陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的天然纤维作物,也是重要的油料作物之一。自上世纪90年代以来,我国棉花育种进入了一个利用杂种优势的新时期。分子标记技术的发展,为杂种优势的理论研究和实际应用提供了强有力的手段。筛选到与目的性状中的主效基因紧密连锁的分子标记进行辅助选择,可大大提高育种效率,对快速同步改良作物的产量、品质、抗病虫性状具有重要意义。但由于陆地棉的遗传基础狭窄,品种间的遗传多态性低,目前还没有较高覆盖率的陆地棉品种间的分子标记遗传图谱。利用陆地棉品种间的组合定位QTL时,搜索空间只占棉花全基因组的一小部分,定位结果用于辅助选择时常有力不从心之感。而且在棉花育种中,常规育种手段的选择效率普遍偏低。
     本文旨在利用分子标记技术和两个多亲本分离群体,构建具有较高覆盖率的陆地棉品种间的分子标记遗传图谱,并用以分析发掘湘杂棉2号、皖杂40、中棉所28以及南抗3号等几个在我国长江流域和黄河流域大面积推广种植的优良杂交组合的亲本中与产量和纤维品质相关的数量性状基因位点。用轮回选择的方法,在两个与QTL定位群体来源相同基础群体间进行特殊配合力相互轮回选择,打破各产量构成因素间、高产与优质以及高产与抗逆基因间的不利连锁,充分聚合产量杂种优势建成基因;并用QTL定位结果在基础群体和改良群体中进行分子标记辅助选择提高育种效率,加速育种进程,进一步改良亲本群体,选出含有更多产量杂种优势建成基因的优秀亲本,以培育出具有更高杂种优势的优良杂交组合。
     1.用湘杂棉2号、皖杂40、中棉所28以及南抗3号中源于长江流域棉区的亲本构建了一个四交群体(泗棉3号/苏棉12//中4133/8891)及其F_(2:3)家系,利用SSR标记和JOINMAP3.0软件构建了一张陆地棉四交群体品种间的分子标记遗传图谱。该图谱总长为2113.3cM、含有286个多态位点、覆盖率达42.3%。该图谱由56个连锁群组成,其中51个连锁群被定位到26条染色体上。单个连锁群上的标记数从2个到24个,平均5.2个;长度从0.37 cM到125 cM,平均38.4 cM。A亚组由24个连锁群组成,总长度为808.4cM、含有125个多态位点,标记间的距离平均为6.5 cM;D亚组由27个连锁群组成,总长为1231.6cM、含有150个多态位点,标记间的距离平均为8.2 cM。F测验表明A、D亚组间的标记数没有明显差异,D亚组的标记间的平均距离大于A亚组。5个连锁群未被安排到任何染色体。整个图谱标记间的距离平均为7.4 cM。
     利用四交群体F_(2:3)家系的两年表型数据,用MAPQTL5.0对株高、果枝、叶绿素含量、光合速率、现蕾期等5个农艺与生理性状,单株铃数、铃重、衣分、每铃种子数、籽指、衣指、籽棉产量、皮棉产量等8个产量性状及产量构成因素,纤维长度、纤维强度、麦克隆值、伸长率和整齐度等5个纤维品质性状等共18个性状进行了QTL定位。共检测到14个控制农艺与生理性状的可能性QTL和2个显著性QTL,解释的表型变异从4.0%-19.4%;检测到31个控制产量性状及产量构成因素的QTL,其中5个为显著性QTL,26个为可能性QTL,解释的表型变异从3.3%-30.5%;检测到28个控制纤维品质性状的QTL,其中9个为显著性QTL,19个为可能性QTL,解释的表型变异从4.6%-25.8%。在所有QTL中,qSI-1、qLP-1、qFL-2、qFM-1、qFL-5和qFL-4等6个QTL与前人研究的结果一致。21个QTL均可在一年的单独分析中或两年的平均数分析中检测到,而且位置和效应方向相同或大致相同。这些表现出不依赖于环境的稳定性QTL,可应用于标记辅助选择。
     2.用湘杂棉2号、皖杂40、中棉所28中源于黄河流域棉区的亲本和一个栽培品种构建了一个三交群体(164/中12//低酚棉8号),利用JOINMAP3.0构建了一张三交群体品种间的遗传图谱。该图谱总长为940.1cM、含有107个多态位点、覆盖率18.8%,两多态位点间的平均遗传距离为8.8 cM。图谱由29个连锁群组成,26个连锁群被定位到19条染色体上。单个连锁群的长度从1.1 cM到85.9 cM,平均32.4 cM。
     利用三交群体F_(2:3)家系的两年表型数据,共检测到6个与果枝、叶绿素含量、光合速率、现蕾期相关的QTL,解释的表型变异从3.2%到5.6%。检测到15个与单株铃数、铃重、衣分、每铃种子数、籽指、籽棉产量、皮棉产量等产量性状及产量构成因素相关的QTL,其中6个为显著性QTL,9个为可能性QTL,解释的表型变异从2.6%到11.0%。检测到8个与纤维长度、麦克隆值、伸长率和整齐度等纤维品质性状相关的QTL,其中3个为显著性QTL,5个为可能性QTL,解释的表型变异从3.2%到6.8%。
     3.经过一轮群体间特殊配合力相互轮回选择后,群体的产量性状大多有显著改良,平均数提高,增幅从1.96%到26.99%不等。群体的表型性状的变异幅度没有下降,分子标记分析的结果也显示群体的遗传多样性得到保持,甚至有一定程度的提高。在经过多代自交和杂交的轮回选择群体中,用与QTL连锁的单标记和两侧标记进行言袷?仍然有较好的效果。在长江流域群体中聚合衣分和铃重的QTL时,同时选择两个QTL的效果明显优于每次只对一个QTL进行选择的效果。在黄河流域群体中聚合衣分和铃重的QTL时,同时选择的衣分QTL的个数对选择效果有显著影响,选择的QTL数目越多,表型值越高;但同时选择铃重QTL的个数则对选择效果没有明显影响。
     利用这些与OTL连锁的分子标记在植株开花前进行标记选择,在开花前就可以选出优良单株进行下一轮的测交,不必等到吐絮后进行表型选择后再确定下一轮测交的单株,可将轮回选择的程序减少一季;或者说减少当季随机选株测交的盲目性,提高了选择效率。
Cotton is the most important textile fiber crop and the world's second-most important oil-seed crop after soybean.Since the 90's of last century,the breeding of Upland cotton (Gossypium hirsutum L.) cultivars had step into a new period characterized with ultility of heterosis in China.The developments on molecular marker technology offer plant breeders a powerful tool to understand genetic basis of heterosis and make use of it in breeding. Especially,if the marker tightly linked with major gene controlling interesting traits was identified,selection assisted with the marker will improve the efficiency of selection for improving cultivars for yield,products quality,pest resistance,etc.
     No genetic linkage map derived from upland cotton cultivars and coverd most cotton genome was reported because of their narrow genetic basis and low genetic polymorphism. Only a fraction of the cotton genome was exploited when these crosses derived from upland cotton cultivars were used to QTL mapping,and the results of QTL mapping was not valuable for MAS.Classic selection methods were low power for cotton breeding
     In this paper,molecular markers and segregated populations derived from more paprents than two were used to develop genetic linkage map and to exploit QTLs concerned with yield and fiber quality.These parents were also parents of four hybrids,Xiangzamian2, Wanza40,Zhongza028 and Nankang3 which were popularized hybrids in the Changjiang River valley and in the Huanghe River valley.For the popurse of pyramiding more super genes,specific combining ability reciprocal recurrent selection method was used to break down linkage-drag among yield components,and high yield and low fiber quality between two initial populations derived from the same parents was used for QTL mapping populations.MAS was conducted with QTL mapping results to accelerate the procedure of populations improvement,and pick out materials pyramided more super genes for the hybrid breeding during the specific combining ability reciprocal recurrent selection procedure.The results are followed:
     1.A four-way cross segregated population,Simian3/Sumian12//Zhong4133/8891,and its F_(2:3) inbreed lines were constructed.The four materials Simian3,Sumian12,Zhong4133 and 8891,which originated from Changjiang River valley,were the parents of the elit hybrids Xiangzamian2,Wanza40,Zhongza028 and Nankang3.A linkage map was developed for the four-way cross with SSR markers and JOINMAP3.0 software.The map is comprised of 55 linkage groups with 286 mapped loci which span between 0.37cM and 125cM.The 286 loci covered 2113.3cM,which was approximately 42%of the total recombination length of the cotton genome.The average distance between loci was 7.4cM genome wide.Twenty four linkage groups were assigned to A-subgenome,contain 126 loci and span 808.4cM and 27 linkage groups were assigned to D-subgenome,contain 152 loci and span 1231.6cM.The average distance between loci was 6.4cM in A-subgenome and 8.1cM in D-subgenome.Five remained linkage groups were failed to be assigned to any chromosome
     In the four-way cross population,QTLs concerned with plant architecture and physiology traits included plant height,plant branches,leaf chlorophyll content, photosynthetic rates and date of first square,and yield and yield components traits involved number of bolls per plant,boll weight,lint percent,number of seeds per boll,seed index, lint index,seed cotton yield per plant and lint yield per plant,and fiber quality traits,such as fiber length,fiber strength,micronaire reading,fiber elongation ratio and fiber uniformity were detected with MAPQTL5.0.Fourteen suggestive QTLs and two significant QTLs controlled plant architecture and physiology traits were detected with explained 4.0% to 19.4%of the phenotypic variation.Twenty six suggestive QTLs and five significant QTLs concerned with yield and yield components traits were detected with explained 3.3% to 30.5%of the phenotypic variation.Nineteen suggestive QTLs and nine significant QTLs concerned with fiber quality traits were detected with explained 4.6%to 25.8%of the phenotypic variation.Out of all QTLs,qSI-1、qLP-1、qFL-2、qFM-1、qFL-5 and qFL-4 were also reported in previously research.Twenty one QTLs were detected in same location/interval or nearby at same loci and with same effects direction in separate analysis and joint analysis.These QTLs with little interaction by environment and stable in different environments are of value for a marker-assisted selection(MAS) program
     2.A three-way cross segregated population,Zhong164/Zhong12//Difenmian8,and its F_(2:3) inbreed lines were constructed.Zhong12 and Difenmian8 were parents of three hybrids, Xiangzamian2,Wanza40 and Zhongza028,and originated from Huanghe River valley.A linkage map was developed for the four-way cross with SSR markers and JOINMAP3.0 software.A linkage map was constructed for the four-way cross with JOINMAP3.0.The map is comprised of 29 linkage groups with 107 mapped loci which span between 1.1cM and 85.9cM.The 107 loci covered 940.1cM,which was approximately 18.8%of the total recombination length of the cotton genome.The average distance between loci was 8.8cM genome wide
     In the four-way cross population,Six suggestive QTLs controlled plant branches,leaf chlorophyll content and date of first square were detected with explained 3.2%to 5.6%of the phenotypic variation.Nine suggestive QTLs and six significant QTLs concerned with number of bolls per plant,boll weight,lint percent,number of seeds per boll,seed index, seed cotton yield per plant and lint yield per plant were detected with explained 2.6%to 11.0%of the phenotypic variation.Five suggestive QTLs and three significant QTLs concerned with fiber length,micronaire reading,fiber elongation ratio and fiber uniformity were detected with explained 3.2%to 6.8%of the phenotypic variation.
     3.After one cycle specific combining ability reciprocal recurrent selection,the means of yield traits of two populations were significantly increased with extent from 1.96%to 26.99%.The range of variation of yield traits was not seen decrease in two improved populations.The data from molecular marker analysis also showed that the genetic variety of improved populations did not decrease than initial populations,and even was increased in some degree.Although recurrent selection populations aroused from primary segregated population of three or four-way cross by many times inbreed and outbreed,selection with single marker or flanking markers were still effective.Means of individuals contained two QTLs were significant higher than that of contained one QTLs when pyramid QTLs of lint percent or boll weight in PⅠ.Means of lint percent of individuals will significantly increase with the number of QTL increase in individuals when pyramid QTLs of lint percent or boll weight in PⅡ.But the same case can not be seen when pyramid QTLs of boll weight
     Assisted with markers linked with QTL,selected individuals to test-cross for next cycle recurrent selection can be done before flowering instead of after boll opening,and can accelerate the procedure of recurrent selection,or conduct test-cross before flowering with distinct goal and more efficacies.
引文
1 杜威世,杜雄明,马峙英。棉花黄萎病抗性基因SSR标记研究[J]。西北农林科技大学学报(自然科学版),2004,32(3):20-24。
    2 范术丽,喻树迅,宋美珍,等。短季棉早熟性的分子标记及QTL定位[J]。棉花学报,2006,18(3):135-139。
    3 方宣钧,吴为人,唐纪良。作物DNA标记辅助育种[M]。北京:科学出版社,2001。
    4 房卫平,许守明,孙玉堂,等。棉花抗黄萎病的RAPD标记[J]。河南农业科学,2001,9:11-13。
    5 高用明,朱军。植物QTL定位方法的研究进展[J]。遗传,2000,22(3):175-179。
    6 高玉干,聂以春,张献龙。棉花黄萎病基因的QTL定位[J]。棉花学报,2003,15(2):73-78。
    7 根井正利。分子群体遗传学与进化论[M]。王家玉,译。北京:农业出版社,1983。
    8 郭旺珍,周兆华,张天真,等。RAPD鉴定棉花抗(耐)黄萎病品种(系)的遗传变异研究[J]。江苏农业学报,1999,15(1):1-6。
    9 郭旺珍,孙敬,张天真。棉花纤维品质基因的克隆与分子育种[J]。科学通报,2003,48(5):410-417。
    10 郭旺珍,张天真,潘家驹,KohelRJ。棉花胞质雄性不育育性恢复基因的RAPD-PCR标记的筛选[J],科学通报,1997,42(24):2645-2647。
    11 何风华。水稻QTL分析的研究进展[J]。西北植物学报,2004,24(11):2163-2169。
    12 黄滋康。中国棉花品种及其系谱[M]。北京:中国农业出版社,1996。
    13 李平。水稻分子图谱的构建与基因分析[D]。1994。
    14 林忠旭,张献龙,聂以春,等。棉花SRAP遗传连锁图构建[J]。科学通报,2003,48(15):1676-1679。
    15 刘冠明,李文涛,曾瑞珍,等。水稻亚种间单片段代换系的建立[J]。中国水稻科学,2003,17(3):201-204。
    16 刘万清,贺林。SNP-为人类基因组描绘新的蓝图[J]。遗传,1998,20(6):38-40。
    17 刘勋甲,郑用琏刘纪麟。玉米轮回选择群体遗传多样性RAPD分子标记评估[J]。中国农业科学。1999,32(3):14-20。
    18 柳李旺,朱协飞,郭旺珍,等。分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因[J]。分子植物育种,2003,1(1):48-52。
    19 闵留芳,朱协飞,唐灿明,等。棉花抗黄萎病品种选育的轮回选择研究。Ⅰ。基础群体的构建[J]。棉花学报,1999,11(4):182-184。
    20 任立华,郭旺珍,张天真。利用置换系检测棉花第16染色体的产量、纤维品质QTLs[J]。植物学报,2002,44(7):815-820。
    21 宋国立,崔荣霞,王坤波。澳洲棉种遗传多样性的RAPD分析[J]。棉花学报,1999,11(2):65-69。
    22 宋国立,张春庆,贾继曾,等。棉花AFLP银染技术及品种指纹图谱应用初报[J]。棉花学报1999,11(6):281-283。
    23 宋美珍。短季棉早熟不早衰生化遗传机制及QTL定位[D]。中国农业科学院2006。
    24 谭震波。水稻分子图谱的构建及数量性状基因的研究[D]。1996。
    25 王红梅,张献龙,贺道华,等。陆地棉对黄萎病抗性的分子标记研究[J1。植物病理学报,2005,35(4):333-339。
    26 吴茂清,张献龙,聂以春,等。四倍体栽培棉种产量和纤维品质性状的QTL定位[J]。遗传学报,2003,30(5):443-452。
    27 吴兆苏,沈秋泉,陆维忠,等。小麦抗赤霉病基因库的建拓[J]。作物学报。1984,10(2):73-80。
    28 徐吉臣,朱立煌,陈英,等。用双单倍体群体构建水稻的分子连锁图谱[J]。遗传学报。1994,(3):205-214。
    29 杨俊品。玉米分子遗传图谱构建及数量性状基因定位[D]。2001。
    30 易成新,张天真,郭旺珍。陆地棉衣分QTL的形态和RAPD分子标记筛选[J]。作物学报,2001,27(6):781-786。
    31 殷剑美,武耀廷,张天真。陆地棉产量性状QTLs的分子标记及定位fJ]。生物工程学,2002,18(2):162-166。
    32 袁有禄。棉花优质纤维特性的遗传及分子标记研究[D]。博士学位论文,南京农业大学,1999。。
    33 张军,武耀廷,郭旺珍,等。棉花微卫星标记的PAGE/银染快速检测[J]。棉花学报,2000,12(5):267-269。
    34 张培通,朱协飞,郭旺珍,等。陆地棉衣分及相关性状的遗传和QTL分子标记[J]。江苏农业科学,2005,21(4):264-271。
    35 张天真。棉花纤维品质分子育种的现状及展望[J]。棉花学报,2000,12(6):321-326。
    36 章元明。作物QTL定位方法研究进展。科学通报2006,51(19),2223-2231。
    37 甄瑞,王省芬,马峙英,等。海岛棉抗黄萎病基因SSR标记研究[J]。棉花学报,2006,18(5):269-272。
    38 朱军。运用混合线性模型定位复杂数量性状基因的方法[J]。浙江大学学报,1999,33(3):327-335。
    39 朱云国,王学德,李悦有。用AFLP技术构建棉花雄性不育三系及其杂种F1的DNA指纹图谱[J]。棉花学报,2001,13(3):158-160。
    40 赵双进,张孟臣,蒋春志,等。大豆ms1轮回群体品质改良效应与分离特性研究[J]。中国农业科学 2006,39(12):2422-2427。
    41 左开井,孙济中,张献龙,等。利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英)[J]。华中农业大学学报,2000,19:190-193。
    42 Altaf MK,Zhang JF,Steward JM,et al.Integrated molecular map based on a trispecific F_2population of cotton[C].Beltwide cotton conf.1998,491-492.
    43 Bell CJ.Assessment of 30 microsatelite loci to the linkage mapping of Arabidopsis[J].Genomics,1994,250:39-49.
    44 Bernatzky R and Tanksley SD.Toward a saturated linkage mapin tomato based on isozymes and random cDNA sequence[J].Genetics 1986 112:887-898.
    45 Berube Y,Ritland C,Ritland K,et al.Isolation,characterization,and cross-species utility of microsatellites in yellow cedar(Chamaecyparis nootkatensis)[J].Genome,2003,46:353-361.
    46 Bezawada C,Saha S,Jenkins JN.SSR markers associated with root knot nematode resistance genes in cotton[J].J Cot Sci,2003,7:179-184.
    47 Bolek Y,El-Zik KM,New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research[J].J Cotton Sci,2001,5:103-113.
    48 Bolek Y,El-Zik Km,Pepper AE,et al.Mapping of Verticillium wilt resistance genes in cotton[J].Plant Sci,2005,168(66):1581-1590.
    49 Bonierbale MW,Plaisted RL and Tanksley SD.RFLP maps based on a common set of clones reveal modes of chromosomal evolutuon in potato and tomato[J].Genetics,1988,120:1095-1103.
    50 Botstein D,White RL,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment polymorphisms[J].Am J Hum Genet,1980,32:314-331.
    51 Brew RB,Yvert G,Clinton R,et al.Genetic dissection of transcriptional regulation in budding yeast [J].Science,2002,296:752-755.
    52 Broman KW,Speed TP.A review of methods for identifying QTLs in experimental crosses[M].In:Seillier-Moiseiwitsch F,ed.Statistics in Molecular Biology and Genetics.IMS Lecture Notes-Monograph Series,1999,33:114-142.
    53 Broman,KW.The genomes of recombinant inbred lines[J].Genetics,2005,169:1133-1146.
    54 Brondani C,Rangel PHN,Borba TCO,et al.Transferability of microsatellite and sequence tagged site markers in Oryza species[J].Hereditas,2003,138:187-192.
    55 Brubaker CL,Paterson AH,and Wendel JF.Comparative genetic mapping of allotetraploid cotton and its diploid progenitors [J]. Genome, 1999,42:184-203..
    56 Brubaker CL, Wendel JF. Revaluting the origin of domesticated cotton (Gossypium hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms RFLPs[J]. Am J Bot, 1994, 81(10): 1309-1326.
    57 Cantrell RJ, Ulloa, M, Zeiger E, et al.Genetic variation for stomatal conductance in an interspecific cotton population [C].Beltwide cotton conf, 1998, 485-486.
    58 Charmet, G, Robert N, Perretant MR, et al, Marker-assisted recurrent selection for cumulating additive and interactive QTLS in recombinant inbreed lines[J]. Theor Appl Genet, 1999, 99: 1143-1148.
    59 Chaudhry MR. Commercial cotton hybrids [M]. The Int. Cotton Advisory Committee Recorder, XV, 1997(2):3-14.
    
    60 Davila JA, Loarce Y, Ferrer E. Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley [J]. Theor Appl Genet, 1999, 98: 256-273.
    61 Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigated of quantitative trait loci in maize. I .Numbers, genomic distribution and types of gene action [J]. Genetics, 1987, 116:113-125.
    62 Edwards M, Johnson L. RFLP for rapid recurrent selection: Analysis of Molecular Marker Data [J]. Theor Appl Genet, 1994, 88:33-40.
    63 Endrizzi JE, Turcotte EL, Kohel RJ. Genetics, cytology and evolution of Gossypium [J], Adv Genet, 1985,23:271-375.
    
    64 Eshed Y, Zamir D. A genomic library of Library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes [J]. Euphytica, 1994, 79: 175-179.
    65 Ferriol M, Pico B, Nuez FGGenetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. Genetic Resources and Crop Evolution, 2003, 50(3):227-238.
    66 Flint-Garcia SA, Thuillet AC, Yu JM, et al. Maize association population: A high-resolution platform for quantitative trait locus dissection [J]. Plant J, 2006, 44: 1054-1064.
    67 Frary A, Nesbitt TC, Frary Amy, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000, 289: 85-88.
    68 Fraser LG, Harvey CF, Crowhurst RN, et al. EST-derived microsatellites from Actinidia species and their potential for mapping [J]. Theor Appl Genet, 2004,108:1010-1016.
    69 Frei OM.Yieldmanipulation fromselection allozyme genotypes in a composite of elite corn lines [J].Crop Sci, 1986,26:917-921.
    70 Frelichowski JEJ, Palmer MB, Main D, et al.Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends [J]. Mol Gen Genomics, 2006, 275(5): 479-491.
    71 Frey KJ and Homer T. Heritability in standard units [J]. Agron J, 1957, 49: 59-62.
    72 Fryxell PA.A revised taxonomic interpretion of Gossypium L. {Malvaceae) [J]. Rheedea, 1992, 2:108-165.
    73 Gibson G, Weir B.The quantitative genetics of transcription.Trends [J] Genet, 2005, 21(11): 616-623.
    74 Gill KS, Lubbers EL, Gill BS, et al. A genetic linkage map of Triticum Tauschii(DD) and its relationship to the D genome of bread wheat (AABDD) [J]. Genome 1991 34: 362-374.
    75 Grupe A, Germer S, Usuka J, et al. In silico mapping of complex disease-related traits in mice [J]. Science, 2001,292: 1915-1918.
    76 Guo WZ, Cai CP, Wang CB, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics, 2007, 176:527-541.
    77 Guo WZ, Zhang TZ, Pan JJ, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton[J]. Chinese Science Bulletin, 1998, 43:52-54.
    78 Hackett CA, Bradshaw JE, McNicol JW.Interval mapping of quantitative trait loci in autotetraploid species [J]. Genetics, 2001, 159: 1819-1832.
    79 Hackett CA, Weller JI.Genetic mapping of quantitative trait loci for traits with ordinal distributions [J]. Biometrics, 1995, 51: 1252-1263.
    80 Hallaner Arnel R. Recurrent selection in maize [J]. Plant Breeding Reviews. 1992,9:115-179.
    81 Hallauer AR.Compedium of recurrent selection methods and their applicaton [J].Crit Rev Plant Sci.1985, 3:1-33.
    82 Hallauer AR. 玉米轮回选择的理论与实践[M]. 中国农科院作物栽培研究所编译. 北京,农业出版社, 1989.
    83 Han ZG, Guo WZ, Song XL,et al.Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol Genet Genomics, 2004,272: 308 - 327.
    84 Han ZG, Wang CB, Song XL, et al. Characteristics, development and mapping of Gossypium hirsutum derived-EST-SSRs in allotetraploid cotton [J]. Theor Appl Genet, 2006, 112:430-439.
    85 He DH, Lin ZX, Zhang XL, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica, 2005, 144:141-149.
    86 Helentjaris T, Slocum M, Wright S, et al. Consstruction of genetic linkage maps in maize and tomato using RFLP [J]. Theor Appl Genet, 1986 72: 761-769.
    87 Heun M. Kennedy AE, Anderson JA, et al.Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare) [J.]Genome 1991 34: 437-447.
    88 Hu J and Vick BA. Target Region Amplification Polymorphism: A novel marker technique for plant genotyping [J]. Plant Molecular Biology Reporter, 2003,21: 289-294.
    89 Hull FH. Recurrent selection and specific combining ability in corn [J]. J Am soc Agron, 1945, 37:134-145.
    90 Iqbal M, Aziz N, Saeed NA, et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis [J]. Theor Appl Genet, 1997, 94:139-144.
    91 Jansen RC, Nap J P. Genetical genomics: The added value from segregation [J]. Trends Genet, 2001, 17(7): 388-391.
    
    92 Jansen RC. Interval mapping of multiple quantitative trait loci [J].Genetics, 1993, 135: 205-211.
    93 Jansen RC. Quantitative trait loci in inbred lines [M]. In: Balding D J,Bishop M, Cannings C, eds. Handbook of Statistical Genetics[M].Chichester, UK: John Wiley & Sons, 1999. 567-597.
    94 Jenkins, M.T. The segregation of genes affecting yield of grain in maize [J]. J. Am, Soc, Agrom. 1940,32:55-63.
    95 Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics, 1995, 140: 1111-1127.
    96 Jiang CX, Wright RJ, EL-Zik KM et al. Polyploid formation created unique avenues for response to selection in Gossypium (Cotton) [J]. Proc Natl Acad Sci, 1998, 95:4419-4424.
    97 Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999,152:1203-1216.
    98 Kao CH, Zeng ZB.General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics, 1997, 53: 653-665.
    99 Kao CH, Zeng ZB. Modeling epistasis of quantitative trait loci using Cockerham's model [J]. Genetics, 2002, 160: 1243-1261.
    100 Kao CH. Multiple-Interval Mapping for quantitative trait loci controlling endosperm traits [J]. Genetics, 2004, 167: 1987 -2002.
    101 Kao CH. On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci [J]. Genetics, 2000, 156: 855-865.
    102 Karaca M, Saha S, Jenkins J N, et al. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (LiI) mutant in cotton[J]. J Hered, 2002, 93:221-224.
    103 Khan MA, Myers GO, Stewart JM, et al.Cantrell. Addition of new markers to the trispecific cotton map[C]. 1999, Beltwide cotton conf. 1331.
    104 Kohel RJ, Yu J, Park YH, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica, 2001, 121: 163-172.
    105 Kosambi DDThe estimation of map distance from recombinaination values [J]. Ann Eugen, 1944, 12:172-175.
    106 Lacape JM, Nguyen TB, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum ×Gossypium barbadense backcross population [J]. Genome, 2003,46:612-626.
    107 Lan TH, Cook CG, Paterson AH. Identification of a RAPD marker linked to a male fertility restoration gene in cotton (Gossypium hirsutum L.) [J]. J Agric Genomic, 1999, 4:299.
    108 Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121: 185-199.
    109 Lewers KS, PalmerRG.Recurrent selection in soybean [M]. Plant Breeding Reviews, 1997, 15:275-313.
    110 Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2003,107(1): 168-180.
    111 Lin ZX, He DH, Zhang XL, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD[J]. Plant Breeding, 2005,124:180-187.
    112 Lin ZX, Zhang XL, Nie YX, et al. Construction of a genetic linkage map for cotton based on SRAP[J]. Chinese Sci Bull. 2003, 48:2063-2067.
    113 Liu B. Statistical Genomics: Linkage, Mapping and QTL Analysis [M]. Boca Raton, FL: CRC Press LCC. 1998.
    114 Liu HC, Creech RG, Jenkins IN, et al. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3(1) [J]. Biochim Biophys Acta, 2000, 1487(1):106-111.
    115 Liu LW, Guo WZ, Zhu XF, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L [J]. Theor Appl Genet, 2003, 106:461-469.
    116 Liu S, Cantrell RG, MaCarty JC et al. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions [J]. Crop Sci. 2000, 40:1459-1469.
    117 Liu S, Sana S, Stelly D, et al. Cantrell.Chromosomal assignment of microsatellite loci in cotton [J]. J Heredity 2000a,91:326 - 332.
    118 Luo ZW, Hackett C , Bradshaw JE, et al. Construction of a genetic linkage map in tetraploid species using molecular markers [J].Genetics, 2001, 157: 1369-1385.
    119 Luo ZW, Hackett CA, Bradshaw JE, et al.Predicting parental genotypes and gene segregation for tetrasomic inheritance [J]. Theor Appl Genet, 1999, 100: 1067-1073.
    120 Luo ZW, Kearsey MJ.Maximum likelihood estimation of linkage between a marker gene and a quantitative trait locus [J]. Heredity, 1989, 63: 401-408.
    121 Luo ZW, Zhang RM, Kearsey MJ. Theoretical basis for genetic linkage analysis in autotetraploid species [J]. Proc Natl Acad Sci USA, 2004, 101: 7040-7045.
    122 Luo ZW, Zhang Z, Lindsey L, et al. Constructing genetic linkage maps under a tetrasomic model [J]. Genetics, 2006,172: 2635-2645.
    
    123 Lyon. DNA markers and molecular breeding of cotton[J]. The Australian cotton grower, 1999, 20(5):80-83.
    124 Maliepaard C, Jansen J, Van Ooijen JW. Linkage analysis in a full-sib family of an outbreeding plant species: Overview and consequences for applications [J]. Genet Res, 1997, 70:237-25.
    125 Maliepaard C, Vanooijen JW. QTL mapping in a full-sib family of an outcrossing species [C]. In: Van Ooijen, JW. and Jansen, J. (eds) Biometrics in Plant Breeding: Applications of Molecular Markers. Wageningen, The Netherlands:CPRO-DLO, -68 July 1994:140-146.
    126 Mane SS, Bhale NL, Bhatade SS. Evaluation of single-cross, multiple-cross and modified back-cross methods based on recombination and character association in upland cotton [J]. Indian Journal Of Agricultural Sciences, 1987, 57(5): 318-321.
    127 Martin GB, Brmmonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science, 1993, 262: 1432-1436.
    128 Martinez O, Curnow RN. Estimation the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theor Appl Genet, 1992, 85: 480-488.
    129 McCouch S, Kochert G, Yu Z, et al. Molecular mapping of rice chromosomes [J] .Theor Appl Genet, 1988,76:815-829.
    
    130 Mei M, Syed NH, Gao S, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor Appl Genet ,2004,108:280-291.
    131 Memdz Rademacher MA, Hallauer AR and Russell WA. Comparative of two reciprocal recurrent selection methods in BS21 and BS22 maize populations [J]. Crop sci. 1999, 39:89-97.
    132 Meredith WR, Brown JS. Heterosis and combing ability of cottons originating from different regions of the United States [J]. J Cotton Sci, 1998,(2): 77-84.
    133 Mo HD. Genetic expression for endosperm traits. In: Weir BS, Goodman MM, Eisen EJ, et al. eds. Proceedings of the Second International Conference on Quantitative Genetics [C]. Sunderland, MA: Sinauer Associates, Inc. 1987. 478-487.
    134 Multanid S, Lyon BR. Genetic finger pringting of Australian cotton cultivars with RAPD markers [J]. Genome, 1995, 38:1005 -1008.
    135 Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet 2004, 109:167-175.
    136 Park YH, Alabady MS, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population [J]. Mol Gen Genomics, 2005,274: 428-441.
    137 Paterson AH, Saranga Y, Menz M, et al. QTL analysis of genotype×Environment interaction affecting cotton fiber quality [J]. Theor Appl Genet, 2003, 106:384-396.
    138 Rao S Q, Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses [J]. Heredity, 1998, 81:214-224.
    139 Reddy A, Haisler RM, Weller JW, et al. Development of amplified fragment length polymorphic makers in cotton [C]. Plant Genome IV Conference. San Diego. CA. 1996.
    140 Reddy OUK, Pepper AE, Saha S, et al., New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cotton Sci, 2001, 5:103-113.
    141 Reinisch AJ, Dong JM, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum× Gossypium barbadense: chromosome organization and evolution in disomic polyploidy genome [J]. Genetics, 1994, 138:829-847.
    142 Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line [J]. Acta Botanica Sinica, 2002, 44(7): 815-820.
    143 Roder M S, Plaschke J, Konig SU, et al. Abundance, variability and chromosomal location of microsatellites in wheat [J]. Mol Gen Genet, 1995, 246: 327-333.
    144 Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics, 2004,166:389-417.
    145 Saha S, Karaca M, Jenkins JN, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton [J]. Euphytica, 2003, 130:355-364.
    146 Sanchez de la Hoz MP, Davila JA, Loarce Y, et al. Simple sequence repeat primers used in polymerase chain reaction amplifications to study the genetic diversity in barley [J]. Genome, 1996, 39: 112-117.
    147 Saranga Y, Menz M, Jiang C-X et al. Genomic Dissection of Genotype × Environment Interactions Conferring Adaptation of Cotton to Arid Conditions [J]. Genome Res, 2001 11: 1988-1995 .
    148 Sax K. The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris [J]. Genetics, 1923, 8: 552-560.
    149 Schadt EE, Monks SA, Drakes TA, et al. Genetics of gene expression surveyed in maize, mouse and man [J]. Nature, 2003,422:297-302.
    150 Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton (Gossypium hirsutum L.)[J]. Theor Appl Genet, 1998b, 97: 756-761.
    151 Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of Upland cotton[J]. J Cotton Sci, 1998,4:153-163.
    152 Shapply ZW, Jenkins JN, Watson CE, et al. Establishment of molecular markers and linkage groups in two F_2 populations of Upland cotton[J]. Theor Appl Genet, 1996, 92:915-919.
    153 Shen XL, Guo WZ, Lu QX, et al. Genetic mapping for quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica, 2007, 155:371-380.
    154 Shen XL, Guo WZ, Lu QX, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica, 2006, 155:371-380.
    155 Shen XL, Guo WZ, Zhu XF, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers[J]. Mol Breed, 2005, 15:169-181.
    156 Simmonds NW. 作物改良原理(莫惠栋主译)[M].南京:江苏科技出版社,1983.
    157 Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines [J]. Theor Appl Genet, 1976,47: 35-39.
    158 Song XL, Guo WZ, Han ZG, et al. Quantitative Trait Loci Mapping of Leaf Morphological Traits and Chlorophyll Content in Cultivated Tetraploid Cotton [J]. Journal of Integrative Plant Biology, 2005,47(11):1382-1390.
    159 Song XL, Wang K, Guo WZ, et al .A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. × G. barbadense L[J]. Genome, 2005, 48:378-390.
    160 Stuber CW, Edwards MD, Wendel JF. Molecular-marker-facilitated investigated of quantitative trait loci in maize. II. Factors influencing yield and its component traits[J]. Crop Sci, 1987, 27: 639-648.
    161 Stuber CW, Edward MD.Improvement of yield and ear number resulting from selection at allozyme loci in a maize population [J].Crop Sci, 1982, 22:917-921.
    162 Tanksley SD, Medina-Hilho H, Rick CM. Use of naturally-occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato[J]. Heredity, 1982, 49: 11-25.
    163 Tanksley SD, Hewitt J, Use of molecular markers in breeding for soluble solids content in tomato -a reexamination [J]. Theor Appl Genet, 1988, 75:811-823.
    164 Thoday JM. Location of polygenes [J]. Nature, 1961, 191: 368-370.
    165 Ulloa M, Meredith WR Jr.Genetic linkage map and QTL analysis of gronomic and fiber quality traits in an intraspecific population [J]. J Cotton Sci, 2000, 4:161-170.
    166 Ulloa M, Meredith WR, Shapplet ZW, et al. RPLF genetic linkage maps from four F_(2:3) population and a joinmap of Gossypium hirsutum L [J]. Thero Appl Genet, 2002, 104:200-208.
    167 Ulloa M, Saha S, Jenkins JN, et al. Chromosomal assignment of RPLP linkage groups harboring important QTLs on an intraspecific cotton {Gossypium hirsutum L.) joinmap[J]. J Hered 2005, 96(2): 132-144.
    168 Van Ooijen JW. MapQTL 5.0: Software for the mapping quantitative trait loci in experimental populations [M]. Wageningen (the Netherlands), Plant Research International, 2004.
    169 Van Ooijen JW, Voorrips RE. JoinMapR Version 3.0: software for the calculation of genetic linkage maps [M]. CPRO-DLO, Wageningen, 2001.
    170 Wang BH, Wu YT,Huang NT, et al. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers[J].Acta Genetica Sinica, 2006, 33(2): 161-170.
    171 Wang BH, Guo WZ, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton[J]. Euphytica, 2006, 152:367-378.
    172 Wang CB, Guo WZ, Cai CP, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich[J]. Chin Sci Bull, 2006, 51: 557-561.
    173 Wang H, Zhang YM, Li XM, et al. Bayesian shrinkage estimation of quantitative trait loci parameters[J]. Genetics, 2005, 170: 465-480.
    174 Wang K, Song XL, Han ZG, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. bytranslocation and fluorescence in situ hybridization mapping [J]. Theor Appl Genet, 2006, 113(1):73-80.
    175 Weller JI. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers.Biometrics [J], 1986, 42: 627-640.
    176 Wendel JF, Stewart J McD, Rettig J H. Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium [J]. Evolution, 1991.45:694-711.
    177 Wendel JF. New world tetraploid cottons contain old world cytoplasm [J]. Proc Natl Acad Sci, 1989, U.S.A. 86:4132-4136.
    178 Wendel JF, Brubaker CL, Percial E. Genetic diversity in gossypium hirsutum and the origin of Upland cotton[J]. Am J Bot, 1992,79:1291-1310.
    179 Weyhich RA, Lamkey KR, and AR Hallauer. Effective population size and response to S1-progeny seledion in the BS11 maize population [J], Crop sci. 1998b, 38:1149-1158.
    180 Wright RJ, Thaxton P M, El-Zik K M., et al. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution[J]. Genetics, 1998, 149: 1987-1996.
    181 Wright RJ, Paterson AH, Thaxton PM, et al. DNA markers diagnostic of genetic factors controlling leaf pubescence in cotton[C]. Cotton Improvement Conference, 1998, 485.
    182 Wu MQ, Zhang XL, Nie YC, et al. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar[J]. Acta Genetica Scinica, 2003, 30:443-452.
    183 Wu RL, Li M. Functional mapping: How to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet, 2006, 7: 229-237.
    184 Wu RL, Zeng ZB. Joint linkage and linkage disequilibrium mapping in natural populations [J]. Genetics, 2001, 157: 899-909.
    185 Wu R, Lou X, Ma C, et al. An improved genetic model generates high-resolution mapping of QTL for protein quality in maize endosperm [J]. Proc Natl Acad Sci USA, 2002, 99: 11281-11286.
    186 Wu R, Ma C, Gallo-Meagher M, et al. Statistical methods for dissecting triploid endosperm traits using molecular: An autogamous model [J]. Genetics, 2002, 162: 875-892.
    187 Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross [J]. Theor Appt Genet 1996 92:230-244.
    188 Xie CQ and Xu S. Stretegies of marber-aided recurrent selection [J], Crop Sci. 1998,38:1526-1535.
    189 Xu S. Mapping quantitative trait loci using four-way crosses [J]. Genet Res, 1996, 68: 175-181.
    190 Yamamoto E, Knap HT. Soybean receptor-like protein kinase genes: paralogous divergence of a gene family [J]. Mol Biol Evol, 2001, 18(8): 1522-1531.
    191 Yamamoto T, Kuboki Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as a single Mendelian factors [J]. Theor Appl Genet, 1998, 97: 37-44.
    192 Yan GP, Chen XM, Line RF, et al. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust[J]. Theor Appl Genet, 2003, 106: 636-643.
    193 Yi N, Xu S. A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations [J]. Genetics, 1999, 153: 1029-1040.
    194 Yi N, Xu S. Bayesian mapping of quantitative trait loci for complex binary traits [J]. Genetics, 2000, 155: 1391-1403.
    
    195 Yu J, Kohel RJ, Dong JM, et al. Toward positional cloning of a major glandless gene in cotton [C]. In Proc of the Beltwide Cotton Conference, National Cotton Council, Memphis, TN, 2000, I:516-517.
    196 Yu J, Park YH, Lazo GH , et al. Molecular cotton genome with molecular markers [J]. Beltwide Cotton Conferences, 1997:447.
    197 Yu J, Yong PH, Lazo G R, et al. Molecular mapping of the cotton genome: QTL analysis of fiber quality properties[C]. In: Proceedings of Beltwide cotton conferences, San Diego, 5-9 January 1998,pp485.
    198 Yu J, Kohel, RJ. Update of the cotton genome mapping[C]. Beltwide cotton conf. 1999, pp485.
    199 Zabean, M. and P. Vos. Selective restriction fragment amplication: a general method for DNA fingerprinting [P]. European Patent Application no. 92402629, Publication No. Ep0534858Al, 1993.
    200 Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136: 1457-1468.
    201 Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci [J]. Proc Natl Acad Sci USA, 1993, 90: 10972-10976.
    202 Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet, 2002, 105: 1166-1174.
    203 Zhang TZ, Yuan YL, Yu JZ, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection[J]. Theor Appl Genet ,2003,106:262-268.
    204 Zhang YM, Mao YC, Xie CQ, et al. Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L) [J]. Genetics, 2005, 169(4): 2267-2275.
    205 Zhang ZS, Xiao YH, Luo M,et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica, 2005,144:91-99.
    206 Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits[C]. In:Chen L.S,Ruan S.G, and Zhu J (eds) Advanced topics in biomathematics: Procceedings of international conference on Mathematical Biology. Singapore: World scientific publishing Co, 1998, pp321-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700