西葫芦农艺性状的遗传、遗传图谱的构建及遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用西葫芦三个性状差异显著的自交系配制2个杂交组合,对其产量、熟性、果实性状和株型等主要农艺性状进行杂种优势、相关性及6个不同世代的遗传分析;利用RAPD技术构建了西葫芦的遗传图谱,并对国内外47份西葫芦种质进行了遗传多样性及亲缘关系分析。
     1.杂种一代的杂种优势结果表明:西葫芦杂种一代在产量构成性状方面均有不同程度的杂种优势表现,两个熟性性状有负向超亲优势,杂种一代的株型得到了改善。在产量构成性状方面:西葫芦的杂种一代的单株产量、单株结果数均表现超中优势;2个组合的F1单果质量均表现超高亲优势,超高亲优势分别为7.71%和15.75%;在坐果率方面,2个组合F1的均表现超亲优势,组合1的F1超中优势为14.98%,组合2的F1超中优势为17.70%。在产量构成性状方面表现出显著的杂种优势,说明F1具有高产的优势。在熟性性状方面:西葫芦的F1始花期和第一雌花节位均表现出负向超低亲优势,说明F1始花期提前,第一雌花节位降低,使得杂种一代具有早熟的优势。在果实构成性状方面:西葫芦的果实横径与果形指数均表现出杂种优势,西葫芦的果实整齐度均表现超高亲优势;以上说明杂种一代的果实性状得到改善,外观品质得到了提高。在株型构成性状方面:西葫芦的叶片数均减少,且低于低值亲本;在节间距方面,2个组合的F1节间距均表现负向超中优势,优势分别为-32.26%和-37.21%;以上结果说明西葫芦杂种一代的株型得到改善,株型表现得更紧凑。
     2.相关性结果表明:主要产量性状之间及产量性状与熟性性状、果实性状和株型性状密切相关;熟性性状与果实性状及株型性状密切相关。如单株产量与单果质量、单株结果数、座果率性状呈正相关,单株产量与第一雌花节位、始花期、果实横径及果柄宽度的相关系数密切负相关;座果率与瓜柄长、果实长度及果形指数性状显著相关;第一雌花节位与始花期、瓜柄长度、果实长度、株高、叶片数及节间距的相关性达到显著水平。西葫芦果实性状之间及果实性状与株型性状密切相关;如:果形指数与果柄宽度相关性达到负的极显著水平,与果实长度、果实整齐度、株高、叶片数、节间距等达到正的显著或极显著水平;果实整齐度与株高、叶片数及节间距等性状密切负相关。株型性状之间关系密切,株高与节间距密切相关;叶片数于节间距密切负相关。
     西葫芦产量主要构成性状、熟性性状、果实性状及株型性状之间关系密切,互相影响。
     3.西葫芦主要农艺性状进行遗传分析。表明:果实颜色为质量性状,绿色对白色为显性;西葫芦单株产量符合D-2模型,即一对加性主基因+加性-显性多基因的遗传,遗传传效应以加性效应为主,主基因起决定作用;西葫芦的单果质量性状符合B-1模型,即加性-显性-上位性两对主基因模型,起主要作用的是显性效应与显性×显性互作效应,其次是加性效应;单株结果数符合D-2模型,由主基因与多基因共同控制,且组合1以加性效应为主,组合2除了加性效应之外,显性效应也起了重要的作用;西葫芦的座果率以加性效应为主;西葫芦的始花期性状符合加性B-1模型,组合1与组合2的显性效应估计值之和均为负值,使得杂种一代始花期性状呈现出负向超亲优势;西葫芦的始花期性状以加性效应和加性×显性上位性互作效应为主。在第一雌花节位方面的研究结果表明:组合1的第一雌花节位加性效应起主要作用,组合2的第一雌花节位加性效应与显性效应同时起作用; 2个组合的显性效应值均为负值,使得杂种一代第一雌花节位性状呈现负向超亲优势。西葫芦果实性状符合B-1模型或D-2模型,B-1模型由主基因控制,D-2模型由一对主基因和多基因共同控制,但多基因的遗传率较高。西葫芦的株高、叶片数和节间距遗传均为加性-显性-上位性两对主基因(B-1)遗传模型,西葫芦的株高性状均以加性效应为主,其次均为加性×加性上位性互作效应和显性效应;西葫芦的叶片数性状以加性和显性效应为主;组合1的节间距遗传效应以加性为主,兼有加×加上位性效应值,控制组合2节间距的主要是加性效应,兼有显性效应和显×显上位性。西葫芦的节间距基因显性效应值之和均为负值,使得杂种一代节间距缩短,表现负向超亲优势。
     可见,在西葫芦多数性状中,显性效应为正值,是该性状超亲杂种优势形成的遗传基础;在某些性状遗传中,显性效应值为负值,使F1表现负向超亲优势如第一雌花节位、始花期、叶片数及节间距等,上位性普遍存在西葫芦的农艺性状中。
     4.利用西葫芦蔓生/白皮自交系q-1和矮生/绿皮自交系23-4G杂交获得的93份F2:3个体,采用RAPD分子标记进行分析,建立了西葫芦的优化反应体系,并构建了包含20个连锁群,由589个标记组成的连锁图谱,覆盖基因组2060.9cM,平均图距3.50cM。
     5.利用RAPD技术对国内外47份西葫芦种质进行了遗传多样性及亲缘关系分析。从520条随机引物中筛选出30条能产生稳定多态性的引物用于RAPD反应,共扩增出367条带,其中302条表现多态性,占总数的82.29%,遗传多样性高,种质资源丰富。聚类分析将47份西葫芦种质分为2大类。在第Ⅰ类群中,可将32份种质分为4个亚类。第Ⅱ类群分成5个亚类。47份材料的相似系数分布在0.63~0.89之间,西葫芦遗传距离较窄。从生长习性来看,矮生与半蔓生的亲缘关系最近;从皮色来看,白色与绿色亲缘关系最近,其次为黄色与绿色,亲缘关系最远的为白色与花皮。
By using six generation of two summer squash crosses, we studied the heterosis performance, the correlation between characters and the genetic mechanism of heterosis of summer squash. By using RAPD, the genetic map of summer squash was constructed. And RAPD analysis was applied to assess the genetic diversity and relationship in 47 summer squash germplasm.
     1. The result of heterosis analysis indicated that: there were different heterosis in yield characters; There were negative heterosis in two maturation characters and plant characters were improved. In yield composed characters, character of yield per plant and fruit number per plant showed the middle heterosis;Individual fruit mass of summer squash of hybrid F1 was both higher than their high parent; Ratio of fruit setting of summer squash of hybrid F1 showed the middle heterosis, and the heterosis of cross 1and cross 2 was separately 14.98%and 17.70%.The distinct heterosis in yield characters showed that hybrid F1 was higher yield than parents. In maturation characters, early flowering season of summer squash of hybrid F1 was more early than their early parent and node number of 1st female flower of summer squash of hybrid F1 was lower than their low parent; So hybrid F1 showed more early than parents. In the fruit composing characters, fruit length of cross 2 and fruit width of two crosses of hybrid F1 all showed different heterosis; Fruit uniformity of summer squash of hybrid F1 both were higher than that of high parent ;So the fruit shape characters of hybrid F1was better improved. In the plant composing characters, leaf number of summer squash of hybrid F1 decreased and was fewer than parents; Length of summer squash of hybrid F1 showed the middle heterosis, and the heterosis of cross 1and cross 2 was -32.26%and 37.21%; So plant characters of hybrid F1 were improved differently and were more compact.
     2. Correlation analysis indicated that: yield and yield composing characters had intimate relation with maturation characters, fruit characters and plant characters; maturation characters had intimate relation with fruit characters and plant characters. Yield per plant had positive significant relation with fruit number, individual fruit mass, and fruit setting ratio; While yield per plant had negative significant relation with early flowering season, node number of 1st female flower, fruit width and fruit stalk width; Ratio of fruit setting had significant relation with fruit stalk length, fruit length and fruit shape index; Node number of 1st female flowering had significant level with early flowering season, fruit stalk length, fruit length, plant length, leaf number and internode length; Fruit shape index had negative significant relation with fruit stalk width, but it had positive significant relation with fruit length, fruit uniformity, plant length, leaf number and internode length; So fruit characters had significant relation with each other and plant characters. Plant characters had significant relation with each other; Leaf number had negative significant relation with internode length.
     Yield composed characters, maturation characters, fruit characters and plant characters had significant relation and interacted with each other.
     3. Genetic analysis indicated that: fruit color was a qualitative character; green was dominant to white; Yield per plant of summer squash was D-2model, and additive effect played main role, but major gene played decisive role; Individual fruit mass accorded with B-1model, dominant effect and dominant×dominant epastasis mainly played role, and secondly additive effect played role; Fruit number per plant of summer squash fitted D-2 and was together controlled by major gene and polygene, and additive effect mainly played role on cross 1, while additive effect and dominant effect both played role on cross2; Genetic effect of fruit setting ratio of summer squash was mainly additive effect; Early flowering season of summer squash accorded with B-1model;dominant effect estimated value of summer squash was negative, so hybrid F1showed negative heterosis, and genetic effect of early flowering season of summer squash was mainly additive effect and additive×dominant epastasis; The result in node number of 1st female flowering showed that additive effect play main role on cross1 and additive effect and dominant effect together play main role on cross 2; Dominant effect estimated value of was negative, so hybrid F1showed negative heterosis; Fruit characters of summer squash accorded with B-1model or D-2 model, and fruit characters according with B-1model was controlled by major gene , but fruit characters that according with D-2 model was controlled by major gene and polygene, but polygene effect occupied higher percentage than major gene; Leaf number and internode length of summer squash both accorded with B-1model; Genetic effect of leaf number of summer squash was additive and dominant effect; Genetic effect of internode length of cross 1 was mainly additive effect and concurrently additive×additive epastasis,while genetic effect of internode length on cross 2 was mainly additive effect and concurrently dominant and dominant×dominant epastasis;Dominant effect estimated value of summer squash was negative, this made internode length shorten, so hybrid F1showed negative heterosis; Additive effect mainly played role on plant length of summer squash, and secondly additive×additive epastasis and dominant effect played role.
     So in the heredity of most character, dominant effect was positive, and dominant effect was the genetic basis of heterosis; In some other characters, dominant effect was negative and lower than of additive effect, this made hybrid F1 show negative heterosis like node number of 1st female flowering, early flowering season and internode length etc; epastasis widely existed in the heredity of summer squash characters.
     4.A 589 point map of summer squash was constructed from 93 F2:3 individuals each cross between summer squash q-1(vine/white) and23-4G(bush/green). The map delineated 20 linkage groups spanned 2060.9cM with an average distance of 3.50cM between the markers.
     5.RAPD analysis was to applied to assess the genetic diversity and relationship in 47 summer squash germplasm. Genomic DNA of 47 summer squash germplasms was amplified by RAPD. 30 polymorphic primers, screened out of 520 random Primers, were used and produced 367 reproducible bands. Of them, 302 bands (82.29%)were polymorphic. The cluster analysis divided the germplasm used in this study into 2 groups, which was not completely in agreement with the traditional taxonomy on summer squash. The first group was divided into four sub-groups. The second group was divided into five sub-groups. The similarity coefficient of 47 germplasms was between 0.63~0.89, so the genetic distance of summer squash was narrow; For growth habit, genetic relationship between cluster and half-sprawl was nearest.
引文
艾呈祥,陆璐,马国斌.SSR标记技术在甜瓜杂交种纯度检验中的应用.园艺学报,2005,32(5):902-904
    包和平,王晓丽,李春成,杨光,张丽萍.玉米抗螟性主基因—多基因混合遗传分析.吉林农业大学学报, 2007, 29(3):253-255
    蔡长春,陈宝元,傅廷栋,涂金星.甘蓝型油菜开花期和光周期敏感性的遗传分析.作物学报,2007,33 (2): 345-34
    蔡健,王永杰,杨剑波.AFLP分子标记在作物育种中的应用.安徽农业科学, 2002, 30 (2) :167-169
    曹碚生,陈学好,徐强,顾青山.黄瓜单性结实世代遗传效应的初步研究.园艺学报, 1997, 24(1): 53-56
    曹越平,杨庆凯.大豆抗灰斑病主基因的发现与遗传研.遗传学报,2002,29(1):67-71
    陈凤真,何启伟,樊治成,盛金.西葫芦8个农艺性状的遗传效应分析.园艺学报,2007,34(5):1183-1188
    陈惠明,许亮,卢向阳,易克,许勇,张海英,刘晓虹.黄瓜雌性性状主控基因CsACSIG的分析及其定位.分子植物育种,2005,3(4):520-524
    陈劲枫,娄群峰,余纪柱,庄飞云.黄瓜性别基因连锁的分子标记筛选.上海农业学报, 2003,19(4):11-14
    陈劲枫,庄飞云,逯明辉,钱春桃,任刚.采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系.植物分类学报, 2003, 41(5):427-435
    陈金体,王晓峰. RAPD分子标记鉴定甜瓜种子纯度试验.广东农业科学, 2007, 10: 17-20
    陈文华,王仁杯,吴银良,朱军,徐绍英.二棱大麦茎杆特性的ADAA模型的遗传研究.生物数学学报,2000,15(4):480-486
    陈献功,刘金波,洪德林.粳稻直立穗与弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析.作物学报,2006, 32(8):1143-1150
    陈学军,陈劲枫.辣椒株高遗传分析.西北植物学报,2006, 26(7): 1342-1345
    陈学军,陈劲枫,方荣,程志芳,王述彬.辣椒始花节位遗传研究.园艺学报, 2006,33(1): 152-154
    程永安,张恩慧,许忠民,王妍妮,梁宝魁.南瓜优良种质资源创新研究初报.西北农业学报,2001,10(1):100-102
    程振家,王怀松,张志斌,郭世荣.甜瓜白粉病抗性遗传机制研究.江苏农业科学, 2006,06:224-225
    程振家,王怀松,张志斌,郭世荣,贺超兴.甜瓜遗传多样性的AFLP分析.西北植物学报, 2007, 27(2):244-248
    池秀蓉,顾兴芳,张圣平,王晓武,王烨.黄瓜无苦味基因bi的分子标记研究.园艺学报, 2007,34(5):1177-1182
    邓义才,王得元.利用RAPD技术鉴定早青3号黄瓜种子纯度的研究.1999,3:17-18
    杜雄明,汪若海,刘国强.棉花纤维相关性状的主基因-多基因混合遗传分析.棉花学报,1999,11(2):73-78
    范敏,许勇,张海关.西瓜果实性状QTL定位及其遗传效应分析.遗传学报, 2000, 27(10): 902-910
    樊治成,贾洪玉,郭洪芸,杨梁.西葫芦耐冷性生理指标研究.园艺学报,1999,26(5): 309-313
    方先文,姜东,戴延波.小麦籽粒蛋白质含量的遗传分.江苏农业学报,2003,19(1):5-8
    方先文,姜东,戴延波.小麦籽粒总淀粉及支链淀粉含量的遗传分析.作物学报, 2003,29(6):925-929
    盖钧镒.植物数量性状遗传体系的分离分析方法研究.遗传,2005,27(1)130-136
    盖钧镒,王建康.大豆对豆秆黑潜蝇抗性的主基因+多基因遗传.全国作物育种学术讨论会论文集,中国农业科技出版社,1998,241-248
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003,224-260
    高军,徐海,苏小俊,袁希汉.普通丝瓜果长遗传规律分析.江苏农业科学,2007,2005:123-125
    葛秀秀,张立平,何中虎,章元明.冬小麦PPO活性的主基因+多基因混合遗传分析.作物学报,2004,30(1):18-20
    龚晓平,杨正林,赵芳明,钟秉强,凌英华,何光华.一个水稻抽穗期主基因Hd(t)的遗传分析及分子定位.作物学报, 2007, 33(11):1906-1909
    顾兴芳,张春震,封林林,方秀娟,张天明.保护地黄瓜苗期性状遗传分析.园艺学报,2002,29(5):43-46
    顾兴芳,张素勤,张圣平.黄瓜果实苦味Bt基因的AFLP分子标记.园艺学报, 2006, 33 (1):140-142
    关佩聪.瓜类生物学和栽培技术[M].北京:中国农业出版社,1994,84-96
    管荣展,盖钧镒.甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系.中国油料作物学报,1998,20(4):ll-15
    郭军,许勇,寿森炎,张海英,康国斌.西瓜种质资源亲缘关系的RAPD分析.植物遗传资源科学,2002, 3(1):7-13
    韩建明,侯喜林,史公军,耿建峰,邓晓辉.不结球白菜叶子重量性状遗传模型分析.遗传,2007, 229 (9): 1149-1153
    何昆燕,易斌,傅廷栋,涂金星.甘蓝型油菜菌核病抗性的遗传分析.作物学报, 2005,31(11):1495-1499
    何小红,盖钧镒.回交自交系群体数量性状遗传体系的分离分析方法.作物学报, 2006,32(2):210-216
    侯北伟,窦秉德,章元明,李生强,杨晋彬,刘福霞,杜金昆,孙其信.小麦雌性育性的主基因+多基因混合遗传分析.遗传,2006,28(12):1567-1572
    候发强.西葫芦数量性状的遗传研究.山东农业大学硕士论文, 2001
    黄天带,吴江生,王令强,华玉伟.甘蓝型油菜矮秆突变体的遗传及其矮秆基因的RAPD标记.农业生物技术学报,2006,14(6):942-944
    胡开林,付群梅.苦瓜主要经济性状的遗传效应分析.园艺学报,2001,28(4):323-326
    江建华,郭媛,陈献功,徐红梅,侯一甲,洪德林.粳稻穗角与稻米品质的相关性及稻米品质遗传分析.遗传, 2007,06:68-78
    金文林,白璐,文自翔,濮绍京,赵波.小豆百粒重性状遗传体系分析.作物学报, 2006, 32(9) : 1410-1412
    鞠秀芝.黄瓜(Cucumis sativus L.)霜霉病抗性相关基因的分子标记研究.西北农林科技大学硕士学位论文.2004
    兰海,高世斌,樊庆琦,曹墨菊,唐祈林,潘光堂,荣廷昭.玉米种子休眠性的数量遗传分析.作物学报,2006, 32(10):1586-1588
    兰红玲,樊治成,高兆波,李建友,王秀峰.西葫芦杂种一代产量性状优势表现及相关分析.山东农业大学学报(自然科学版),2003,34(4):504-508
    李海真,许勇,武俊新,王永健,郭军,寿森炎.南瓜属三个种的亲缘关系与品种的分子鉴定研究.农业生物技术学报, 2000, 8(2):161-164.
    李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因-多基因混合遗传分析. 遗传,2006, 28(4):458-462
    李建友,樊治成,刘艳梅,张曙东,侯法强.西葫芦果实性状的分析.园艺学报,2005,32(1):118-120
    李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种.分子植物育种,2006,4(5):702-708
    李俊丽,向长萍,张宏荣,杨静.南瓜种质资源遗传多样性的RAPD分析.园艺学报,2005, 32 (5): 834-839
    李锡香.黄瓜种质遗传多样性的形态和分子评价及其亲缘关系研究.中国农业科学院蔬菜花卉研究所博士学位论文. 2002
    李锡香,朱德蔚,杜永臣,张广平,沈镝.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究.植物遗传资源学报, 2004, 5(2):147-152
    李锡香,朱德蔚,杜永臣,沈镝,孔秋生,宋江萍.黄瓜种质资源遗传多样性及其亲缘关系的AFLP分析.园艺学报, 2004, 31(3):309-314
    李晓慧,田朝阳,王从彦. SRAP分子标记分析西瓜遗传多态性.生物技术, 2007, 17(3):23-26
    李效尊,潘俊松,王刚,田丽波,司龙亭,吴爱忠,蔡润.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建.自然科学进展, 2004,14(11): 1225-1229
    李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析.园艺学报,2005, 32(4) : 643-647
    李严,张春庆.新型分子标记SRAP技术体系优化及应用前景分析.中国农学通报, 2005, 21(5):108-112
    李艳梅,段会军,马峙英.西瓜种质资源的遗传多样性及亲缘关系的AFLP分析.华北农学报, 2007, 22(增刊):177-180
    李云龙,李海真,崔崇士,张海英,宫国义.与南瓜矮生基因连锁的分子标记.农业生物技术学报, 2007, 15(2):279-282
    林碧英,高山,聂德毅.薄皮×厚皮甜瓜F1主要经济性状的遗传及其杂种优势.福建农业学报.2002,17(4):217-219
    林明宝,林师森.有棱丝瓜果长遗传效应的初步研究.华南农业大学学报. 2000, 21(2):8-10
    刘朝晖,张旭,李浩兵.小麦品种纹枯病抗性遗传的初步研究.南京农业大学学报,1999,22(3):5-8
    刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析.遗传学报,2000, 27(11):1018-1026
    刘金波,洪德林.粳稻穗角和每穗颖花数的遗传分析.中国水稻科学,2005,19(3):223-230
    刘仁虎,孟金陵. MapDraw在Excel中绘制遗传连锁图的宏.遗传, 2003,25(3): 317-321
    刘树兵,工洪刚,孔令让,贾继增.高等植物的遗传作图.山东农业大学学报,1999,30(1) : 73-78
    刘万勃,宋明,刘富中,王怀松. RAPD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报, 2002, 10(3):231-236
    刘小俊,李跃建,赵云,房超,孙正海,王茂林.中国部分栽培南瓜种质资源遗传多态性RAPD分析.西南农业学报,2004,17(5):567-571
    刘政国.苦瓜产量杂种优势与配合力研.广西农业生物科学,2002,21(4):238-241
    娄群峰,陈劲枫,Molly Jahn,陈龙正,耿红,罗向东.黄瓜全雌性基因连锁的AFLP和SCAR分子标记.园艺学报,2005,32(2):256-261
    逯晓萍.高丹草遗传构建及重要农艺性状的基因定位研究[D].内蒙古农业大学博士论文,2005
    罗庆云,於丙军,刘友良,章元明,薛艳玲,张艳.栽培大豆耐盐性的主基因+多基因混合遗传分析.大豆科学, 2004,23(4):239-244
    罗建华,张海英,毛爱军,张峰,王永健,浦铜良.黄瓜ZYMV-CH抗性遗传与连锁分子标记研究.园艺学报,2006,33(05):1001-1006
    马少芹,许勇,张海英,宫国义,沈火林.西瓜抗小西葫芦黄花叶病毒基因的连锁分子标记研究.植物病理学报,2006,36(1):68-73
    孟龄,濮绍京,赵波,万平,曲延英.小豆F2∶3世代籽粒色泽性状遗传分析.安徽农学通报, 2007, 13(22):40-42
    莫惠栋.质量-数量性状的遗传分析:2、世代平均数与遗传方差.作物学报,1993,19 (3):193-200
    莫惠栋.质量-数量性状的遗传分析:1、遗传组成和主基因型的鉴别.作物学报, 1993, 19 (1): 1-6
    潘俊松,王刚,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及始花位的基因定位.自然科学进展, 2005,15(2): 167-172
    蒲晓斌,王茂林,栾丽,王湘君,张锦芳,李浩杰,张启行,李熠毅,曹毅,蒋梁材,赵云.中国西南地区芥菜型油菜资源遗传多样性分析.中国农业科学, 2007, 40(8): 1610-1621
    戚存扣,盖钧镒.不同遗传来源甘蓝型油菜开花期的基因型差异和遗传效应分析.作物学报,2002,28(4):455-460
    戚存扣,盖钧镒,傅寿仲,浦惠明,张洁夫,陈新军,高建琴.甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析.作物学报,2004,30(12): 1274-1277
    戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传.遗传学报,2001, 8 (2): 182-187
    钱虎君,盖均镒,喻德跃.大豆豆腐产量、品质及有关加工性状的遗传分析.中国油料作物学报. 2001,23(1):27-30
    钱虎君,盖均镒,喻德跃.大豆豆乳产量、品质及加工性状的遗传变异和遗传规律研究.作物学报,2001,27(6):880-885
    申时全,曾亚文,李绅崇,普晓英,杜娟,朱广彬,易加洪.应用主基因-多基因混合模型研究昆明小白谷孕穗期耐冷性的遗传.植物遗传资源学报,2004,5(3):252-255
    萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南(第二版)[M].北京:科学出版社,1998.
    苏小俊,徐海,袁希汉,陈劲枫.普通丝瓜第1雌花节位遗传研究.福建农业学报, 2007,22(2): 154-157
    苏小俊,徐海,袁希汉,陈劲枫.普通丝瓜始雌花节位遗传分析.西北植物学报, 2007,27(7): 1468-1472
    孙敏,乔爱民,王和勇,曾建军.黄瓜DNA提取及其RAPD-PCR反应体系的优化.种子,2004, 23(6):9-14
    孙万仓,范惠玲,孟亚雄,张涛,张金文,王保成,武军艳,邵登魁,朱惠霞,燕妮,赵玉昌.利用RAPD分子标记技术研究芸芥的遗传多样性.中国农业科学, 2006, 39(5):1049-1057.
    孙万仓,官春云,张金文,孟亚雄,刘自刚,张涛,李枸,陈社元.中国芸芥遗传多样性RAPD标记分析.中国农业科学, 2003, 36(11):1248-1253.
    孙小镭,王永强,王冰,顾三军,王志峰,曹齐卫.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报, 2004, 31(3):327-331
    孙祖东,盖均镒.大豆对抗食叶性害虫抗性的研究.中国农业科学, 1999,32(5):81-88
    孙祖东,盖均镒.大豆抗斜纹夜蛾幼虫的遗传研究.作物学报, 2000,26(3):341-346
    索文龙,戚存扣.甘蓝型油菜油酸含量的主基因+多基因遗传分析.江苏农业学报, 2007, 23( 5):396-400
    仝淑玫,蔺瑞明,何月秋,徐世昌.小麦抗源Holdfast和Flinor抗条锈病主效、微效基因的遗传分析.中国农业科学,2006,39(11):2243-2249
    王刚,潘俊松,李效尊等.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.中国科学C辑生命科学,2004, 34 (6): 510-516
    王佳,徐强,缪旻珉,梁国华,张明志,陈学好.黄瓜种质资源遗传多样性的ISSR分析.分子植物育种,2007,5(5):677-682
    王建康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计研究[D].南京农业大学,1996
    王建康,盖钧镒.利用回交或F2:3世代鉴定主基因和多基因的混合遗传模型.作物学报,1998,24(4):402-409
    王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应.遗传学报,1997,24(5):432-440
    王建康,盖钧镒.数量性状主基因-多基因混合遗传的P1、P2、F1、F2和F2:3的联合分析方法.作物学报,1998,24(6):651-659
    王建设,王建康,朱立宏,盖钧镒.水稻主基因一多基因混合遗传控制白叶枯病抗性的基因效应分析.遗传学报,2000,27(l):34-38
    王庆钰,朱立宏,盖钧镒,王建康.水稻广亲-和性遗传的主基因一多基因混合模型分析.遗传, 2004, 26(6):898一902
    王瑞,徐新福,李加纳,唐章林,谌利.甘蓝型油菜硫苷组分的胚、细胞质和母体遗传效应分析.作物学报, 2007,33 (12): 2001-2006
    王淑芳,石玉真,刘爱英,熊宗伟,唐淑荣,李俊文,王玉红,袁有禄.陆地棉纤维品质性状主基因与多基因混合遗传分析.中国农学通报,2006,22(2):157-161
    王亚娟.黄瓜(Cucumis sativus L.)枯萎病抗性相关基因的分子标记研究.西北农林科技大学硕士学位论文,2005
    王羽,樊庆琦,张利,隋新霞,李根英,楚秀生,张宪省,黄承彦.小麦花药培养特性的数量遗传分析.麦类作物学报, 2007,27(5): 755-760
    王羽,樊庆琦,张利,隋新霞,李根英,楚秀生,张宪省,黄承彦.小麦K35早熟特性的遗传分析.麦类作物学报, 2007,27(6): 957-960
    王志峰,孙日飞,孙小镭,顾兴芳,曹齐卫,曲士松.山东省黄瓜地方品种资源亲缘关系的AFLP分析.园艺学报,2004,31(1):103-105
    王志峰,孙小镭,曹齐卫,高俊凤,曲士松,孙晋斌.山东黄瓜地方种质资源的聚类分析.山东农业科学,2003(5):19-23
    王志峰,孙小镭,孙日飞,顾兴芳,曹齐卫,薛成峰.山东密刺类黄瓜亲缘关系研究.中国蔬菜,2005(2):6-8
    魏佑营,张启沛,王树常等.早熟节瓜新品种-山农2号.园艺学报, 2000,27(5):388
    吴春珠,程祖辛,赵明富,郑建华,杨聚宝.水稻雄性不育系博白A的抽穗期遗传分析.安徽农学通报,2005,11(6):55-57
    吴建宇,陈彦惠,席章营.玉米雄穗性状主基因-多基因遗传的初步研究.河南农业大学学报,2000,34(2):107-113
    向道权,黄烈健,曹永国,戴景瑞.玉米产量性状主基因-多基因遗传效应的初步研究.华北农学报, 2001,16(3):1-5
    肖炳光,朱军,卢秀萍,白永富,李永平.烤烟主要农艺性状对产量的遗传贡献率分析.遗传学报,2005,32(10):1089-1093
    肖静,胡治球,汤在祥,隋炯明,李欣,徐辰武.多个相关数量性状主基因的联合分析方法.中国农业科学,2005,38(9):1717-1724
    谢传晓,朱苏文,李培金,程备久,余增亮.玉米对生性状两个显性基因SCAR分子标记.高技术通讯,2002,8:38-40
    谢大森,何晓明,郝新洲,彭庆务.冬瓜主要农艺性状的杂种优势初步分析.上海农业学报, 2003,19(2):35-37
    谢文军.不同类型丝瓜杂种优势及性状遗传特性的研究.山东农业大学硕士学位论文, 2003
    谢震.甜瓜雌雄不同株型基因的RAPD标记[D].泰安:山东农业大学,2001.
    徐辰武,胡治球,王学枫,王伟.胚乳性状主基因的分离分析方法.中国农业科学, 2005, 38 (7):1317-1323
    许明辉,王孟宇,龙文虹.烟草主要数量性状的遗传效应分析.遗传,2000,22(6):395-397
    徐春晓.大豆对食叶性害虫抗性的植株反应和虫体反应及其在资源鉴定、遗传研究.遗传学报,2000,18(1):51-58
    徐世昌,张敬原,赵文生,吴立人,张继新,袁振东.小麦京核891-1抗条锈病主效、微效基因的遗传分析.中国农业科学, 2001, 34(3):272-276
    严慧玲,方智远,刘玉梅,王永健,杨丽梅,庄木,张扬勇,孙培田.甘蓝显性雄性不育材料DGMS79-399-3不育性的遗传效应分析.园艺学报, 2007,34(1):93-98
    姚国新.甜瓜分钟遗传图谱构建的随机引物筛选及甜瓜遗传多样性研究.宁夏大学硕士学位论文,2004
    姚国新,王建设,郭永强,陈素生.甜瓜作图亲本随机引物扩增片段长度的多态性.首都师范大学学报(自然科学版),2005,26(1):68-72
    易克,许勇,卢向阳,肖浪涛,徐向利,宫国义,张海英.西瓜重组自交系群体的AFLP分子图谱构建.园艺学报,2004,31 (1): 53-58
    殷剑美,武耀廷,朱协飞,张天真.陆地棉产量与品质性状的主基多基因遗传分析.棉花学报,2003,15(2):67-72
    于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析.中国农业科学. 2003, 36 (2):190-l95
    袁有禄,张天真,郭旺珍, John Yu, Russell Kohel.棉花高品质纤维性状QTLs的分子标记筛选及其定位.遗传学报,2001,28(12):1151-1161.
    袁有禄,张天真,郭旺珍,John Yu, Russell Kohel.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,2002,29( 9) : 827- 834
    曾国平,曹寿椿.不结球白菜主要经济性状遗传规律的研究Ⅱ.15个农艺性状的遗传力和基因效应分析.南京农业大学学报,1998,21(1):31-35
    曾红权,刘宜柏,尹建华,邹国兴,彭志勤,杨平,黄永萍,陈春莲.三个光温敏核不育系的不育性遗传分析.中国水稻科学,2006,20(4):372-378
    詹秋文,盖均镒,章元明.大豆对食叶性害虫的抗性遗传.中国农业科学, 2002, 35(8):1016-1020
    张长远,罗少渡,郭巨先,郑晓明,罗剑宁,何晓莉.苦瓜果长的遗传效应分析.广东农业科学, 2006,1:34-35
    张桂华,韩毅科,孙小红,李淑菊,魏爱民,杜胜利.黄瓜抗与黑星病基因连锁的分子标记研究.中国农业科学,2006,39(11):2250-2254
    张桂华,杜胜利,王鸣,马德华.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得.园艺学报, 2004,31(2):189-192.
    张桂华,韩毅科,杨瑞环,杜胜利,王鸣.黄瓜种质资源遗传多样性的AFLP分析.华北农学报,2007,22(3):21-24
    张海英,葛风伟,王永健,许勇,陈青君.黄瓜分子遗传图谱的构建.园艺学报,2004, 31 (5): 617-622
    张海英,毛爱军,张峰,许勇,王永健.三种主要黄瓜病毒抗性基因的定位.农业生物技术学报, 2005,13:709-712.
    张海英,王永健,许勇,欧阳新星,康国斌.黄瓜种质资源遗传亲缘关系RAPD分析.园艺学报, 1998, 25(4):345-349.
    张红,喻梅辉,周志成,马春玲,林德佩.甜瓜分子标记纯度鉴定研究.中国瓜菜,2006(1):7-10
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,傅寿仲.甘蓝型油菜花瓣缺失性状的主基因+多基因遗传分析.中国油料作物学报,2007, 29( 3):227-232
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜含油量的遗传与QTL定位.作物学报,2007, 33( 9):1495- 1501
    张立平,赵昌平,单福华,张风廷,叶志杰.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析.作物学报,2007,33(9):1553-1557
    张鲁刚,王明,陈航,刘玲,Samuel S.M.Su.白菜RAPD反应条件的优化.西北农业大学学报, 2000,28(2):1-7
    张培通,朱协飞,郭旺珍,俞敬忠,张天真.高产棉花品种泗棉3号产量及其产量构成因素的遗传分析.作物学报,2006,32(7): 1011-1017
    张仁兵,易克,许勇,寿森炎,刘立功,张海英,宫国义.用重组自交系构建西瓜分子遗传图谱.分了植物育种,2003, 1(4):481-489
    张素勤,顾兴芳,张圣平,邹志荣.黄瓜白粉病抗性遗传机制的研究.园艺学报,2005,32(5): 134-136
    张素勤,顾兴芳,张圣平,邹志荣.黄瓜霜霉病抗性遗传分析.西北植物学报, 2007,28(12): 9-11
    张小村,李斯深,赵新华,李瑞军.15个小麦重组自交系群体抗纹枯病性的遗传分析.麦类作物学报,2004,24(3):13-16
    张学昆,谌利,殷家明,唐章林,李加纳.甘蓝型黄籽油菜RAPD和种皮色素遗传多样性. 中国农业科学, 2003, 36(7):752-756.
    张勇,张伯桥,高德荣,程顺和.小麦赤霉病抗源N553的主基因+多基因遗传分析.中国农学通报,2005,21(6):305-307
    章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报, 2000, 27 (7):634-640
    章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报, 2000, 26 (6):699-706
    章元明,盖钧镒.利用P1、F1、P2、F2和F2:3家系五世代联合分离分析的拓展.生物数学学报,2002,17(31):363-368
    章元明,盖钧镒,王建康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传模型.生物数学学报,2000,15(31):358-366
    章元明,盖钧镒,张孟臣.利用P1、F1、P2和F2或F2:3世代联合的数量性状分离分析.西南农业大学学报,2000,22(1):6-9
    张增翠,候喜林,曹寿椿.不结球白菜维生素c和可溶性糖含量的遗传分析.园艺学报,1999,26(5):170-174
    赵福宽,周辉,高遐虹,林成.南瓜抗CMV基因的RAPD分子标记筛选.华北农学报,2007,22(1):90-94
    赵长增.DNA分子标记技术在甜瓜西瓜杂种优势利用和抗病育种中的应用[D].广州:华南热带农业大学,2001
    周桂元,梁炫强.花生抗黄曲霉侵染主微效基因分析.花生学报, 2002,31(3):11-14
    周延清.DNA分子标记技术在植物研究中的应用[M].化学工业出版社,北京:2005,79-103
    褚盼盼,向长萍,张称心,刘成平.中国南瓜种质资源农艺性状与RAPD标记分析.核农学报, 2007,21(5):441-446
    朱军.遗传模型分析方法[M].北京:中国农业出版社,1997,88-91
    庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的分析.园艺学报, 2003, 30(1):47-50
    周辉,赵福宽,林成,高遐虹,程继鸿.南瓜RAPD分析体系的优化.云南农业大学学报, 2005, 20(2):172-178
    邹继军,董伟,张志永,陈受宜,王继才,徐金星,杨庆凯,曹越平.大豆RAPD影响因素的探讨.大豆科学,1998, 17( 3):197- 201
    邹喻苹. RAPD分子标记简介.生物多样性,1995,3(2):104-108
    Amine Zraidi, Gertraud Stift, Martin Pachner, Abdolali Shojaeiyan , Li Gong, Tamas Lelley. A consensus map for Cucurbita pepo. Mol Breeding, 2007,20:375-388
    Amnon Levi, Claude E.,Thomas, Anthony P., Keinath and Todd C., Wehner. Genetic Resources and Crop Evolution, 2001, 48: 559-566,
    Ana Isabel López-Sesé, Jack Staub, Nurit Katzir & María Luisa Gómez Guillamón.Estimation of between and within accession variation in selected Spanish melon germplasm using RAPD and SSR markers to assess strategies for large collection evaluation . Euphytica , 2002,127: 41–51
    Bagget, Kean D.Inheritance of Annual Floweringin Brassica oleracea. Hortscience, 1989, 24 (4):662-664
    Baudracc o-Arnas S., and Pitrat M.J.. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, discease and morphological markers, TAG, 1996,93(1-2): 57-94
    Bradeen J.M., Staub J.E., Wye C., et al. Towards an expanded and integrated linkage map of cucumber (Cucumas satavus L.) .Genome, 2001, 44: 111~119
    Brotman Y., Silberstein L., Kobalski L, Perin C.. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance.TAG, 2002,104:1055-1063
    Brotman Y., Silberstein L., Kovalski J.. Linkage groups of Cucumis melo, including resistance gene homlogues and known genes, Acta Hort.. 2000, 510: 441-448
    Celine-VA, Sirohi-PS. Inherince of quantitative fruit characters and vine lenth in bitter gourd. Vegetable science, 1998,25(1): 14-17
    Cucurbita Genetics Cooperative Report 1992, 15:66 and 1994, 17:45
    Chung S-M,Staub J E,Chen J-F. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome, 2006; 49, 219-229
    Dane, Jiarong Liu. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol ,2007, 54:1255–1265.
    Danin P.Y., Reis N., Baudracco-Amas S., Pitrat M., et al. Simple sequence repeats in cucumis mapping and map merging. Genome, 2000, 43(6): 963-974
    Danin P.Y., Tadmor Y., Tzuri G., Resi N., et al. Construction of a genetic map of melon with molecular markers and horticultural traits, and location of genes associated with ZYMV resistance. Euphytica, 2002, 125(3): 373-384
    Danin-Poleg Y., Reis N., Tzuri G, Katzir N.. Development and characterization of microsatellite markers in Cucumis.Theor Appl Genet , 2001, 102:61-72
    Deepali-Tewari, Ram-HH, Jaiswal-HR. Gene effects for various horticultural traits in bitter gourd. Vegetable Science,1998.25(2): 159-161
    Demeke T,Adams R P,Chibbar R. Potential taxonomic use of random amplified polymorphic DNA(RAPD). A case study in Brassia. 1992,84:990-994
    Devadas-VS, Ramadas-S. Gene action of seed yield and quality traits in bitter gourd. Horticultural-Journal, 1997,10(2): 51-56
    Deyze A v, Pauls K P.The inheritance of seed color an d vernalization requirement in Brassica napus using Dhpopulations.Euphytica,1994,74:78-83
    Dijkhuizen A, Kennad WC, Havey MJ, Staub JE . RFLP variation and genetic relationship in cultivated cucumber. Euphytica , 1996,90:79-87
    Dogimont C,Leconte L, Thabuis A. Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acts Horticulturae, 2000, 510: 391-398
    Donna M, Shattuck-Eidens, Russel N Bell, Susan L, Neuhausen. DNA sequence variation within Maize and melon:Obervation From Polymerase Chain Reaction Amplification and Direct Sequenceing. Genetics, 1990, 126:207-217
    Elkind Y, Cahaner A. A mixed model for the effect of single gene, polygene and their interaction on quantitative traitsⅠ.The model and experimental design. Theor Appl Genet,1986, 72:377-383
    Fanourakis N. E., Simon P. W.. Analysis of genetic linkage in cucumber. Hered, 1987, 78:238-242
    Fazio G., Staub J.E., Stevens M.R.. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumas satavus L.)using recombinant inbred lines. TAG,2003,107(5): 864-874
    Fenny Dane, Jiarong Liu. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol, 2007, 54:1255-1265
    Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet., 2003, 107: 271-282
    Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Cucurbita Genet Coop Rep, 2003, 50: 227-238
    GAI J Y, Wang J K. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998, 97:1162-1168
    GAI Y, Zhang Y M, Wang J K. A joint analysis ofmultiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26 (4): 385-391
    Garcia E, Jamilena M, Alvarez J I. Genetic relationships among melon breeding lines revealed by RAPD markers and agronomic traits. Theoretical and Applied Genetics, 1998, 96(6-7): 878-885
    Gong L., Stift G.,Kofler R.,Pachner M.,Lelley T.. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet, 2008,117(1): 37-48
    Gonzalo M. J. , Oliver M., Garcia-Mas J., Monfort A., Dolcet-Sanjuan R., Katzir N., Aru′s P. , Monforte A. J.. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.).Theor Appl Genet ,2005, 110: 802-811
    Gwanama C., Labuschagne1 M.T. &Botha A.M. Analysis of genetic variation in Cucurbita moschata by random amplifiedpolymorphic DNA (RAPD) markers. Euphytica, 2000, 113: 19-24
    Haanatra J PW, Wye C, VerbakelH et al. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum×L.pennellii F2 populations. Theor Appl. Genet, 1999, 99:254-271
    Haejeen Bang, Sunggil Kim, Daniel Leskovar, Stephen King. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopeneβ-cyclase (LCYB) gene. Mol Breeding, 2007, 20:63-72
    Harushima Y, Kurata N, YanoM, Nagamura Y, SasakiT, Minobe Y, NakagahraM. Detection of segregation distributions in an indica-jap onica rice cross using a high-resolution molecular map. Theor. Appl. Genet., 1996, 92:145-150
    Hashizume T., Shimamoto L, Harusima, et al. Construction of a linkage map for watermelon [Citrullus lanatus (Thunb)Matsum and Nakai] using RAPD. Euphytica, 1996,90:265-273
    Hashizume T., Shimamoto L, and Hirai M.. Construction of a linkage map and QTL analysis of horticultural traits for watermelon using RAPD, RFLP and ISSR markers. TAG, 2003, 106: 779-785
    Hawkin L.K., Dane F., Kubisiak T.L., et al. Linkage mapping in a watermelon population segregation for fusarium wilt resistance. J. Amer. Soc. Hort. Sci., 2001, 126(3): 344-350
    Horejsi T, Staub J E. Genetic variation in cucumber(Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genetic resources and crop evolution, 1999, 46:337-350
    Jack E. Staub, Ana I. L′opez-Ses′e1 & Nikolaos Fanourakis. Diversity among melon landraces (Cucumis melo L.) from Greece and their genetic relationships with other
    melon germplasm of diverse origins. Euphytica , 2004,136: 151-166 John G K Williams,Anne R Kabelik,Kenneth J Livak,et a1.DNA polymorphisms amphfied by arbitrary primers are useful as genetic markers.Nucleic Acids Research,1990,l8(22): 6531-6535
    Joobeur T,Gusmini G,Zhang X, Levi A,Xu Y, Wehner T C, Oliver M,Dean R A. Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. TAG,2006,112:1553-1562
    Kasrawi M A. Diversity in landraces of summer squash from Jordan. Genetic Resources and Crop Evolution, 1995, 42: 223-230
    Katsunori Tanaka , Atsushi Nishitani ,Yukari Akashi , Yoshiteru Sakata , Hidetaka Nishida, Hiromichi Yoshino, Kenji Kato. Molecular characterization of South and East Asian melon (Cucumis melo L.), and the origin of Group Conomon var.makuwa and var. conomon revealed by RAPD analysis. Euphytica ,2007, 153:233-247
    Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan PB. Length polymorphism and homologies of microsatellitesin several cucurbitacean species. Theor Appl Genet , 1996, 93: 1282-1290
    Kennard W K, Poetter K, Dijkhuizen A, Meglic V, Staub J, Havery M. Linkages among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide crosses of cucumber. TAG, 1994, 89:42-48
    Knerr L.B., Staub J.E.. Inheritance and linkage relationships of isozyme loci in cucumber (Cucumis sativus L .). Theor Apple Genet, 1992, 84:217-224
    Konish T, Abe K, Matsuura S, Yano Y. Distorted segregation of the esterase isozyme genotypes in barley. Hordeum vulgare L. JPN. J. Genet, 1990, 65:411-416
    Lee S.J., Shin J.S., Park K.W., Hong Y. P.. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thunb.) Mansf.] germplasm.TAG, 1996, 92(7):719-725
    Lee Y. H.. Use of random amplified polymorphic DNAS for linkage group analysis in interspecific hybrid F2 generation of cucubita. Journal of the Korean Society for Horticultual Science, 1995, 36(3):323-330
    Levi A., Thomas C.E., Joobeur T., Zhang X.,et al . A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides×C.lanatus var. lanatus)×Citrullus coloc ynthis, TAG, 2002, 105(4): 555-563
    Levi A., Thomas C.E., Zhang X.P., et al. A genetic linkage map for watermelon based on RAPD markers. J. Amen Soc. Hort. Sci., 2001, 126 (6): 730-737
    Liou P.C., Chang Y.M., Hsu W.S., et al. Construction of a linkage map in Cucumis melo L. using random amplified polymorphic DNA markers. Acta. Hort. 1998, 461: 123-131
    Loisel P, et al. Detecting a major gene in an F2 population. Biometics,1994,50:512-516
    Mather K, Jinks J K. Biometrical genetics 3rd ed. London:Chapman and Hall 1982,65-103
    María Ferriol, Maria Belén Picóand Fernando Nuez. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers.Genetic Resources and Crop Evolution ,2003,50: 227-238
    Markert C L, Moller F. Multiple forms of enzyme: Tissue ontogenetic and species specific patterns. Proc.Natl.Acad.Sec.USA:45:735-763
    Mellc V., Staub J. E.. Inheritance and linkage relationships of allozyme and morphological loci in cucumber (Cucumis sativus L .). Theor. Apple. Genet., 1996, 92: 865-872
    Meyer, J. D. F, Deleu W., Garcia-Mas J. , Havey M. J. Construction of a fosmid library of cucumber (Cucumis sativus)and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Mol Genet Genomics,2008, 279(5): 473-480
    Mibus H., Tatlioglu T..Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.).Theor Appl Genet ,2004, 109: 1669–1676
    Mohanty-BK.Polygenic inheritance in pumpkin --a diallel analysis. Horticultural Journal. 2001,14(1): 55-59
    Mohanty-BK, Mishra-RS. Studies on combining ability for flowering traits in pumpkin. Haryana-Journal-of- Horticultural Sciences.2000,29(3-4): 220-222
    Mohanty-BK, Mohanty-SK, Mishra-RS. Genetics of yield and yield components in pumpkin. Indian-Journal-of-Agricultural- Sciences. 1999, 69(11): 781-783
    Morales M., Luis-Arteaga M., Alvarez J.M., Dolcet-Sanjuan R.,Monfort A., Arus P., Garcia-Mas J.. Marker saturation of the region flanking the gene NSV conferring resistance to the melon necrotic spot carom virus (MNSV) in melon. Amer Soc. Hort. Sci., 2002,127(4): 540-544
    Morales M., Roig E., Monforte A.J., Ams P., and Garcia-Mas J.. Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome, 2004,47(2): 352-360
    Murry H G, Thomspon W F. RAPD isolation of weight DNA.Nucleic Acid Res, 1980, 8: 4321-4322
    Naoki Chiba, keita Suwabe, Guolu Xie. Mirosattelite marker forming of melon and application on cucurbitaceous crops..Breeding Science, 2003,22(6):42
    Neuhausen S L. Evaluation of restriction fragment length polymorphism in Cucumis melo. Thero Appl Genet, 1992, 83:379-382
    Noguera F.J., Capel J. , Alvarez J.I, Lozano R..Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theor Appl Genet , 2005, 110: 714-720
    Neuhausen S L. Evaluation of restriction fragment length polymorphism in Cucumis melo. Thero Appl Genet, 1992,83:379-382.
    0liver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese AL, Arroyo M, Gomez-Paniagua H, Arus P, de Vicente M C. Construction of a reference linkage map for melon. Genome, 2001, 44: 836-845
    Paris H S, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet, 2003, 106:971-978
    Park Y.H., Sensoy S., Wye C., et al. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaicviruses. Genome, 2000, 43(6): 1003-1010 W Patrick Wechter,Ralph ADean.Hort Science,1998,33(2):219-292.
    Pitchaimuthu-M, Sirohi-PS. Genetic analysis of fruit characters in bottle gourd. Journal of genetics and breeding ,1997.51(1): 33-37
    Perin C., Hagen L.S., de Conto V., et al. A reference map of Cucumis melo based on two recombinant inbred line populations, TAG, 2002, 104(6-7): 1017-1034
    Serquen F C,Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.)using random-amplified polymorphic DNA markers. Molecular Breeding, 1997, 3:257-268
    Silberstein L., Kovalski L, Brotman Y., et al. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome, 2003, 46(5): 761-774
    Staub J.E., Serquen F.C.. Towards an integrated linkage map of cucumber (Cucumas satavus L.):map merging experiments. Acta. Hort., 2000, 510: 357-366
    Staub J E, Serquen F C, Mccreight J D. Genetic diversity in cucumber(Cucumis sativus L.)Ⅲ:An evaluation of India germplasm. Genetic resources and crop evolution, 1997, 44:315-326
    Staub JE, Box J, Meglic V, Horejsi TF, McCreight JD . Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet Res Crop Evol ,1997,44:257-269
    Suat Sensoy , Saadet Büyükalaca , Kazim Abak. Evaluation of genetic diversity in Turkish melons (Cucumis melo L.) based on phenotypic characters and RAPD markers. Genet Resour Crop Evol ,2007, 54:1351-1365
    Thomas H,Staub J E,Thomas C.Linkage of random amplified polymorphie DNA markers to downy mildew resistance in cucumber(Cucumis sativus L.).Euphytica,2000,l 15: 105-1l3
    Wang J, DW Podhch, M Cooper et a1. 2001. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor Appl Genet 1 03(5):804-816
    Wang J, J Gai. Identification of major-polygene mixed inheritance model of quantitative traits form F2 population. Chinese Journal of Genetics,1997, 24(3):181-190
    Wang J, J Gai. The inheritance of resistance of soybeans to Agromyzid beanfly: Mixed major gene and polygenes genetic analysis. Euphytica, 2001.122:9-18
    Wang Y.H., Thomas C.E., and Dean R.A.. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. TAG, 1997, 95 (5-6): 791-798
    Wayne Kennard. Progress toward Development of an RFLP map for cucumber. Hortscience, 1990, 25(9):159
    Wilkie S E,Isaac P G,Slater R J. Random amplified polymorphic DNA(RAPD) markers for genetic analysis in Allium. Theor Appl Genet,1993,86:497-504
    Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map of soybean: Progress and Prospective. Soybean Genet.Newslet., 1997, 24:121-122.
    Yael Danin-Poleg, Yaakov Tadmor, Galil Tzuri, Noa Reis, Joseph Hirschberg& Nurit Katzir. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica , 2002,125: 373 -384
    Young H P, Suat S,Crispin W, Rudie A,Johan P,Michael J H.A genetic map of cucumber composed of RAPDs,RFLPs,AFLPs,and loci conditioning resistance to papaya ringspot an d zucchini yellow mosaic viruses.Genome,2000,43:1003 -1010
    Zamir D, Navot N, Rudich J. Enzyme polymorphorism in Citrullus lanatus and C.colocythis in Israel and Sinai. Plant Syst.Evol., 1984, 146:163-170
    ZHAN Q W,GAI J Y,ZHANG YM,et al. Development and Expression process of Inheritance of Resistance to Cotton Worm (Prodenia litura) in Soybean. Acta Genetica Sinica, 2001, 28(10):956-963
    Zhanyong SUN. Inheritance and molecular marker-based genetic mapping of parthenocarpy in cucumber (Cucumis sativus L.).University of Wisconsin-Madison, 2004
    ZHANG Shu-Fen, MA Chao-Zhil ,ZHU Jia-Cheng, WANG Jian-Ping, WEN Yan–Cheng ,FU Ting-Dong. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acts Genetics Sinica, 2006, 33 (2):171-180
    Zhang X P, Rhodes B B. RAPD molecular marker in watermelon. Horescience, 1993, 18(5): 223
    Zhang Y M, Gai J Y,Yang Y H.The EIM algorithm in the joint segregation analysis ofquantitative traits. Genet Poes Camb,2005, 81:157- 165
    Zheng X.Y., Wolff D.W., Baudracco-Anas S., and Pitrat M.. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.). TAG, 1999,99: 453-463
    Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T.A consensus map for Cucurbita pepo. Mol Breed , 2007,20:375-388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700