizawa K: Expression of alpha-expansin and xyloglucan endotransglucosylase/hydrolase genes assoc iated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead: Sagittaria pygmaea Miq. , tubers. Ann Bot: Lond, 2005, 96: 693-702.
    98. Pandey A, Mann M: Proteomics to study genes and genomes. Nature 2000, 405: 837-846.
    99. Pandey, A, Chakraborty, S, Datta, A, and Chakraborty, N: Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea: Cicer arietinum L. , . Mol. Cell. Proteomics 2008, 7: 88-107.
    100. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ: Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 2000, 12: 319-341.
    101. Peltier JB, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ: Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. J Biol Chem 2001, 276: 16318-16327.
    102. Pena MJ, Zhong R, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH: Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 2007, 19: 549-563.
    103. Persia D, Cai G, Del Casino C, Faleri C, Willemse MT, Cresti M: Sucrose synthase is assoc iated with the cell wall of tobacco pollen tubes. Plant Physiol 2008, 147: 1603-1618.
    104. Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C: The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 2007, 19: 237-255.
    105. Persson S, Wei H, Milne J, Page GP, Somerville CR: Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 2005, 102: 8633-8638.
    106. Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P: The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 2006, 18: 3047-3057.
    107. Preuss ML, Delmer DP, Liu B: The cotton kinesin-like calmodulin-binding protein assoc iates with cortical microtubules in cotton fibers. Plant Physiol 2003, 132: 154-160.
    108. Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX: Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007, 19: 3692-3704.
    109. Qin YM, Pujol FM, Hu CY, Feng JX, Kastaniotis AJ, Hiltunen JK, Zhu YX: Genetic and bioc hemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. J Exp Bot 2007, 58: 473-481.
    110. Qin YM, Pujol FM, Shi YH, Feng JX, Liu YM, Kastaniotis AJ, Hiltunen JK, Zhu YX: Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Res 2005, 15: 465-473.
    111. Reiter WD, Vanzin GF: Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 2001, 47:95-113.
    112. Reiter WD: Bioc hemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 2008, 11: 236-243.
    113. Reiter WD: Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 2002, 5: 536-542.
    114. Richmond T: Higher plant cellulose synthases. Genome Biol 2000, 1: REVIEWS3001.
    115. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L: Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 2000, 23:131-142.
    116. Rose JK, Braam J, Fry SC, Nishitani K: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 2002, 43: 1421-1435.
    117. Rosti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ: UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell 2007, 19: 1565-1579.
    118. Rouquie D, Peltier JB, Marquis-Mansion M, Tournaire C, Doumas P, Rossignol M: Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing. Electrophoresis 1997, 18: 654-660.
    119. Ruan YL, Chourey PS, Delmer DP, Perez-Grau L: The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol 1997, 115: 375-385.
    120. Ruan YL, Chourey PS: A fiberless seed mutation in cotton is assoc iated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol 1998, 118: 399-406.
    121. Ruan YL, Llewellyn DJ, Furbank RT: Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003, 15: 952-964.
    122. Ruan YL, Llewellyn DJ, Furbank RT: The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K. transporters and expansin. Plant Cell 2001, 13: 47-60.
    123. Ryser U: 1985, Cell wall biosynthesis in differentiating cotton fibers. Eur J Cell Biol. 39: 236-256.
    124. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J: Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2002, 2: 1131-1145.
    125. Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, et al. : Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 2006, 47: 761-775.
    126. Santoni V, Bellini C, Caboc he M. Use of two-demensional protein-pattern analysis for the characterization of arabidopsis thaliana mutants. Planta 1994, 192: 932-941.
    127. Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T: Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 2000, 21: 3329-3344.
    128. Santoni V, Rouquie D, Doumas P, Mansion M, Boutry M, Degand H, Dupree P, Packman L, Sherrier J, Prime T, et al. : Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J 1998, 16: 633-641.
    129. Seifert GJ, Barber C, Wells B, Roberts K: Growth regulators and the control of nucleotide sugar flux. Plant Cell 2004, 16: 723-730.
    130. Seifert GJ: Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 2004, 7: 277-284.
    131. Sharples SC, Fry SC: Radioisotope ratios discriminate between competing pathways of cell wall polysaccharide and RNA biosynthesis in living plant cells. Plant J 2007, 52:252-262.
    132. Shevchenko, A, Wilm, M, Vorm, O, and Mann, M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996, 68: 850-858.
    133. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18: 651-664.
    134. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, et al. : Toward a systems approach to understanding plant cell walls. Science 2004, 306: 2206-2211.
    135. Somerville C: Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 2006, 22: 53-78.
    136. Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D: Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci U S A 2006, 103: 5236-5241.
    137. Sun Y, Fokar M, Asami T, Yoshida S, Allen RD: Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 2004, 54: 221-232.
    138. Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD: Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 2005, 46: 1384-1391.
    139. Suo J, Liang X, Pu L, Zhang Y, Xue Y: Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton: Gossypium hirsutum L. , . Bioc him Biophys Acta 2003, 1630: 25-34.
    140. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hiroc hika H: Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 2003, 133: 73-83.
    141. Taylor NG, Laurie S, Turner SR: Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 2000, 12: 2529-2540.
    142. Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T: Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant Cell Physiol 2002, 43: 411-418.
    143. Udall JA, Flagel LE, Cheung F, Woodward AW, Hovav R, Rapp RA, Swanson JM, Lee JJ, Gingle AR, Nettleton D, et al. : Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 2007, 8: 81.
    144. Updegraff, D. M.: Semimicro determination of cellulose in biological materials. Anal. Bioc hem. 1969, . 32: 420-424.
    145. Usadel B, Kuschinsky AM, Rosso MG, Eckermann N, Pauly M: RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol 2004, 134: 286-295.
    146. Usadel B, Schluter U, Molhoj M, Gipmans M, Verma R, Kossmann J, Reiter WD, Pauly M: Identification and characterization of a UDP-D-glucuronate 4-epimerase in Arabidopsis. FEBS Lett 2004, 569:327-331.
    147. Vaughn, K. C, and Turley, R. B: The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma 1999, 209: 226-237.
    148. Vener AV, Harms A, Sussman MR, Vierstra RD: Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 2001, 276: 6959-6966.
    149. Vreeburg RA, Benschop JJ, Peeters AJ, Colmer TD, Ammerlaan AH, Staal M, Elzenga TM, Staals RH, Darley CP, McQueen-Mason SJ, et al. : Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant J 2005, 43: 597-610.
    150. Wang BC, Wang HX, Feng JX, Meng DZ, Qu LJ, Zhu YX: Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 2006, 6: 2555-2563.
    151. Wang GD, Li QJ, Luo B, Chen XY: Ex planta phytoremediation of trichlorophenol and phenolic alleloc hemicals via an engineered secretory laccase. Nat Biotechnol 2004, 22: 893-897.
    152. Wang HY, Yu Y, Chen ZL, Xia GX: Functional characterization of Gossypium hirsutum profilin 1 gene: GhPFN1, in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta 2005, 222: 594-603.
    153. Wang J, Ji Q, Jiang L, Shen S, Fan Y, Zhang C: Overexpression of a cytosol-localized rhamnose biosynthesis protein encoded by Arabidopsis RHM1 gene increases rhamnose content in cell wall. Plant Physiol Biochem 2009, 47:86-93.
    154. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY: Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 2004, 16: 2323-2334.
    155. Watt G, Leoff C, Harper AD, Bar-Peled M: A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis. Plant Physiol 2004, 134: 1337-1346.
    156. Wen F, Zhu Y, Hawes MC: Effect of pectin methylesterase gene expression on pea root development. Plant Cell 1999, 11: 1129-1140.
    157. Werhahn W, Braun HP: Bioc hemical dissection of the mitoc hondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 2002, 23: 640-646.
    158. Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW: MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol 2004, 134: 296-306.
    159. Whittaker DJ, Triplett BA: Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 1999, 121: 181-188.
    160. Wilkins, T. A, and Arpat, A. B: The cotton fiber transcriptome. Physiol. Plant. 2005, 124: 295-300.
    161. Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES: Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 2006, 47: 107-127.
    162. Wubben MJ, 2nd, Rodermel SR, Baum TJ: Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. Plant J 2004, 40:712-724.
    163. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ: Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442: 705-708.
    164. Xu WL, Wang XL, Wang H, Li XB: Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A. Gene 2007, 389: 27-35.
    165. Xu Y, Li H. B, Zhu YX: Molecular biological and bioc hemical studies reveal new pathways important for cotton fiber development. J. Int. Plant Biol. 2007, 49: 69-74.
    166. Yan S, Tang Z, Su W, Sun W: Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 2005, 5: 235-244.
    167. Yang YW, Bian SM, Yao Y, Liu JY: Comparative proteomic analysis provides new insights into the fiber elongation proc ess in cotton. J. Prot. Res. 2008, 7: 4623-4637.
    168. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 2008, 20:2160-2176.
    169. Yu XH, Zhu YQ, Lu S, Zhang TZ, Chen XY, Xu ZH. Comparative research on G. Hirsutum cv Xu-142 fuzzless-lintless mutation. Science China: Series C 2000, 30: 517-522.
    170. Zhang, T, and Pan, J. Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L. Jiangsu J. Agric. Sci 2000 1992, 7: 13-16.
    171. Zhu YQ, Xu KX, Luo B, Wang JW, Chen XY: An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers. Plant Physiol 2003, 133: 580-588.
    172. Zolla L, Rinalducci S, Timperio AM, Huber CG: Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I. Plant Physiol 2002, 130: 1938-1950.
    173. Zolla L, Timperio AM, Walcher W, Huber CG: Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem II. Plant Physiol 2003, 131: 198-214.
    174. Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH: KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, loc alizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 2000, 12: 1137-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700