海岛棉EST-SSR引物的遗传评价及海陆棉种间高密度遗传连锁图谱构建与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花(Gossypium L)是世界上最重要的经济作物之一,为我们提供了天然的纺织纤维和食用油,随着高效快速的纺纱技术的引进与普及,以及人民群众对衣着要求的普遍提高,对我国棉花品种的总体纤维品质提出了更高的要求,但是常规育种方法要求育种群体大,时间长,难度也较大,很难打破强度与产量之间的负相关,取得突破性进展。
     随着基因组研究的飞速发展,分子育种成为棉花纤维品质遗传改良的重要途径。新的分子标记不断被开发并用于棉花高度整合的遗传图谱的构建,棉纤维基因结构和功能的研究,棉纤维品质数量性状位点的定位及分子标记辅助选择(MAS)。
     1.海岛棉EST-SSR引物的开发与应用研究
     植物EST(expressed sequence tags)计划作为植物基因组计划的一个重要组成部分,已经在多种物种中开展起来,EST资源库的不断扩充为采集SSR提供了海量数据。现有的棉花EST-SSR引物大都开发于中棉、雷蒙德氏棉和陆地棉,尚没有海岛棉的EST-SSR开发研究。众所周知,海岛棉是最重要的棉种之一,从中可以发掘新的遗传材料用于陆地棉的纤维品质改良。
     本研究基于实验室已构建的海岛棉Pima3-79(遗传标准系)纤维发育的cDNA文库中的98条EST序列设计了119对EST-SSR引物。详细地分析了这批新的EST-SSR引物的特征,而且评价了其在物种间的可转移性,在遗传多样性分析及遗传连锁图构建方面的应用价值。
     在这些SSR中,三核苷酸重复基序AAG含量最为丰富,达11.76%。用36份材料(13份A基因组二倍体材料,11份D基因组二倍体材料和12份AD基因组异源四倍体材料)来评价新EST-SSR引物,119对引物中有76对成功扩增,共产生313条多态性条带,平均每对引物产生4.11条。在二倍体棉种中的扩增效率从78.95%(瑟伯氏棉)到94.74%(中棉和草棉),在四倍体棉种中的扩增效率从93.42%(黄褐棉)到100%(达尔文棉)。在二倍体棉种中棉的扩增多态性率为11.84%,与在四倍体棉种陆地棉的扩增多态性率相同。引物的多态性信息含量(PIC)变化于0.17-0.95之间,平均达0.53。根据Jaccard's遗传相似系数对所用36份材料进行了聚类分析,聚类结果为三大类,分别为A基因组材料,D基因组材料和AD基因组材料。此外,有21对引物在本实验室的种间回交群体[(鄂棉22×Pima3-79)×鄂棉22]DNA中表现多态性扩增,产生24个多态性位点,其中22个被锚定于该遗传连锁图的12条染色体。
     这批新的EST-SSR引物在遗传多样性分析,比较作图和分子标记辅助选择(MAS)育种的研究中具有较高的应用价值。
     2.海陆棉种间BC_1群体的高密度遗传连锁图谱构建与QTL定位
     对棉花来说,以分子标记为铺垫的基础研究和应用研究才刚刚处于起步阶段,关于棉花分子标记遗传连锁图谱和数量性状位点定位的研究仍需大量积累。以简单、可靠、适于高通量分析的分子标记构建高密度的棉花遗传连锁图谱,将不断增多的基因组信息剖析到相应的染色体片段上,才能使分子标记辅助选择育种、重要数量性状基因的图位克隆等后续的研究得到顺利开展。在众多的分子标记中,SSR标记具有分布广泛、位点特异性、共显性、信息量高等优点,是构建棉花遗传连锁图谱最有优势的标记。
     本研究采用SSR分子标记为基础,以海陆棉种间[(鄂棉22×Pima3-79)×鄂棉22]的141个BC_1单株为作图群体,构建了一张完全基于SSR标记的高密度的遗传连锁图谱,并且以此图谱为基础,运用复合区间作图法进行纤维品质的QTL检测。
     用6310对SSR引物(3714对gSSR,2596对EST-SSR,共13个系列)进行鄂棉22和Pima3-79亲本间多态性的检测,共筛选出在双亲间表现多态性的SSR引物1026对(占16.3%),用于进行BC_1群体扩增,产生了1040个多态性SSR位点,用MapMaker/EXP.3.0软件,以LOD值≥8.0,标记间最大间距≤40cM为阈值构建了遗传连锁图谱,917个标记位点进入44个连锁群(26条染色体),图谱全长5452.2cM,标记间的平均距离为5.9cM。位于连锁图上的偏分离标记共有107个,有72.9%标记偏向于杂合子,基因组SSR的偏分离标记比例(11.7%)与EST-SSR的偏分离标记比例(11.5%)基本相当,偏分离热点区(SDR)共有11个,分布于At染色体组上的偏分离标记数(35)和SDR数(2)明显少于Dt染色体组上的偏分离标记数(72)和SDR数(9),而染色体chr02、chr16、chr18上分布的偏分离标记数量分别达到了11个、20个、23个。
     对本研究所用2596对EST-SSR引物的重复基序信息及其多态性表现进行统计分析。结果表明:四核苷酸基序的多态性率(11.33%)高于二核苷酸基序的多态性率(7.90%)及三核苷酸基序的多态性率(6.72%),五核苷酸与六核苷酸的多态性率更低(4.00%);ACAT,AC和ACT的多态性率较高(分别达到17.24%,16.67%和12.99%),而基序ACG和AGG的多态性率最低(3.33%);SSR位点长度为27bp,33bp和24bp的引物与其他引物相比,有着更大的产生多态性的潜力。以上结果将对今后EST-SSR引物的设计提供参考价值。
     以BC_1单株和BC_1F_2家系的纤维品质性状值用复合区间作图法进行QTL检测(LOD≥3.0),检测出纤维长度(2个)、整齐度(1个)、马克隆值(1个)、伸长率(3个)、强度(4个)等性状的QTL共11个,其中有6个来源于At染色体亚组,5个来源于Dt染色体亚组,解析9.80%~16.82%的表型变异。来自Pima3-79的位点起增效作用的QTL有3个,加性效应值在0.33到1.10之间。
Cotton(Gossypium L.) is one of the most important economic crops that provide natural textile fiber and edible oil throughout the world.In the past few years, improvement in the quality of cotton fiber has become more important because of profound innovations in spinning technology.While cotton yield traits are negatively related with fiber quality traits which make it difficult to improve yield and quality at the same time by traditional breeding ways.
     With the rapid development of genomic technologies,molecular breeding has become an important method for the genetic improvement of cotton fiber.New sets of molecular markers should be developed to facilitate the development of a high-resolution integrated genetic map for structural and functional studies of cotton fiber genes and marker assisted selection(MAS) of genes that could enhance cotton fiber quality.
     1.Studies of new EST-SSRs derived from Gossypium barbadense
     The plant EST(expressed sequence tags) program is one of the most important parts which compose the plant genome program.The expansion of EST.data base is a foundation of development of EST markers.EST-SSRs can be used in studies of plant genetics and evolution;they also have higher levels of transferability to related species than genomic SSR markers.Furthermore,the functions of EST-SSRs are usually presumable.However,existing cotton EST-SSR markers are mostly derived from G. arboreum and G.hirsutum,while G.barbadense derived EST-SSRs are scarce.It is well-known that G.barbadens is one of the most valuable cotton species and it is an ideal candidate for providing new genetic material for improving fiber quality in G.hirsutum.
     In this paper,one hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G.barbadense cv.Pima3-79.The characteristics of these EST-SSRs were defined, and their transferability,applications in genetic diversity analysis and linkage mapping were evaluated.
     Among the SSRs,trinucleotide AAG appeared at a high frequency of 11.76%. Thirty-six accessions(consisting of 13 diploids of the A genome,11 dipioids of the D genome and 12 allotetraploids of the AD genome) were employed to test new EST-SSRs. Seventy-six EST-SSRs were successfully amplified,and yielded 313 polymorphic fragments,with an average of 4.11 fragments per primer pair.Cross-species transferability of the 76 EST-SSRs in diploid Gossypium species ranged from 78.95%(in G.thurberi) to 94.74%(in G.arboreum and G.herbaceum),whereas in tetraploid species from 93.42%(in G.mustelinum) to 100%(in G.darwinii).Polymorphism in diploid species G.arboreum was the same as in tetraploid species G.hirsutum,both were 11.84%. The PIC ranged from 0.17 to 0.95 with an average of 0.53.Based on Jaccard's genetic similarity coefficient,these 36 accessions were clustered into three groups.Twenty-one EST-SSRs exhibited polymorphisms in BC_1 population[(Emian22×Pima3-79)×Emian22],24 polymorphic loci were generated,while 22 of the 24 polymorphic loci were integrated with our interspecific BC_1 backbone genetic linkage map,and anchored in 12 chromosomes.
     This study effectively proved that EST-SSRs from G.barbadense are valuable for genetic diversity analysis and genetic mapping.
     2.Construction of dense genetic linkage map by interspecific population for QTL mapping
     In the past decade,several successive cotton molecular maps have been constructed using diverse DNA molecular markers and mapping populations.A detailed genetic linkage map covering a large region of the cotton genome based on some informative, portable and practical markers will provide a platform for evolutionary comparisons with other species,comparative mapping,QTL mapping and MAS,and structural and functional studies of the cotton genome.Simple sequence repeats(SSRs),alternatively called microsatellites,are regarded as useful and efficient markers for map construction of cotton,which are abundant,locus-specific,often codominant and multiallelic.
     In this study,an interspecific linkage map of allotetraploid cotton was developed in a BC_1 population[(Emian22×Pima3-79)×Emian22].This map was based entirely on genome-wide simple sequence repeat(SSR) markers.Totally 6310 SSR markers (including 13 sets of markers) were employed to screen polymorphisms between 'Emian22' and 'Pima3-79',approximately 16%(1026/6310) of all SSR markers revealed polymorphic bands,then yielded 1040 polymorphic loci in BC_1 population.The molecular map was generated using MAPMAKER version 3.0b program(LOD scores≥8.0,recombination frequency≤0.40),with 44 linkage groups assigned to 26 chromosomes,and 917 loci spanning 5452.2 cM of the genome.The average distance between loci was 5.9 cM,covering the A-subgenome and D-subgenome uniformly. Significant segregation distortion Was observed for 107 loci(11.7%),of which 29(27.1%) loci skewed toward the 'Emian22' parent,while 78(72.9%) loci skewed toward the heterozygote.The frequency of distorted loci of genomic SSRs(11.7%) was coincident with EST-SSRs(11.5%).In total,11 SDRs were detected in seven linkage groups,2 SDRs(35 loci) appeared in the A-subgenome,and 9 SDRs(72 loci) appeared in the D-subgenome.Many of the distorted loci concentrated in Chr02,Chr16 and Chr18.
     This map was characterized and analyzed in detail,including the distributions of genomic SSRs,expressed sequence tag(EST)-SSRs,and distorted markers.Furthermore, the relationship between motif characteristics(sizes,types,lengths) and the level of polymorphism in EST-SSRs was also surveyed.The results showed that polymorphism rates of tetranucleotide motifs(11.33%) was higher than dinucleotide motifs(7.90%) and trinucleotide motifs(6.72%),the percentages of polymorphic hexanucleotide and pentanucleotide were both only 4.00%;ACAT,AC,and ACT motif types had the highest level of polymorphism(17.24%,16.67%and 12.99%,respectively),while ACG and AGG were the lowest(both 3.33%);loci with lengths of 27 bp,33 bp,and 24 bp were more likely to be polymorphic.These results will provide information to assist in designing future EST-SSRs.
     The method of composite interval mapping was applied to search for QTL(LOD≥3.0) by the phenotypes of BC_1 plants and corresponding BC_1F_2 families.On the basis of this analysis yielded 11 QTL:2 QTL controlling fiber length,1 QTL controlling fiber uniformity,1 QTL controlling micronaire,3 QTL controlling fiber elongation,4 QTL controlling fiber strength.Among them,6 were mapped on At chromosome and 5 were mapped on Dt chromosome,explained 9.80%~16.82%of phenotypic variance.In three of the QTL,Pima3-79 alleles had positive additive genetic effect,the additive genetic effect values ranged from 0.33 to 1.10.
引文
1.陈海梅,李林志,卫宪云,李斯深,雷天东,胡海洲,王洪刚,张宪省.小麦EST-SSR 标记的开发、染色体定位和遗传作图.科学通报,2005,50(20):2208-2216.
    2.葛佳,谢华,崔崇士,洪剑明,马荣才.大白菜表达序列标签SSR标记分析.农业生物技术学报,2005,13(4):423-428.
    3.贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位.[博士学位论文].武汉:华中农业大学图书馆,2006.
    4.金基强,李素芳,龚晓春,卢美贞,姚艳玲,忻雅,崔海瑞.茶树EST资源中SSR 的信息分析.科技通报,2006,22(4):471-476.
    5.孔秋生.基于公共序列数据库的Cucumis属EST-SSR标记的鉴定、开发和利用.[博士学位论文].武汉:华中农业大学图书馆,2006.
    6.李宏伟,高丽锋,刘曙东,贾继增.用EST-SSR检测不同年代小麦育成品种基因多样性的变化趋势.西北植物学报,2005a,25(1):0027-0032.
    7.李宏伟,高丽锋,刘曙东,李永强,贾继增.用EST-SSRs研究小麦遗传多样性.中国农业科学,2005b,38(1):7-12.
    8.李强,万建民.SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传,2005,27(5):808-810..
    9.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48:1676-1679.
    10.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F_2分离群体及遗传多样性评价中的适应性分析.遗传学报,2004,31:622-626.
    11.林忠旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位.[博士学位论文].武汉:华中农业大学图书馆,2005.
    12.邱咏梅,夏庆友.EST规模测序在家蚕功能基因组中的应用.蚕学通报,2002,13(4):413-418.
    13.王长彪,郭旺珍,蔡彩平,张天真.雷蒙德氏棉EST-SSRs分布特征及开发与利用.科学通报,2006,51(3):316-320..
    14.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,2000,26:501-507
    15.忻雅,崔海瑞,张明龙,姚艳玲,卢美贞,金基强,林容杓,崔水莲.白菜EST-SSR 标记的通用性.细胞生物学杂志,2006,28(2):248-252.
    16.杨新泉,刘鹏,韩宗福,倪中福,刘旺清,孙其信.普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.遗传学报,2005,32(4):406-416.
    17.杨新泉,刘鹏,韩宗福,倪中福,孙其信.普通小麦、斯卑尔脱小麦和密穗小麦基因组中SSR和EST-SSR分子标记的遗传差异研究.自然科学进展,2004,14(9):989-998
    18.Abdurakhmonov I Y,Buriev Z T,Saha S,Pepper A E,Musaev J A,Almatov A,Shermatov S E,Kushanov F N,Mavlonov G T,Reddy U K,Yu J Z,Jenkins J N,Kohel R J,Abdukarimov A.Microsatellite markers associated with lint percentage trait in cotton(Gossypium hirsutum).Euphytica,2007,156:141-156.
    19.Adawy S A.An evaluation of the utility of simple sequence repeat loci(SSR),expressed sequence tags(ESTs) and expressed sequence tag microsateilites (EST-SSR) as molecular markers in cotton.Journal of Applied Sciences Research,2007,3(11):1581-1588.
    20.Anderson J A,Churchill G A,Autrique J E et al.Optimizing parental selection for genetic linkage maps.Genome,1993,36:181-186.
    21.Areshehenkova T,Ganal MW.Comparative analysis of Polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources.Theor Appl Genet,2002,104:229-235.
    22.Baker R J,Longmire J L,Van den Bussche R A.Organization of repetitive dements in the upland cotton genome(Gossypium hirsutum).J.Hered.,1995,86:178-185.
    23.Bandopadhyay R,Sharma S,Rustgi S,Singh R,Kumar A,Balyan H S,Gupta P K.DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs.Plant Sciences,2004,166(2):349-356.
    24.Barker G,Batley J,Sullivan HO,Keith J,Edwards ED.Redundancy based detection of sequence Polymorphisms in expressed sequence tag data using auto SNP.Bioinformatics,2003,19:421-422.
    25. Basten C J, Weir B S, Zeng Z B. QTL Cartographer: Reference manual and tutorial for QTL mapping. Department Of Statistics, North Carolina State University, Raleigh, 1997.
    
    26. Basten C J, Weir B S, Zeng Z B. Zmap-a QTL Cartographer. In: Smith C, Gavora J S, Chesnais B B J, Fairfull W, Gibson J P, Kennedy B W, Burnside E B eds., Proceedings of the 5th world congress on genetics applied to livestock production. Vol.2. Computing strategies and software. University of Guelph, Guelph, Ontario, Canada, 1994. 65-66.
    
    27. Blair M W, Giraldo M C, Buendia H F et al. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2006,113:100-109
    
    28. Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U. Mapping of verticillium wilt resistance genes in cotton. Plant Science, 2005, 168: 1581-1590.
    
    29. Bolibok H, Rakoczy-Trojanowska M, Hromada A, Pietrzykowski R. Efficiency of different PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica, 2005,146 (12): 109-116.
    
    30. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
    
    31. Bozhko M, Riegel R, Sehubert R, Muller-Starck G. A cyclophilin gene marker confirming geographical differentiation of Norway Pine Populations and indicating viability response on excess soil-born salinity. Molecular Ecology, 2003, 12: 3147-3155.
    
    32. Brown G R, Kadel EE, Bassoni D L, Kiehne K L, Temesgen B, Vanbuijtenen J P, Sewell M M, Marshall K A, Neale D B. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics, 2001,159: 799-809.
    
    33. Bundock P C, Christopher J T, Eggler P, Ablett G, Henry R J, Holton T A. Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theor Appl Genet, 2003, 106 (4): 676-682.
    34. Bundock P C, Henry R J. Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet, 2004, 109 (3): 543-551.
    
    35. Chee P W, Rong J K, Williams-Coplin Dawn, Schulze S R, Paterson A H. EST derived PCR-based markers for functional gene homologues in cotton. Genome, 2004, 47: 449-462.
    
    36. Chen X, Salamini F, Gebhardt C. A potato molecular function map for carbohydrate metabolism and transport. Theor Appl Genet, 2001,102 (2): 284-295.
    
    37. Chin E C L. Maize simple repetitive DNA sequences: abundance and allele variation. Genome, 1996,156:847-854
    
    38. Choi H K, Kim D, Uhm T, Limpens E, Lim H, Mun J H, Kalo P ,Penmetsa R V, Seres A Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR. A sequence-based gene map of Medicago trunealula and comparison of marker colinearity with Msativa. Genetics, 2004,166: 1463-1502.
    
    39. Collins ES, Guyer MS, Chakravati A. Variations on a theme: Cataloging human DNA sequence variations, Science, 1997,278: 1580-1581.
    
    40. Combes M C, Andrzejewski S, Anthony F et al. Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol, 2000, 8:1171-1193
    
    41. Cordeiro G M., Eliot F, McIntyre C L, Casu RE, Henry R J. Characterization of single nucleotide polymorphisms in sugarcane ESTs. Theor Appl Genet, 2006, 113 (2): 331-343.
    
    42. Cordeiro, G M, Casu R, Mclntyre C L. Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to helianthus and sorghum. Plant Science, 2001, 160 (6): 1115-1123.
    
    43. Decroocq V, Fave M G, Hagen L, Bordenave L, Deeroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet, 2003, 106: 912-922.
    
    44. Dodds K G, Ball R, Djorovic N, Carson S D. The effect of an imprecise map on interval mapping QTLs. Genet Res, 2004, 84: 47-55.
    45. Dreisigaeker S, Zhang P, Warburton M L, Ginkel M V. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Science, 2004,44: 381-388.
    
    46. Eujayl I, Sorrells M E, Baum M, Wolters P. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104 (23): 399-407.
    
    47. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica, 2001,119 (12): 39-43.
    
    48. Frelichowski J E, Palmer M B, Main D et al. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Mol Gen Genomics, 2006, 275:479-491.
    
    49. Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Makvaceae). Rheedea, 1992, 2 (2): 108-165.
    
    50. Fu Y B, Peterson G W, Yu J K, Gao L F, Jia J Z, Richards K W. Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor Appl Genet, 2006,122 (7): 1239-1247.
    
    51. Gao L F, Jing R L, Huo N X et al. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108:1392-1400.
    
    52. Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 2003, 12 (3): 245-261.
    
    53. Garg K, Green P, Deborah A. Nickerson, identification of Candidate Coding Region Single Nucleotide Polymorphisms in 165 Human Genes Using Assembled Expressed Sequence Tags, Genome Research, 1999, 9: 1087-1092.
    
    54. Gonzalo M J, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte A. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo). Theor Appl Genet, 2005, 110 (5): 802-811.
    55. Guo W Z, Cai C P, Wang C B, Han Z G., Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541.
    
    56. Guo W Z, Sang Z Q, Zhou B L, Zhang T Z. Genetic relationships of D-genome species based on two types of EST-SSR markers derived from G. arboreum and G. raimondii in Gossypium. Plant Science, 2007,172 (4): 808-814.
    
    57. Guo W, Zhang T, Shen X, Yu J Z, Kohel R J. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Science, 2003,43 (6): 2252-2257.
    
    58. Gupta P K, Balyan H S, Sharma P C et al. Microsatellites in plants: a new class of molecular markers. Curr Sci, 1996,70:45-54.
    
    59. Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics, 2003, 270 (4): 315-323.
    
    60. Han Z G, Guo W Z, Song X et al. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272:308-327.
    
    61. Han Z G, Wang C B, Song X L et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006,112:430-439.
    
    62. Harding RM, Rullerton SM., Griffiths RC, Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet, 1997, 60:772-789.
    
    63. He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J Mc D. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica, 2005, 144: 141-149.
    
    64. He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum x Gossypium barbadense. Euphytica, 2007,153 (1-2): 181-197.
    65. He D H, Lin Z X, Zhang X L, Zhang Y X, Li W, Nie Y C, Guo X P. Dissection of genetic variance of fibre quality in advanced generations from an interspecific cross of Gossypium hirsutum and G. barbadense. Plant Breeding, 2008,127 (3): 286-294.
    
    66. Hof J V, Saha S. Cotton fibers can undergo cell division. Am J Bot, 1997, 84 (9):1231-1235.
    
    67. Huang X, Madan A. CAP 3: a DNA sequence assembly program. Genome Research, 1999,9 (9): 868-877.
    
    68. Hussein E H A, Osman M H A, Hussein M H, Adawy S S. Molecular characterization of cotton genotypes using PCR-based markers. Journal of Applied Sciences Research, 2007, 3 (10): 1156-1169.
    
    69. Iwata H, Ujino-lhara T, Yoshimura K, Nagasaka K, Mukai Y, Tsumura Y. Cleaved amplified polymorphic sequence markers in sugi and their locations on a linkage map. Theor Appl Genet, 2001, 103: 881-895.
    
    70. Jiang C X, Chee P W, Draye X, Morrell P L, Smith C W, Paterson A H. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution Int. J. Org. Evolution, 2000, 54: 798-814.
    
    71. Jiang D, Zhong G Y, Hong Q B. Analysis of microsatellites in citrus unigenes. Acta Genetica Sinica. 2006, 33 (4): 345-53.
    
    72. Kantety R V, Rota M L, Matthews D E et al. Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol Biol, 2002,48:501-510.
    
    73. Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127:1361-1366.
    
    74. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1994,12:172-175.
    
    75. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A. Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics, 2003, 270 (1): 24-33.
    76. Kota R, Varshney R K, Thiel T, Dehmer K J, Graner A. Generation comparison of EST-derived SSRs and SNPs in barley (Hordeum, vulgare L.). Hereditas, 2001, 135: 145-151.
    
    77. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8: 365-376.
    78. Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G, Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum x Gossypium barbadense backcross generations. Crop Science, 2005, 45: 123-140.
    79. Lacape J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. Journal of Heredity, 2005, 96 (4): 441-444.
    80. Lacape J M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome, 2003, 46: 612-626.
    81. Lan T H, DelMonte T A, Reisehmann K J Hyman J, Kowalski S P, MeFerson J, Kresovieh S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research, 2000,10: 76-788.
    82. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185-199.
    83. Lander E S, Green P, Abrahamson J et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1:174-181.
    84. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998,4: 277-289.
    85. Li W, Lin Z, Zhang X. A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L.) detected by molecular markers. Journal of Genetics and Genomics, 2007, 34 (7): 634-640.
    86. Lin Z X, He D H, Zhang X L et al. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124:180-187
    
    87. Lincoln S, Daly M, Lander E S. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 2nd ed. Whitehead Institute, Cambridge, Mass, 1992.
    
    88. Litt M, Luty J A. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet, 1989, 44:399-401.
    
    89. Liu S, Saha S, Stelly D, Burr B, Cantrell R G. Chromosomal assignment of microsatellite loci in cotton. J Hered, 2000,91: 326-332.
    90. Ma X X, Zhou B L, Li Y H, Guo W Z, Zhang T Z. Simple sequence repeat genetic linkage maps of A-genome diploid cotton (Gossypium arboreum). Journal of Integrative Plant Biolog, 2008,50 (4): 491-502.
    91. McCouch, S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
    92. MeCallum J, Leite D, Pither-Joyee M, Havey MJ. Expressed sequence markers for genetic analysis of bulbonion (Alliun cepa L.). Theor Appl Genet, 2001, 103: 979-991.
    93. Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet, 2004, 108:280-291.
    94. Mian M A, Saha M C, Hopkins A A, Wang Z Y. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome, 2005,48: 637-647.
    95. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet, 2002, 30:194-200.
    96. Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167-175.
    97. Nickerson D A, Tayloe S L, Weiss K M, Clark A G et al., DNA sequence diversity in a 9.7kb region of the human lipoprotein lipase gene. Nat. Genet, 1998, 19: 233-240.
    
    98. Nobis W, Ren X, Suchyta SP, Suchyta T R, Zanella A J, Coussens P M. Development of a porcine brain cDNA library, EST database, and microarray resource. Physiol Genomics, 2003, 16 (1): 153-159.
    
    99. Park Y H, Alabady M S, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G, Ulloa M. Genetic Mapping of New Cotton Fiber Loci using EST-derived Microsatellites in an Interspecific Recombinant Inbred Line (RIL) Cotton Population. Mol Gen Genomics, 2005, 274: 428-441.
    
    100.Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11:122-127.
    101 .Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396.
    102.Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics, 2005, 5 (2): 80-96.
    103.Peng J, Richards D E, Hartley N M, MurPhy G P, Devos K M, Flintharn J E, Beales J, Fish L J, Worland A J, Peliea F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution genes encode mutant gibberellins response modulators. Nature, 1999,400: 256-261.
    104.Picoult-Newberg L, Ideker T E, Pohl M G, Taylor SL, Donaldson M A, Niekerson D A, Boyce-Jacino M. Mining SNPs from EST databases. Genome Research, 1999, 9: 167-174.
    105.Poncet V, Rondeau M, Tranchant C , Cayrel A, Hamon S, Kochko A, Hamon P. SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffee genus. Mol Genet Genomics. 2006, 276 (5): 436-449.
    106.Powell W, Gordon C. Machray, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1996, 1 (7): 215-222.
    107.Qamaruz Z F, Michael F F, Parker J S et al. Molecular techniques employed in the assessment of genetic diversity: a review focusing on orchid conservation. Lindleyana, 1998, 13:259-283.
    
    108.Qin L, Prins P, Jones JT, Popeijus H, Smant G, Bakker J, Helder J. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic Acids Res. 2001, 29 (7): 1616-1622.
    
    109.Qureshi S N, Saha S, Kantety R V et al. EST-SSR: a new class of genetic markers in cotton. J Cotton Sci, 2004, 8:112-123.
    
    110.Reddy A S, Connell J, et al. Genetic Mapping of Cotton: Isolation and Polymorphism of Microsatellites. Abstract, Proc. Beltwide Cotton Conf., 1998, San Diego, CA .
    
    111.Reddy O U K., Pepper A E., Abdurakhmonov I, Saha S, Jenkins J N., Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. The Journal of Cotton Science, 2001, 5: 103-113.
    
    112.Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. Exeter Software, New York, 2000.
    
    113.Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417.
    
    114.Rong J, Bowers J E, Schulze S R et al. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res, 2005,15:1198-1210.
    
    115.Rossetto M, McNally J, Henry RJ. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet, 2002, 104 (1): 61-66.
    
    116.Rudd S, Sehoof H, Mayer K. PlantMarkers: a database of predicted molecular markers from Plants, Nucleic Acids Research, 2005, 33: 628-632.
    117.Rungis D, Berube Y, Zhang J , Ralph S, Ritland C E, Ellis B E, Douglas C, Bohlmann J, Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet, 2004, 109 (6): 1283-1294.
    118.Saha M C, Mian M A R, Eujayl I, Zwonitzer J C, Wang L J, May G D. Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet, 2004, 109 (4): 783-791.
    119.Saha S, Karaca M, Jenkins J N et al. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130:355-364.
    120.Saha S, Karaca M, Jenkins J N, Zipf A E, Ramesh O U, Kantety R V. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003,130:355-364.
    121.Sankar A A, Moore G A. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet, 2001, 102: 206-214.
    122.Savage D, Batley J, Erwin T, Logan E, Love CG, Lim GAC, Mongin E, Barker G, Spangenberg GC, Edwards D. SNPServer: a real-time SNP discovery tool. Nucleic Acids Research, 2005, 33:493-495.
    123.Schmid K J, Sorensen T R, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Research, 2003, 13 (6): 1250-1257.
    124.Schubert R, Starek G M, Riegel R. Development of EST-PCR markers and monitoring their intra populational genetic variation in Picea abies (L.) Karst. Theor Appl Genet, 2001, 103:1223-1231.
    125.Schwarz G, Miehalek W, Jahoor A, Mohler V. Direct selection locus of expressed Sequence on a YAC clone revealed praline-rich-like genes and BAKE-1 sequences physically linked to the complex Mla powdery mildew resistance locus of barley (Hordeum vulgare L.). Plant Science, 2002, 163: 307-311.
    
    126.Scott K D, Eggler P, Seaton G et al. Analysis of SSRs derived from grapes EST. Theor Appl Genet, 2000, 100:723-726.
    127.Shappley Z W. Construction of RFLP linkage groups and mapping of quantitative trait loci in upland cotton (Gossypium hirsutum L.). (Ph.D. dissertation) Mississippi State University, 1996a.
    128.Shappley Z W, Jenkins J N, Meredith W R, McCarty Jr. J C. An RFLP linkage map of upland cotton (Gossypium hirsutum L.). Theor Appl Genet, 1998a, 97: 756-761.
    129.Shappley Z W, Jenkins J N, Watson C E Jr., Kahler A L, Meredith W R Jr. Establishment of molecular markers and linkage groups in two F_2 populations of upland cotton. Theor Appl Genet, 1996b, 92: 915-919.
    130.Shappley Z W, Jenkins J N, Zhu J, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cot Sci, 1998b, 4: 153-163.
    131.Shen X L, Guo W Z, Zhu X F. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005, 15:169-181
    132.Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica. 2007, 155 (3): 371-380.
    133.Shen X, Zhang T, Guo W, Zhu X, Zhang X. Mapping fiber and yield QTLs with main, epistatic, and QTL x environment interaction effects in recombinant inbred lines of upland cotton. Crop Science, 2006,46: 61-66.
    134.Sneath, P H, Sokal R R. Numerical Taxonomy: The Principal and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco, 1973.
    135.Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull, 1958, 28:1409-1438.
    136.Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004,109: 122-128.
    137.Song X L, Guo W Z, Han Z G, Zhang T Z. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology, 2005,47 (11): 1382-1390.
    138.Song X L, Wang K, Guo W Z, Zhang J, Zhang T Z. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome, 2005, 48: 378-390.
    139.Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Science Research, 2007, 17: 243-251.
    140.Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648.
    141.Taliercio E, Allen R D, Essenberg M et al. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006,49: 306-319
    142.Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y. A consensus linkage map for Sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics, 2003,165: 1551-1568.
    
    143.Tautz D, Schotterer C. Simple sequences. Curr Opin Genet, 1994,4:832-837.
    144.Temesgen B, Brown G R, Harry D E, Kinlaw C S, Sewll M M, Neale D B. Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet, 2001, 102: 664-675.
    145.Temnykh S, Park W D, Ayres N et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100:697-712.
    146.Thiel T, Michalek W, Varshney R K et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106:411 -422.
    147.Tiffin P, Hahn M W. Coding sequence divergence between two closely related plant species, Arabidopsis thaliana and Brassica rape ssp Pekioensis. Journal of Molecular Evolulion, 2002, 54: 746-753.
    148.Ulloa M, Cantrell R G, Oercy R, Lu Z, Zeiger E. QTL analysis of stomatal conductance and relationship to lint yield in intraspecific cotton. J Cot Sci, 2000, 4: 10-18
    149.Useche F J, Gao G, Hanafey M, Rafalski A, Hanafey M. High throughput identification database storage and analysis of SNPs in EST sequence. Genome Informatics, 2001, 12: 194-203.
    150.Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23:48-55.
    151.Varshney R K, Grosse I, Hahnel U, Siefken R, Prasad M, Stein N., Langridge P, Altschmied L, Graner A. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet, 2006,113 (2): 239-250.
    152.Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Gran A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 2005,168: 195-202.
    153.Vendramin E, Dettori M T, Giovinazzi J et al. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Molecular Ecology Notes, 2007,7: 307-310.
    154.Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006, 152 (3): 367-378.
    155.Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics, 2007, 34(1):35-45.
    156.Wang C B, Guo W Z, Cai C P et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51 (5):557-561.
    157.Wang C, Ulloa M, Roberts P A. A transgressive segregation factor (RKN2) in Gossypium barbadense for nematode resistance clusters with gene rknl in G. hirsutum. Mol Genet Genomics, 2008, 279 (1): 41-52.
    158.Wang K, Song X, Han Z, Guo W, Yu JZ, Sun J, Pan J, Kohel RJ, Zhang T. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113(1): 73-80.
    159.Wang Y C, Yang C P, Liu G F, Jiang J G. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Science, 2006, 170:28-36.
    160.Weber J L, May P E. Abundance class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet, 1989,44: 388-396
    161.Williams J G K, Kubelic A R, Livak K J, Rafalsci J A, Tingey S V. DNA polyorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990, 18:6531-6535.
    162.Xie H, Sui Y, Chang F Q, Xu Y, Ma R C. SSR allelic variation in almond (Prunus dulcis M.). Theor Appl Genet, 2006,112 (2):366-372.
    163.Yang C, Guo W, Li G, Gao F, Lin S, Zhang T. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Science, 2008,174 (3): 290-298.
    164.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki K. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997, 95: 1025-1032.
    165.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant MolBiol, 1997,35: 145-153.
    166.Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,129: 157.
    167.Yu J K, Dake TM, Singh S, Benscher D, Li W, Gill B, Scrrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004a, 47 (5): 805-818.
    168.Yu J K, LaRota M, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics, 2004b, 271 (6): 742-751.
    169.Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang J. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biology, 2007,49 (5): 716-724.
    170.Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, WO, 1993,93/06239.
    171.Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993,90: 10972-10976.
    172.Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166-1174.
    173.Zhang P, Dreisigacker S, Melchinger A E, Reif J C, Kazi A. M, Ginkel M. V, Hoisington D, Warburton M L. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheat and their backcross-derived lines using SSR markers. Molecular Breeding, 2005, 15 (1): 1-10.
    174.Zhang Y X, Lin Z X, Li W, Tu L L, Nie Y C, Zhang X L. Studies of new EST-SSRs derived from Gossypium barbadense. Chinese Science Bulletin, 2007, 52: 2522-2531.
    175.Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L). Euphytica, 2005,144 (1): 91-99.
    176.Zhao X P, Lin Y R, Paterson A H. Characterization and genetic mapping of DNA microsatellites from cotton. Abstract, Plant Genome II Conference, January 1994, Town & Country Conference Center, San Diego, CA.
    177.Zhao X, Wing R A, Paterson A H. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium L.). Genome, 1995, 38: 1177-1188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700