pH、氨氮胁迫对中国对虾细胞凋亡和抗氧化系统影响机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国对虾(Fenneropenaeus chinensis)是我国重要的海水养殖品种,具有适应能力强、生长速度快、耐低温、营养丰富等优点。养殖环境恶化、管理不当等因素引起的环境胁迫所诱导的应激反应,不仅对中国对虾的生理状态及抗病力有显著的影响,甚至严重影响了对虾的养殖成活率。良好的水环境是对虾养殖成败的关键,pH、氨氮是衡量养殖水质质量的重要指标,本文通过研究pH、氨氮胁迫对中国对虾细胞凋亡和抗氧化系统影响,揭示了中国对虾应对pH、氨氮胁迫的应激机理,为对虾抗逆选育和健康养殖提供技术支撑。
     研究内容包括以下四个部分:
     第一部分,中国对虾细胞凋亡因子Caspase基因cDNA克隆和表达分析。从中国对虾肝胰腺中克隆了Caspase基因,该基因cDNA全长1329b(pGenBank注册号为GU597089),其中开放式阅读框为972bp,包含109bp的5′非编码区(5′-UTR),248bp的3′非编码区(3′-UTR)及一个多腺苷酸信号AATAAA。该基因编码323个氨基酸,预测分子量为36.0kDa,pI为6.27。Caspase编码的氨基酸包含Caspase家族保守的活性位点中心(QACRG五肽)和两个结构域(大亚基p20和小亚基p10),推导的氨基酸不存在信号肽序列。中国对虾Caspase蛋白包含特殊的氨基酸残基His150和Cys198,这两个氨基酸对于催化Caspase酶活性起到至关重要的作用。多序列分析结果表明F. chinensis Caspase与Penaeus monodon Caspase、Fenneropenaeus merguiensis Caspase、Litopenaeus vannamei Caspase-3蛋白质序列同源性分别为83%、82%、76%。
     应用荧光定量PCR方法分析了中国对虾暴露于pH7.0和pH9.0水环境中,各组织Caspase基因表达的水平。结果显示:pH7.0组中国对虾血淋巴细胞Caspase基因表达水平12h显著升高,48h达最低,96h达最高值,148h显著低于对照组(P<0.05);pH9.0组中国对虾血淋巴细胞Caspase基因表达水平3h显著升高,24h显著低于对照组(P<0.05),120h达最大值并显著高于对照组。pH7.0组中国对虾鳃Caspase基因表达水平在48h和120h低于对照组,其余各时间点表达水平均高于对照组,且在148h达最高值;pH9.0组中国对虾鳃Caspase表达水平3h显著低于对照组(P<0.05),之后逐渐增加,24h达最高值,48h后随着胁迫时间的延长Caspase基因表达水平逐渐降低。pH7.0组中国对虾肝胰腺Caspase基因表达水平均低于对照组,但3h、48h和96h例外;pH9.0组中国对虾肝胰腺Caspase基因表达水平3h显著增加,之后表达水平逐渐增加,120h达最高值,且在24h至148h期间均显著高于对照组(P<0.05)。高、低pH胁迫对中国对虾肌肉Caspase基因表达变化相似,3h略有升高,96h达最高值,148h均显著低于对照组(P<0.05)。高、低pH胁迫中国对虾3h后,其淋巴器官Caspase基因表达水平增加,且随着胁迫时间延长,各组Caspase基因表达水平一直处于较高水平。pH7.0组中国对虾胃Caspase基因表达3-12h显著低于对照组(P<0.05),之后呈波浪式变化,148h达最高值,与对照组相比差异显著(P<0.05);pH9.0组中国对虾胃Caspase基因表达3h显著降低,12-72h表达水平逐渐升高,120h达最高值。
     TUNEL分析结果表明中国对虾暴露于pH7.0和pH9.0的水环境中12h,肝胰腺组织开始出现细胞凋亡现象,并且随着胁迫时间的延长肝胰腺细胞凋亡现象越明显,与TUNEL分析中的阳性对照表现相一致。相反pH8.2(对照组)中国对虾肝胰腺没有发现被深染的细胞核,与TUNEL阴性对照组的表现一致。这说明高、低pH胁迫均能够诱导中国对虾肝胰腺组织的细胞凋亡。
     第二部分,中国对虾Caspase基因的重组表达、分离纯化和多克隆抗体的制备。克隆中国对虾Caspase基因开放式阅读框序列,构建了该基因原核表达载体pET30a-CAS,通过E. coli稀有密码子分析,将该重组质粒转化入大肠杆菌BL21 (DE) pLysS,成功实现了Caspase基因在E. Coli中的表达。SDS-PAGE分析显示该重组蛋白分子大小约为50 kDa,略大于软件预测的分子量。MALDI-TOF-MS分析验证了该蛋白是中国对虾Caspase蛋白。利用固定金属亲和层析和Co-NTA技术获得的纯化Caspase重组蛋白,免疫新西兰大白兔制备了特异性多克隆抗体,Western blot结果表明中国对虾血淋巴细胞、鳃、肌肉、淋巴器官、心脏、胃和肝胰腺组织中均有Caspase蛋白的表达,但在血清中未检测到特异性的谱带。
     第三部分,pH胁迫对中国对虾抗氧化系统及HSP90基因表达的影响。将中国对虾暴露于pH8.2(对照组)、7.0、9.0(胁迫组)的水体中148 h,于胁迫后0、3、12、24、48、72、96、120、148h测定鳃、肝胰腺、肌肉和血淋巴总抗氧化活力(T-AOC)、抗超氧阴离子活力、过氧化氢酶(CAT)活力和CAT、过氧化物还原酶(Prx)和HSP90基因表达的情况。结果显示, pH胁迫12h-24h,对虾各组织T-AOC、抗超氧阴离子、CAT酶活力及CAT基因表达均增加,pH胁迫120h-148h上述指标受到抑制。对虾肝胰腺和肌肉Prx基因表达随胁迫时间增加逐渐升高,鳃和血淋巴Prx基因表达随胁迫时间增加呈下降趋势。高pH(9.0)胁迫时,对虾鳃抗氧化系统酶活力及基因表达水平达峰时间较其他3个组织明显缩短;而低pH(7.0)胁迫时,对虾肝胰腺抗氧化系统酶活力比其他组织变化快。高pH(9.0)组中国对虾肝胰腺HSP90基因表达显著高于对照组(P<0.05),肌肉组织HSP90基因表达除72h外均显著低于对照组(P<0.05)。试验结果表明,pH胁迫3h-24h对中国对虾抗氧化系统酶活力及相关基因表达有一定的诱导效果,但胁迫120h-148h则抑制其抗氧化系统功能,可能会导致中国对虾机体的氧化损伤;中国对虾鳃和肝胰腺分别对高、低pH胁迫较敏感。
     第四部分,氨氮胁迫对中国对虾抗氧化系统、血淋巴氨氮成分及HSP90基因表达的影响。将中国对虾暴露于不同氨氮浓度(0mg/L、2mg/L、4mg/L、6mg/L、8mg/L)的水体中96h,于胁迫后0、6、24、48、72、96h测定中国对虾血淋巴氨氮、尿素氮浓度和鳃、肝胰腺、肌肉和血淋巴的T-AOC、抗超氧阴离子、Na~+ K~+-ATPase、Ca~(2+) Mg~(2+)-ATPase活性及CAT、Prx、Caspase、HSP90基因表达水平,结果显示:(1)当水体氨氮浓度从0.220mg/L到13.449mg/L时,中国对虾血淋巴氨氮浓度明显升高,于24h-28h达最低值,72-96h达最高值,但均显著高于对照组(P<0.05)。(2)当水体氨氮浓度从0.220mg/L到9.446mg/L时:中国对虾血淋巴尿素氮含量明显升高且显著高于对照组(P<0.05),各组尿素氮浓度6h达最高值;中国对虾鳃、肝胰腺和肌肉Na~+ K~+-ATPase、Ca~(2+) Mg~(2+)-ATPase活性及HSP90基因表达水平明显升高,并且各指标变化基本一致。当水体氨氮浓度从9.446mg/L到13.449mg/L时,血淋巴尿素氮浓度和鳃、肝胰腺、肌肉Na~+ K~+-ATPase、Ca~(2+) Mg~(2+)-ATPase活性及HSP90基因表达水平明显降低,说明高氨氮浓度抑制血淋巴尿素氮的合成、ATPase活性及HSP90基因表达水平(3)当水体氨氮浓度从0.303mg/L到8.625mg/L时,中国对虾T-AOC、抗超氧阴离子活力及CAT基因表达水平升高,并在胁迫后6h或96h达最高值;Prx基因表达水平均在72-96h达最高值。当水体氨氮浓度大于8.625mg/L时中国对虾的抗氧化系统受到抑制。(4)Caspase基因表达水平均在氨氮胁迫后的72-96h达最高值(实验后期),该表达变化与pH胁迫后Caspase基因的表达变化相似。推测高浓度氨氮能够诱导中国对虾Caspase基因的表达,进而诱导中国对虾的细胞凋亡。
Chinese shrimp, Fenneropenaeus chinensis, is an important mariculture species in China and has many advantages, such as wild adaptability, fast growth, low temperature resistance and rich in nutrition. However, with the constant expansion of shrimp culture, deteriorated pond environment due to management subsequently resulted in the increased incidences of stress-induced physiology reaction and diseases of shrimp, or even seriously affected the survival rate of farming shrimp. pH and ammonia are both important factors to measure water quality. Good water environment is a key to acquire success in shimp culture. In order to reveal the stress mechanism on pH and ammonia stress of Chinese shrimp, we do the study of pH and ammonia stress on apoptosis and antioxidant system of Chinese shrimp. This will give a theoretical foundation for stress-resistance traits breeding and healthy culture. The study consists of two parts:
     The first part: Molecular clonging and characterization of apoptosis factor Caspase gene from Chinese shrimp Fenneropenaeus chinensis. In the present study, a Caspase gene was cloned from the Chinese shrimp, Fenneropenaeus chinensis (GenBank No. GU597089). The full-length of Caspase was of 1329 bp with 972 bp ORF, 109 bp of the 5′-untranslated region, 248 bp of the 3′-untranslated region and a poly(A) tail and a putative polyadenylation signal (AATAAA). The entire open reading frame encoded a deduced protein of 323 aminoacids with the putative initiation methioine codon (ATG). The calculated molecular mass and pI of Caspase protein was 36.0 kDa and 6.27 respectively. The deduced aminoacid sequence of Caspase contained a potential active site (QACRG pentapeptide) conserved in most Caspases and two profile hits (p20 and p10 domain profile). No putative signal peptide aminoacids was present in the Caspase sequence. The deduced protein Caspase domain contais two conserved residue sites: a histidine150 residue and a cysteine198 residue which play important to catalysis the activity of Caspase. Sequence conparision showed that the Caspase of F. chinensis shares 83%, 82% and 76% identity with that of Penaeus monodon Caspase, Fenneropenaeus merguiensis Caspase, Litopenaeus vannamei Caspase-3.
     The expression of Caspase gene in different tissues of Chinese shrimp after exposure to pH 7.0 and 9.0 stress was analyzed by Real-time PCR. The results showed that the number of Caspase transcripts in the pH 7.0 group increased gradually in the haemocytes during the the first 12h, then decreased to their lowest level by 48h. Following this, expression of the transcripts increased again to their highest level at 96h. The levels at the end of the experiment were significantly lower than those in the control group (P<0.05). Levels of the Caspase transcript in the pH 9.0 group also increased in the haemocytes at 3h, then decreased slightly by 24 h (P<0.05). The highest levels were observed after 120 h. The Caspase expression in the gill of pH 7.0 was almost higher than in the control and reached to its highest level at 148 h, except at 48 and 120 h. The Caspase transcript levels were significantly lower at 3 h in the pH 9.0 group compared to the control group (P<0.05), but then gradually increased up to 24 h before decreasing untile 48 h. The Caspase gene expression was lower in the pH 7.0 than in the control group untile the end of the experiment, except at 3 h and 96 h. The transcript levels in the hepatopancreas of the pH 9.0 group increased after 3 h, but then decreased and were slightly lower than the control group at 12 h. The transcript levels peaked at 120 h and were higher than the control group from 24 h to 148 h. The pattern of Caspase transcript expression was similar at the pH 7.0 and 9.0 groups in the muscle tissue. Levels increased slightly 3 h post-stress, and then decreased significantly from 12 h to 48 h. Following this, levels increased again and peaked at 96 h. At the end of experiment, the expression of Caspase transcripts was significantly lower after 120 h and was lower than the control group by 148 h. The number of Caspase transcripts in lymphoid organ of shrimp in the pH 7.0 and 9.0 groups
     increased by 3 h then decreased to baseline by 12 h. Levels increased up to 24 h. Thereafter, the expressions were almost always higher than in the control group. The expression of Caspase in stomach was also lower after 3 h and 12 h in the pH 7.0 group, but had increased by 24 h. Levels then decreased and were at their lowest by 72 h. The highest expression levels were observed by 148 h. The expression of Caspase decreased significantly by 3 h in the stomach tissue of shrimp in the pH 9.0. Levels then increased groudually between 12 h and 72 h, and decreased again up to 96 h before peaking at 120.
     TUNEL analysis results showed that apoptosis began to appear in the hepatopancreas cells of Chinese shrimp exposure to pH 7.0 and 9.0 for 12 h. The amount of apoptosis seems positively correlated with length of exposure to the pH stressor. Conversely, Brownish nuclei (TUNEL-positive) representing fragmented DNA were not observed in the control (Ph 8.2) and negative control. These results suggested that both high and low pH stress induced apoptosis in hepatopancreas cells of F. chinensis.
     The second part: The recombinant expression, purification and polyclonal antibody of Chinese shrimp Caspase. Specific primers were designed according to the opean reading frame (ORF) sequence of Caspase cDNA of Chinese shimp. Prokaryotic expression vector pET30a-CAS was contructed and transformed into the host E. coli BL21 (DE) pLysS. SDS-PAGE analysis results showed that a band of approximately 50 kDa corresponding to the His-tag Caspase fusion protein was observed after IPTG induction. Peptide fragments of the recombinant Caspase matched with the known aminoacid sequence of Caspase based on the comparison of peptide mass fingerprint using the MALDI-TOF-MS analytical system. The recombinant Caspase protein was purified using TALON Resin affinity chromatography. A polyclonal antiserum against Caspase was obtained from rabbits by injection of the purified fusion protein in complete Freund’s adjuvant and incomplete Freund’s adjuvant. To characterize the anti-Caspase serum, total protein extract of hemolymph, haemocytes, gill, muscle, lymphoid organ, heart, stomach and hepatopancreas were subject to western blot analysis. The results showed that Caspase was present in all tissues, whereas no target band was detected from the hemolymph.
     The third part: Effects of pH stress on antioxidant system and HSP90 gene expression of F. chinensis. The activity of T-AOC, anti-superoxide anion, catalase (CAT) and the gene expression of catalase (CAT), peroxiredoxin (Prx) , HSP90 were analyzed in the gill, hepatopancreas, muscle and haemocytes of Chinese shrimp, Fenneropenaeus chinensis, after exposure to pH 7.0 and 9.0 stress. The activity of T-AOC, anti-superoxide anion, CAT and the gene expression of CAT in different tissues of Chinese shrimps were increased from 12 h to 24 h after pH stress. However, they were inhibited with the extending periods of pH stress time. The gene expression of Prx in heaptopancreas and muscle was gradually increased, but it was decreased in gill and haemocytes with prolonging pH stress time. The enzyme activities and gene expression of antioxidant system in shrimp gills of pH 9.0 group were reached to its highest level, which were earlier than other tissues in pH 7.0 and 9.0 group. The antioxidant enzyme activities in shrimp hepatopancreas of pH 7.0 group changed faster than other tissues’antioxidant enzyme activities. The gene expression of HSP90 in hepatopancreas and muscle of neutral stress group was significantly lower than the control group (P<0.05), but it was significantly higher than the control group in hepatopancreas of alkaline pH stress group (P<0.05). The gene expression of HSP90 in muscle of alkaline pH stress group reached to its highest level at 72h and was significantly lower at other sampled times. The results indicate that the antioxidant enzyme activities and gene expression of Chinese shrimp were induced between 3 h to 24 h after pH stress which is the response to oxidative stress, while they were inhibited with the extending pH stress time. It was showed that long time neutral and alkaline-induced oxidative stress probably caused the antioxidant defense system injury in Chinese shrimp. Gills and hepatopancreas could be as sensitive tissues to resist high and low pH stress respectively.
    
     The fouth part: The effect of ammonia stress on antioxidant system, haemocyte nitrogenous contents and HSP90 gene expression in Chinese shrimp. In order to investigate the mechanism of ammonia stress on Chinese shrimp, the concentration of haemocyte ammonia, urea, the activity of T-AOC, anti-superoxide anion, Na~+ K~+-ATPase、Ca~(2+) Mg~(2+)-ATPase and the gene expression of catalase (CAT), peroxiredoxin (Prx), Caspase, HSP90 were analyzed in the gill, hepatopancreas, muscle and haemocytes of Chinese shrimp, Fenneropenaeus chinensis, after exposure to different ammonia concentrations (0mg/L, 2mg/L, 4mg/L, 6mg/L, 8mg/L) stress. The actual ammonia concentration of water was measured at the same time of sampling, and then calculated the concentration of ammonia molecules. The results showed at: (1)When the actual ammonia concentration of water was from 0.220mg/L to 13.449mg/L, the contents of haemocyte ammonia in Chinese shrimp were significantly increased. And the contents of haemocyte ammonia was decreased to its lowest level at 24-48h, reached to its highest level at 72-96, but they were always significantly higher than control group (P<0.05). (2) When the actual ammonia concentration of water was from 0.220mg/L to 9.446mg/L, the contents of haemocyte urea in Chinese shrimp were increased gradually and significantly higher than control group (P<0.05). They reached to their highest level at 6h; The activity of Na~+ K~+-ATPase, Ca~(2+) Mg~(2+)-ATPase and HSP90 gene expression were obviously increased and they were shown the same trend. However, when the actual ammonia concentration of water was from 9.446mg/L to 13.449mg/L, the contents of haemocyte urea and the activity of Na~+ K~+-ATPase, Ca~(2+) Mg~(2+)-ATPase and HSP90 gene expression were all decreased. This indicated that the high ammonia inhibited the haemocyte synthesis of urea and the activity of ATPase. (3) As the actual ammonia concentration of water was from 0.303mg/L to 8.625mg/L, the activity of T-AOC, anti-superoxide anion and CAT gene expression were increased and reached to their highest level at 6h or 96h; Prx gene expression was reached to its highest level at 72-96h. However, the antioxidant enzyme activities and gene expression of Chinese shrimp were inhibited with the content of ammonia in water larger than 8.625mg/L. (4) Caspase gene expression in ammonia stress showed similar with its in pH stress, it reached to highest level at 72-96h. This indicated that high content of ammonia could induce high expression of Caspase gene, which may cause the apoptosis of Chinese shrimp.
引文
[1] FAO. Total production 1950–2000. FAO Fishstat database http://www.fao.org/ FI/statist/ FISOFT/FISHPLUS.asp Ftp.fao.org/fi/stat/windows/fishplus/fstat. Zip; 2006
    [2] Rosenberry B.. World shrimp farming 2001, In: Rosenberry B., Shrimp News International, San Diego (USA), 2001
    [3]邓景耀,叶昌臣,刘永昌.渤黄海的对虾及其资源管理.北京:海洋出版社,1990:36~164
    [4] Capy P., Gasperi G., Biemont C., ect. Stress and transposable elements: co-evolution or useful parasites? Heredity, 2000, 85(2): 101~106
    [5]战文斌.水产动物病害学.北京:中国农业出版社,2004:287~296
    [6] Lightner D.V., Redman R.M.. Shrimp disease and current diagnostic methods. Aquaculture, 1998, 164(1): 201~220
    [7] Le Moullac G., Haffner P.. Environmental factors affecting immune responses in Crustacea. Aquaculture, 2000, 191: 121~131
    [8] Lee D.O., Wickins J.F.. Crustacean Farming. Oxford, U.K.: Blackwell Scientific Publications, 1992: 392
    [9] Miller S.I., Ernst R.K., Bader M.W.. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology, 2005, 3(1): 36~46
    [10] Hall M.R., van Ham E.H.. The effects of different types of stress on blood glucose in the giant tiger prawn, Penaeus monodon. Journal of the World Aquaculture Society, 1998, 29(3): 290~299
    [11] Le Moullac G., Soyez C., Saulnier D., ect. Effect of hypoxic stress on the immune response and resistance to vibriosis of the shrimp Penaeus stylirostris. Fish&Shellfish Immunology, 1998, 8(8): 621~629
    [12] Sanchez A., Pascual C., Vargas-Albores F., ect. Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture, 2001, 198(1): 13~28
    [13] Hall M.R., de la Vega E.. Physiological response to stress and health implications in Crustacea. In: Goarant C., Harache Y., Herbland A., Mugnier C.(Eds.), Styli 2003: Thirty Years of Shrimp Farming in New Caledonia. INRA Editions, Plouzane, France, 38~56
    [14] Vidal O.M., Granja C.B., Brock J.A., ect. A profound effect of hyperthermia on survival of Litopenaeus vannamei juveniles infected with white spot syndrome virus. Journal of the WorldAquaculture Society, 2001, 32(4): 364~303
    [15] de la Vega E, Degnan B.M., Cowley J.A., ect. Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon[J]. Disease of Aquatic Organisms, 2004, 59(3): 195~203
    [16]康乐.环境胁迫下的昆虫—植物相互关系.生态学杂志,1995,14(5):51~57
    [17]杨玉姣,王国良,金珊等.环境胁迫对对虾免疫系统的影响研究.水产科学,2006,25(12):652~655
    [18] Bonga W.S.E.. The stress response in fish. Physiological Reviews, 1997, 77(3): 591~625
    [19]谢琦.环境胁迫条件下桔小实蝇生物学研究.广州,中山大学,2008
    [20] Chen J.C., Lin M.N., Ting Y.Y., ect. Survival, haemolymph osmolality and tissue water of Penaeus chinensis juveniles acclimated to different salinities and temperature levels. Comparative Biochemistry and Physiology A, 1995, 110(3): 253~258
    [21] Hennig O.L., Andreatta E.R.. Effect of temperature in an intensive nursery system for Penaeus paulensis. Aquaculture, 1998, 164(1-4): 167~172
    [22] Pedro E.S., Lucla O., Mario M., ect. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture, 2004, 229(1): 377~387
    [23] Orbea A., Ortiz-Zarragoitia M., SoléM., ect. Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries ( Bay of Biscay). Aquatic Toxicology, 2002, 58(1): 75~98
    [24] Brouwer M., Brouwer T.H.. Biochemical defense mechanisms against copper-induced 24oxidative damage in the blue crab, Callinectes sapidus. Arch Biochem Biophys, 1998, 351(2): 257~264
    [25] Gamble S.C., Goldfarb P.S., Porte C.. Glutathione peroxidese and other antioxidant enzyme 25 function in marine invertebrates (Mytilus edulis, Pecten maximus, Carcinus maenas and Asterias rubens). Marine Environmental Research, 1995, 39(1-4): 191~195
    [26]孙舰军,丁美丽.氨氮对中国对虾抗病力的影响.海洋与湖沼,1999,30(3): 267~272.
    [27]宋林生,季延宾,蔡中华,等.温度骤升对中华绒螯蟹(Eriocheir sinensis)几种免疫化学指标的影响.海洋与湖沼,2004,35(1):74~77
    [28]洪美玲,陈立侨,顾顺樟等.不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响.应用与环境生物学报,2007,13(6): 818~822
    [29] Winton Cheng, Long-Uong Wang, Jiann-Chu Chen. Effect of water temperature on the immuneresponse of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aqucaulture, 2005, 250(3-4): 592~601
    [30] Kir M., Kumlu M., Eroldogan O.T.. Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles. Aquaculture, 2004, 241(1-4): 479~489
    [31] Sang H.M., Fotedar R.. Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn ( Penaeus latisulcatus Kishinouye, 1896) reared at different salinities. Aquaculture, 2004, 234(1-4):601~614
    [32] Towle D.W.. Molecular approaches to understanding salinity adaptation of estuarine animals. American Zoologist, 1997, 37(6): 575~584
    [33]李文才,管越强,俞志明.盐度变化对日本对虾暴发白斑综合症病毒病的影响.海洋环境科学,2002,21(4):6~9
    [34]刘慧杰,潘鲁青,胡发文.凡纳滨对虾在盐度变化下免疫机能评价的研究.海洋湖沼通报,2008,(2):159~166
    [35]陈宇锋,艾春香,林琼武等.盐度胁迫对锯缘青蟹血清及组织、器官中PO和SOD活性的影响.台湾海峡,2007,26(4):570~575
    [36] Perazzolo L.M., Gargioni R., Ogliari P., ect. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture, 2002, 214(1): 19~33
    [37] Madenjian C.M., Rogers G.L., Fast A.W.. Predicting night-time dissolved oxygen loss in prawn pond of Hawaii: PartⅠ. Evaluation of traditional methods. Aquaculture Engineering, 1987, 6(3): 191~208
    [38] Hill A.D., Taylor A.C., Strang R.H.C.. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery. Journal of Experimental Marine Biology and Ecology, 1991, 150(1): 31~50
    [39] Charmantier G., Soyez C., Aquacop.. Effect of molt stage and hypoxia on osmoregulatory capacity in the peneid shrimp Penaeus vannamei. Journal of Experimental Marine Biology and Ecology, 1994, 178(2): 233~246
    [40] Christopher A., Tanner L.E., Burnett K.G., ect. The effects of hypoxia and pH on phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology. Part A: Molecular and integrative Physiology, 2006, 144(2): 218~223
    [41] Li Y.Q., Li J., Wang Q.Y.. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture, 2006, 256(1-4): 608~616
    [42] Jeremy D.H., Karen G.B., Louis E.B.. Effects of hypercapnic hypoxia on the clearance of Vibrio cambellii in the Atlantic Blue Crab, Callinectes sapidus Rathbun. Biological Bulletin, 2004, 206(3): 188~196
    [43] Joseph E.B., Karen G.B., Louis E.B.. Effects of hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the Pacific white shimp. Biological Bulletin, 2005, 208(3): 159~168
    [44] Brett M.M., Ikenna O.A., Karen G.B., ect. Effects of hypercapnic hypoxia on inactivation and elimination of Vibrio cambellii in the Eastern oyster, Crassostrea virginica. Applied and Environmental Microbiology, 2008, 74(19): 6077~6084
    [45] Colt J.E., Armstrong D.A.. Nitrogen toxicity to crustaceans, fish and molluscs. In: Allenand L.J., Kinney E.C.(Eds.), Proceedings of the Bio-Engineering Symposium for Fish Culture, Culture Section of the American Fisheries Society (FCS publ.1), Bethesda, 1981, 34~47
    [46]乔顺风,刘恒义,谨秀云.养殖水体氨氮积累危害与生物利用.河北渔业,2006,1:20~22
    [47]姜令绪,潘鲁青,肖国强.氨氮对凡纳滨对虾免疫指标的影响.中国水产科学,2004,11(6):537~541
    [48] Liu C.H., Chen J.C. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish&Shellfish Immunology, 2004, 16(3):321~334
    [49]王玥,胡义波,姜乃澄.氨态氮、亚硝态氮对罗氏沼虾免疫相关酶的影响.浙江大学学报(理学版),2005,32(6):698~705
    [50]胡义波,王玥,姜乃澄.氨态氮、亚硝态氮对罗氏沼虾血细胞及超微结果的影响.浙江大学学报(理学版),2005,32(6):691~697
    [51]邱德全,周鲜娇,邱明生.氨氮胁迫下凡纳滨对虾抗病力和副溶血弧菌噬菌体防病效果研究.水生生物学报,2008,32(4):455~461
    [52]黄鹤忠,李义,宋学宏,等.氨氮胁迫对中华绒螯蟹(Eriocheir sinensis)免疫功能的影响.海洋与湖沼,2006,37(3):198~205
    [53]洪美玲,陈立侨,顾顺樟等.氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结果的影响.中国水产科学,2007,14(3):412~417
    [54] Ilie S.Racotta, Roberto Hernández-Herrera. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comparative Biochemistry and Physiology Part A, 2000,125(4): 437~443
    [55]王武.鱼类增养殖学.北京:中国农业出版社. 2000:75
    [56]房文红,王慧,来琦芳.碳酸盐碱度、pH对中国对虾幼虾的致毒效应.中国水产科学,2001,7(4):78~81
    [57]潘鲁青,姜令绪.盐度、pH突变对2种养殖对虾免疫力的影响.青岛海洋大学学报,2002,32(6):903~910
    [58]林小涛,张秋明,许忠能等.虾蟹类呼吸代谢研究进展.水产学报,2000,24(6):575~580
    [59] Chen J.C., Lin C.Y.. Responses of oxygen consumption, ammonia-N excretion and urea-N excretion of Penaeus chinensis exposed to ambient ammonia at different salinity and pH level. Aquaculture, 1995, 136(3): 243~255
    [60]潘鲁青,刘志,姜令绪.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.中国海洋大学学报,2004,34(5):787~790
    [61] Tseng I.T., Chen J.C.. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 2004, 17(4): 325~333
    [62] Cheng W., Liu C.H., Hsu J.P., ect. Effect of hypoxia on the immune response of gaint freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus. Fish & shellfish Immunology, 2002, 13(5): 353~365
    [63] Pascual C., Sáchez A., Vargas-Alobres F., ect. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of an extreme temperature. Aquaculture, 2003, 218(1): 637~650
    [64]焦传珍,王在照,李富花,等.编码中国对虾(Fenneropenaeus chinensis)一种组成型热休克蛋白70(HSC70)的cDNA克隆、测序及其表达分析.科学通报,2004 (21):2178~2186
    [65] Li F.H., Luan W., Zhang C.S., ect. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress and Chaperones, 2009,14(2):161~172
    [66] Yusu Xie, Bing Wang, Fuhua Li, ect. Molecular cloning and characterization of proliferating cell nuclear antigen (PCNA) from Chinese shrimp Fenneropenaeus chinensis. Comparative Biochemistry and Physiology Part B, 2008, 151(2): 225~229
    [67] Zhang Q.L., Li F.H., Wang B., ect. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression. Developmental and Comparative Immunology, 2007, 31(5): 429~440
    [68] Luana W., Li F.H., Zhang J.Q., ect. Cloning and expression of glucose regulated protein
    78(GRP78) in Fenneropenaeus chinensis. Molecular Biology Reports, 2009, 36(2): 289~298
    [69] Luana W., Li F.H., Wang B., ect. Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. Comparative Biochemistry and Physiology Part B, 2007, 147(3): 482~491
    [70] Zhang Q.L., Li F.H., Zhang J.Q., ect. Molecular cloning, expression of a peroxiredoxin gene in Chinese shrimp Fenneropenaeus chinensis and antioxidant activity of its recombinant protein. Molecular immunology, 2007, 44(14): 3501~3509
    [71] Zhang J.Q., Li F.H., Wang Z.Z., ect. Cloning, expression and identification of ferritin from Chinese shrimp, Fenneropenaeus chinensis. Journal of Biotechnolog, 2006, 125(2): 173~184
    [72] Zhang J.Q., Li F.H., Wang Z.Z., ect. Cloning and recombinant expression of a crustin-like gene from Chinese shrimp, Fenneropenaeus chinensis. Journal of Biotechnology, 2007, 127(4): 605~614
    [73] Liu F.S., Liu Y.C, Li F.H., ect. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Marine Biotechnology, 2005, 7(6): 600~608
    [74] de la Vega E., Degnan B.M., Hall M.R., ect. Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors. Fish&Shellfish Immunology, 2007, 23(5): 1072~1088
    [75] de la Vega E., Hall M.R., Wilson K.J., ect. Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiologica genomics, 2007, 31(1): 126~138.
    [76] Li T.D., Marius B.. Gene Expression Profile of Grass Shrimp Palaemonetes pugio Exposed to Chronic Hypoxia. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2009,3(4):196~208.
    [77] Brouwer M., Nancy J.B.P., Patrick L., ect. Molecular and whole animal responses of grass shrimp Palaemonetes pugio, exposed to chronic hypoxia. Journal of Experimental Marine Biology and Ecology, 2007, 341(1): 16~31.
    [78] Brouwer M., Brown-Peterson N.J., Hoexum-Brouwer T., ect. Changes in mitochondrial gene and protein expression in grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. Marine Environmental Research, 2008, 66(1): 143~145
    [79] Charoensapsri W., Amparyup P., Hirono I., ect. Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection. Developmental and Comparative Immunology, 2009, 33(7): 811~820
    [80] Zhou J., Wang W.N., Ma G.Z., ect. Gene expression of ferritin in tissue of the Pacific whiteshrimp Litopenaeus vannamei after exposure to pH stress. Aquaculture, 2008, 275(1-4): 356~360
    [81] Kerr J.F.R., Wyllie A.H., Currie A.R.. Apoptosis: a basis biological phenomenon with wideranging implications in tissue kinetics. British Journal of Cancer, 1972, 26(4):239~257
    [82] Danial N.N., Korsmeyer S.J.. Cell death: critical control points. Cell, 2004, 116(2), 205~219
    [83] Hassanin A.. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution, 2006,38(1): 100~116
    [84] Franco R., Sánchez-Olea R., Reyes-Reyes E.M., ect. Environmental toxicity, oxidative stress and apoptosis: MénageàTrois. Mutation Research, 2009, 674(1-2): 3~22
    [85] Ryter S.W., Kim H.P., Hoetzel A., ect. Mechanisms of cell death in oxidative stress. Antioxidant and Redox Signaling, 2007, 9(1):49~89
    [86] Valko M., Leibfritz D., Moncol J., ect. Free radicals and antioxidants in normal physiological functions and human disease. The international Journal of Biochemistry and Cell Biology, 2007,39(1): 44~84
    [87] Abdollahi M., Ranjbar A., Shadnia S., ect. Pesticides and oxidative stress: a review. Medical Science Monitor ,2004,10(6):141~147 [ 88 ] Assefa Z, Laethem A V, Garmyn M, ect. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochimica Biophysica Acta (BBA)-Reviews on Cancer, 2005, 1775(2):90~106
    [89] West I.C.. Radicals and oxidative stress in diabetes. Diabetic Medicine, 2000,17(3): 171~180
    [90] Hengartner M.O.. The biochemistry of apoptosis. Nature, 2000,407 (6805): 770~776
    [91] Milhas D., Cuvillier O., Therville N.. Caspase-10 triggers bid cleavage and Caspase cascade activation in FasL-induced apoptosis. The Jounal of Biological Chemistry, 2005, 280(20): 19836~19842
    [92] Tran S.E., Meinander A., Eriksson J.E.. Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends in Biochemical Science, 2004, 29(11):601~608
    [93] Khosravi-Far R., Esposti M.D.. Death receptor signals to mitochondria. Cancer Biology and Therapy, 2004, 3(11):1051~1057
    [94] Barnhart B.C., Alappat M.E., Peter M.E.. The CD95 typeⅠ/typeⅡmodel. Seminars in Immunology, 2003,15(3): 185~193
    [95] Lavrik I., Golks A., Krammer P.H.. Death receptor signaling. Journal of cell science, 2005, 116(11):265~267
    [96] Grimm S., Brdiczka D.. The permeability transition pore in cell death. Apoptosis, 2007, 12(5):841~855
    [97] Ravagnan L., Roumier T., Kroemer G.. Mitochondria, the killer organelles and their weapons. Journal of Cellular Physiology, 2002,192(2):131~137
    [98] Ferri K.F., Kroemer G.. Organelle-specific initiation of cell death pathways. Nature Cell Biology, 2001,3(11):255~263
    [99] Birnbaum M.J., Clem R.J., Miller L.K.. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol, 1994,68(4): 2521~2528
    [100] Abrams J.M.. An emerging blueprint for apoptosis in Drosophila. Trends in Cell Biology, 1999,9(11): 435~440
    [101] Srinivasula S.M., Ashwell J.D.. IAPs: what’s in a Name?. Molecular Cell, 2008, 30(2):123~135
    [102] Hay B.A., Guo M.. Caspase-dependent cell death in Drosophila. Annual review of cell and developmental biology, 2006,22:623~650
    [103] Leu J.H., Wang H.C., Kou G.H., ect. Molecular cloning and characterization of an inhibitior of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology, 2008,32(2): 121~133
    [104] Youle R.J., Strasser A.. The BCL-2 protein family : opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology, 2008,9(1): 47~59
    [105] Cory S., Huang D.C., Adams J.M.. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene, 2003,22(53): 8590~8607
    [106] Bao Q., Shi Y.. Apoptosome: a platform for the activation of initiator Caspases. Cell Death Differentiation, 2007,14(1): 56~65
    [107] Shi Y.. Mechanical aspects of apoptosome assembly. Current Opinion in Cell Biology, 2006, 18(6): 667
    [108] Zmasek C.M., Zhang Q., Ye Y., ect. Surprising complexity of the ancestral apoptosis network. Genome Biology, 2007,8(10): R226(1-8)
    [109] Cho D.H., Hong Y.M., Lee H.J., ect. Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. Journal of Biological Chemistry, 2004,279(38): 39942~39950
    [110] Cho D.H., Lee H.J., Kim H.J., ect. Suppression of hypoxic cell death by APIP-induced sustained activation of AKT and ERK 1/2. Oncogene, 2007,26(19):2809~2814
    [111] Saelens X., Festjens N., Vande Walle L., ect. Toxic proteins released from mitochondria in cell death. Oncogene, 2004,23(16):2861~2874
    [112] Yu X., Wang L., Acehan D., ect. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. 2006, 355(3):577~589
    [113] Menze M.A., Hand S.C.. Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana. American Journal of Physiology, 2007, 292(5): 2039~2047
    [114] Joza N., Pospisilik J.A., Hangen E., ect. AIF: not just an apoptosis-inducing factor. Annals of the New York Academy of Sciences, 2009,1171: 2~11
    [115] Parrish J., Li L., Klotz K., ect. Mitochondrial endonuclease G is important for apptosis in C.elegans. Nature, 2001,412(6842):90~94
    [116] Joza N., Galindo K., Pospisilik J.A., ect. The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differentiation, 2008,15(6):1009~1018
    [117] Igaki T., Suzuki Y., Tokushige N., ect.. Evolution of mitochondrial cell death pathway: proapoptotic role of HtrA2/Omi in Drosophila. Biochemical and Biophysical Research Communications, 2007,356(4):993~997
    [118] Kanda H., Igaki T., KANUKA H., ect. Wengen, a member of the Drosopila tumor necrosis factor receptor superfamily, is required for Eiger signaling. Journal of Biological Chemistry, 2002,277:28372~28375
    [119] Kauppila S., Maaty W.S., Chen P., ect. Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene, 22(31):4860~4867
    [120] Lee N.K., Lee S.Y.. Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). Journal of biochemistry and molecular biology, 2002,31(1):61~66
    [121]翟中和,王喜忠,丁明孝等.细胞生物学.北京:高等教育出版社,2007:447
    [122]杨丹彤.棉铃虫Ha Caspase-1和Ha hsc70基因克隆及表达研究.济南,山东大学,2007
    [123] Thornberry N.A., Bull H.G., Calaycay J.R., ect. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992,356:768~774
    [124] Cerretti D.P., Kozlosky C.J., Mosley B., ect. Molecular cloning of the interleukin-1 beta converting enzyme. Science, 1992,256 (5053):97~100
    [125] Yuan J., Shaham S., Ledoux S., Ellis H.M., ect. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 1993, 75(4):641~652
    [126] Miura M., Zhu H., Rotello R., ect. Indution of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C.elegans cell death gene ced-3. Cell, 1993, 75(4):653~660
    [127] Kumar S., Tomooka Y., Noda M.. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochemical and Biophysical Research Communications, 1992,185(3):1155~1161
    [128] Lamkanfi M., Declercq W., Kailai M., ect. Alice in Caspase land. A phylogenetic analysis of Caspases from worm to man. Cell Death and Differentiation, 2002,9(4):358~361
    [129] Kumar S.. Caspase function in programmed cell death. Cell Death Differentiation, 2007,14(1):32~43
    [130] West J.D., Marnett L.J.. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chemical Research in Toxicology, 2006,19(2):173~194
    [131] Filomeni G., Ciriolo M.R.. Redox control of apoptosis: an update. Antioxidant Redox Signal, 2006,8:2187~2192
    [132] Ott M, Gogvadze V, Orrenius S, ect. Mitochondria, oxidative stress and cell death. Apoptosis, 2007,12(5):913~922
    [133] Barzilai A., Yamamoto K.. DNA damage responses to oxidative stress. DNA Repair, 2004,3(8-9):1109~1115
    [134]何玉英.中国对虾生长性状和对高氨氮和高pH抗性的基础研究.青岛,中国海洋大学,2009
    [135] Smith V.J., Brown J.H., Hauton C.. Immunostimulation in crustaceans : does it really protect against infection?. Fish & Shellfish Immunology, 2003, 15(1): 71~90
    [136] Bachère E.. Shrimp immunity and disease control. Aquaculture, 2000, 191(1): 3~11.
    [137] Zheng Z.H., Dong S.L., Tian X.L.. Effect of Cyclic pI with different durations on the growth of Litopenaeus vannamei. Periodical of ocean university of china, 2008, 1: 45~51.
    [138] Wang W.N., Zhou J., Wang P., ect. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute stress. Comparative Biochemistry and Physiology Part C , 2009, 150(4): 428~435.
    [139] Richier S, Sabourault C, Courtiade J, ect. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS Journal, 2006, 273(18):4186~4198.
    [140] Ranby B, Rabek J E.. Singlet Oxygen. England: InWiley, 1978: 331.
    [141] Chang C.C., Yeh M.S., Cheng W.. Cold shock-induced norepinephrine triggers apoptosis ofhaemocytes via Caspase-3 in the white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 2009, 27(6): 695~700.
    [142] Shi Y.. Caspase activation: revisiting the induced proximity model. Cell, 2004, 117(7): 855~858.
    [143] Shi Y.. Caspase activation, inhibition, and reactivation: A mechanistic view. Protein Science, 2004, 13(8): 1979~1987
    [144] Menze M.A., Fortner G., Nag S. ect.. Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death? Apoptosis, 2010, 15(3): 293~312.
    [145] Phongdara A., Wanna W., Chotigeat W.. Molecular cloning and expression of Caspase from white shrimp Penaeus merguiensis. Aquaculture, 2006, 252(2-4): 114~120.
    [146] Thornberry N.A. Caspases: key mediators of apoptosis. Chemistry & Biology, 1998, 5(5): 97~103.
    [147] Wongprasert K., Sangsuriya P., Phongdara A., ect. Cloning and characterization of a Caspase gene from black tiger shrimp (Penaeus monodon)-infected with white spot syndrome virus (WSSV). Journal of Biotechnology, 2007, 131(1): 9~19.
    [148] Wang L., Zhi B., Wu W.L., ect. Requirement for shrimp Caspase in apoptosis against virus infection. Developmental & Comparative Immunology, 2008, 32(6): 706~715.
    [149] Rijiravanich A., Browdy C.L., Withyachumnarnkul B.. Knocking down Caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish & Shellfish Immunology, 2008, 24(3): 308~313.
    [150] Leu J.H., Wang H.C., Kou G.H., ect. Penaeus monodon Caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental & Comparative Immunology, 2008, 32(5): 476~486.
    [151] Bachère E, Chagot D, Grizel H. Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Developmental and Comparative Immunology, 1988, 12(2):549~559.
    [152] J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.用氯化钙制备和转化感受态大肠杆菌,分子克隆实验指南.北京:科学出版社,2002.
    [153] Tamura K., Dudley J., Nei M., ect. MEGA4: molecular evolutionary Genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596~1599.
    [154] Kenneth J.L., Thomas D.S.. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25(4): 402~408.
    [155] Marisa L.W., Juan F.M. Real-time PCR for mRNA quantitation. Biotechniques, 2005, 39(1):75~85.
    [156]芮菊生.组织切片技术.第三版,北京:人民教育出版社,1980:99~110.
    [157]赵瑞杰,李引乾,王会等. Caspase家族与细胞凋亡的关系.中国畜牧杂志,2010,46(17):73~78.
    [158] Suparna M., Dragos P., Alexandru A.. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Apoptosis and cancer, 2008, 414:13~21.
    [159] Colin A., Emma M.C., Sean P.C., ect. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and Man. Journal of Biological Chemistry, 2004, 279(35): 36923~36930.
    [160]袁长青,丁振华. Caspase的结构与功能.国外医学分子生物学分册,2002,24(3):146~151.
    [161] Howard Y. C., Xiaolu Y. Proteases for cell suicide: Functions and regulation of Caspases. Microbiology and Molecular Biology Reviews, 2000, 64(4):821~846.
    [162] Alexei D., Michael B., Junying Y.. A decade of Caspases. Oncogene, 2003, 22(53): 8543~8567.
    [163] Deveraux Q.L., Stennicke H.R., Salvesen G.S., ect. Endogenous inhibitors of Caspases. Journal of Clinical Immunology, 1999, 19(6): 388~398.
    [164] Stennicke H.R., Salvesen G.S.. Catalytic properties of the Caspases. Cell Death and Differentiation 1999, 6(11): 1054~1059.
    [165] Fraser A.G., Evan G.I. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO Journal, 1997, 16(10): 2805~2813.
    [166] Song Z.K., McCall K., Steller H.. DCP-1, a Drosophila cell death protease essential for development. Science, 1997, 275(5299): 536~540.
    [167] Raff M.C.. Social controls on cell survival and cell death. Nature, 1992, 356(6368): 397~400.
    [168] White E.. Life, death, and the pursuit of apoptosis. Genes & Development, 1996, 10(1): 1~15.
    [169] Chiang L.W., Grenier J.M., Ettwiller L., ect. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2814~2819.
    [170] Hasson K.W., Lightner D.V., Mohney L.L., ect. Role of lymphoid organ spheroids in chronic Taura syndrome virus (TSV) infections in Penaeus vannamei. Diseases of Aquatic Organisms 1999, 38: 93~105.
    [171] Wang G.G., Lin W., Zhang L.J., ect. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium. Progress in natural
    science, 2004, 14(12): 1064~1068.
    [172] Lee R., Kim G.B.. Comet assays to assess DNA damage and repair in grass shrimp embryos exposed to phototoxicants. Marine Environmental Research, 2002, 54(3-5): 465~469.
    [173] James F.C., Maryanne D., Thomas G.C. Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 2002, 265(1-2): 49~72.
    [174] Hand S.C., Menze M.A. Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. Journal of Experimental Biology, 2008, 211(12): 1829~1840.
    [175] Menze M.A., Hutchinson K., Laborde S.M., ect. Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage. American Journal of Physiology, 2005, 289(1): 68~76.
    [176] Brittany D.K., Dietmer K.. Prolonged apoptosis in mitochondria-rich cells of tilapia (Oreochromis mossambicus) exposed to elevated salinity. Journal of Comparative Physiology B, 2009, 179(4): 535~542.
    [177] Rebecca L.V., Devid E.. Stress-induced apoptosis in sea urchin embryogenesisi. Marine Environmental Research, 2004, 58(2-5):799-802.
    [178] Thornberry N.A., Lazebnik Y. Caspases: Enemies within. Science, 1998, 281(5381):1312~1316.
    [179] Yuan J., Shaham S, Ledoux S., etct. The C.elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell, 1993, 75(4):641~652.
    [180] Budihardjo I., Oliver H., Lutter M., ect. Biochemical pathways of Caspase activation during apoptosis. Annual review of cell and developmental biology, 1999, 15: 269~290
    [181] Earnshaw W.C., Martins L.M., Kaufmann S.H.. Mammalian Caspases: Structure, activation, substrates, and functions during apoptosis. Annual review of Biochemistry, 1999, 68(1): 383~424.
    [182]张国强,刘志刚,俞炜源.哺乳动物细胞高校表达系统研究进展.生物技术通讯,2005,16(1):56~59.
    [183]王燕燕. Caspase-3原核表达及其抑制剂的筛选.吉林,吉林大学,2010.
    [184]王磊.日本对虾细胞凋亡相关基因PjCaspase的功能研究.厦门,厦门大学,2006.
    [185] Niu X.P., Guiltinan M.J.. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Research, 1994, 22(23): 4969~4978.
    [186] Harwood A.J.. Basic DNA and RNA protocols. Totowa: Humana Press, 1996: 491~510
    [187] Tang W.H., Zhang J.L., Wang Z.Y., ect. The cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE. Acta phytophysiologica Sinica,2000, 26: 64~68.
    [188] Li C.C., Chen J.C.. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish & Shellfish Immunology, 2008,25(6):701~709.
    [189] Liu W.H., Au D.W.T., Anderson D.M., ect. Effects of nutrients, Salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. Journal of Experimental Marine Biology Ecology, 2007, 346(1-2):76~86.
    [190]樊甄姣,杨爱国,刘志鸿等. pH对栉孔扇贝体内几种免疫因子的影响.中国水产科学,2006,13(4):650~654.
    [191]文春根,张丽红,胡宝庆等. pH对背角无齿蚌(Anodonta woodiana)5种免疫因子的影响.南昌大学学报(理科版),2009,33(2):173~176.
    [192]文春根,代功园,谢彦海等.铅对背角无齿蚌抗超氧阴离子能力与抑制羟自由基的影响以及可溶性蛋白分析.南昌大学学报(理科版), 2009,33(4):380~384.
    [193]张庆利.中国对虾免疫系统中抗氧化相关基因的克隆与表达分析.青岛:中国科学院海洋研究所,2007,13~14.
    [194] Mathew S., Ashok Kumar K., Anandan R., ect. Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Compartive Biochemistry Physiology Part C, 2007, 145(3):315~320.
    [195]陈萍,李吉涛,李健等.溶藻弧菌对三疣梭子蟹抗氧化酶系统的影响.海洋科学,2009, 33(5):59~63.
    [196] Stebbing A.R.D.. Hormesis-The stimulation of growth by low levels of inhibitors. The Science of the Total Environment, 1982,22(1):213~234.
    [197] Dandapat J., Chainy G.B.N., Rao K.J.. Lipid peroxidation and antioxidant defence status during larval development and metamorphosis of giant prawn Macrobrachium rosenbergii. Comp Biochem Physiol C, 2003,136(3):221~233.
    [198]潘鲁青,金彩霞.甲壳动物血蓝蛋白研究进展.水产学报,2008, 32(3):484~491.
    [199]陈丽芬,柳君泽,李兵.低压缺氧对大鼠脑线粒体腺苷酸转运体特性的影响.生理学报,2006,58(1):29~33.
    [200] Evans D.H., Piermarini P.M., Choe K.P.. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 2005,85(1):97~177.
    [201] Weihrauch D., Becker W., Postel U., ect. Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. Journal ofComparative Physiology B, 1998, 168(5):364~376.
    [202]肖涛.环境应激对两种养殖虾能量代谢的影响.广州:华南师范大学,2006,50.
    [203] Wang C., Zhang S.H., Wang P.F., ect. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara[J]. Aquatic Toxicology, 2008, 87(2):88~98.
    [204] Rhee S.G., Kang S.W., Jeong W., ect. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current Opinion in Cell Biology, 2005, 17(2):183~189. [ 205 ] Wood Z.A., Schr?der E., Robin H.J., ect. Structure, mechanism and regulation of peroxiredoxins. Trends Biochemical Sciences, 2003,28(1):32~40.
    [206] Lehtonen S.T., Markkanen P.M., Peltoniemi M., ect. Variable overoxidation of peroxiredoxins in human lung cells in severe oxidative stress. American Journal of Physiology Lung Cellular Molecular Physiology, 2005, 288(5):997~1001.
    [207] Jang H.H., Kim S.Y., Park S.K., ect. Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype-I differentially regulate its peroxidase and molecular chaperone functions. FEBS Letters, 2006, 580(1):351~355.
    [208] Gao Q., Zhao J M., Song L.S., ect. Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradiants. Fish & Shellfish Immunology, 2008, 24(4):379~385.
    [209] Zhang X.Y., Zhang M.Z., Zheng C.J., ect. Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comparative Biochemistry Physiology C, 2009, 150(4):465~473.
    [210] Schill R.O., G?rlitz H., K?hler H.R.. Laboratory simulation of a mining accident: acute toxicity, hsc/hsp70 response, and recovery from stress in Gammarus fossarum (Crustacea, Amphipoda) exposed to a pulse of cadmium. BioMetals, 2003, 16(3):391~401.
    [211]雷蕾,鲍恩东.急性热应激肉鸡组织中HSP90的表达与应激损伤.中国农业科学, 2008, 41(11):3816~3821.
    [212]郑振华,董双林,田相利. pH不同处理时间的周期性变动对凡纳滨对虾生长的影响.中国海洋大学学报,2008,38(1): 45~51.
    [213]岳峰,潘鲁青,谢鹏等.氨氮胁迫对三疣梭子蟹酚氧化酶原系统和免疫指标的影响.中国水产科学,2010,17(4): 761~770.
    [214] Wood C.M.. Ammonia and urea metabolism and excretion. In: Ewans D.H., Physilogy of fishes. Boca Raton, CRC Press, 379~425.
    [215] Zdeňka S, Jana M, Hana K, ect. Ammonia autointoxication of common carp: case studies.Aquaculture International, 2007,15(3-4):277~286
    [216]叶继丹,王琨,常建波.氨氮对牙鲆幼鱼肝中超氧化物歧化酶活性及脂质过氧化物含量的影响.水产学杂志,2007,20(1):9~13.
    [217]蒲丽君,牛翠娟,陈欣然.慢性氨暴露对中华鳖幼鳖血浆总氨氮、皮质酮浓度及组织氨代谢酶活性的影响.动物学报,2006,52(5):878~884.
    [218]刘晓华,曹俊明,杨大伟,等.氨氮胁迫前后凡纳滨对虾组织中抗氧化酶和脂质过氧化产物的分布.水利渔业,2007,27(6):24~26.
    [219]陈佳蓉.水化学实验指导书.北京:中国农业出版社,1996,136~139.
    [220]海洋监测规范编辑委员会.海洋监测规范.北京:海洋出版社,276~279.
    [221] Bower C.E., Bidwell J.P.. Ionization of ammonia in sea water effects of temperature, pH, and salinity. Journal Fisheries Research Board of Canada, 1978, 35(7):1012~1016.
    [222] Johansson O., Wdborg M.. The ammonia-ammonium equilibrium in the water at temperature between 5 and 25°C. Jouranl of solution chemistry, 1980, 9(1):37~43.
    [223]郭远明,金彩杏,钟志等.氨氮的简易测定方法.渔业现代化,2005,4:34~41.
    [224]杨翠凤,李俊荣.海水中氨氮测定方法-纳氏试剂比色法与次溴酸盐氧化法的比对研究.浙江化工,2005,36(7):31~32.
    [225]郑瑞芝,王键,张钒.纳氏试剂比色法测定海水养殖水体中的铵.海洋通报,1995,14(1):69~73. [226《]水质分析大全》编写组.水质分析大全.重庆:科学技术文献出版社重庆分社,1989,136~138.
    [227]余明星,郑红艳,汪光.纳氏试剂比色法测定水体中氨氮常见问题与解决办法.干旱环境监测,2005,19(2):121~126.
    [228]哈承旭,刘萍,何玉英,等.氯化铵对“黄海1号”中国对虾免疫相关酶类的影响.渔业科学进展,2009,30(1):34~40.
    [229]何玉英,李健,刘萍,等.中国对虾家系幼体对氨氮和pH值的耐受性比较.中国海洋大学学报,2008,38(5):761~765.
    [230]陈四清,李晓川,李兆新,等.中国对虾配合饲料入水后营养成分的流失及其对水环境的影响.中国水产科学,1995,2(4):40~47.
    [231]王克行.虾蟹增养殖学.北京:中国农业出版社,1997:172.
    [232] Regnault M. Nitrogen excretion in marine and fresh-water crustacean. Bilogical reviews, 1987,62(1):1~24
    [233] Binns R.. The physiology of the antennal gland of Carinus maenas (L.) V: some nitrogenous constituents in the blood and urine. Journal experimental Biology, 1969, 51(1):41~51.
    [234] Chen J.C., Kou Y.Z. Accumulation of ammonia in the hemolymph of Penaeus japonicus exposed to ambient ammonia. Disease of Aquatic Organism, 1991, 11(3):187~191.
    [235] Harris R.R., Andrews M.B.. Total NPS pool and ammonia net efflux rate change in Carcinus maenas during acclimation to low environmental salinity. Comparative Biochemistry and Physiology part A, 1985, 82(2):301~308.
    [236] Hagerman L., Sondergaard T.,, Weile K., ect. Aspects of blood physiology and ammonia excretion in Nephrops norvegicus under hypoxia[J]. Comparative Biochemistry and Physiology part A, 1990, 97(1):51~55.
    [237] Mangum C.M., Silverthorne S.U., Harris J.L., ect. The relationship between blood pH, ammonia excretion and adaptation to low salinity in the blue crab Callinectes sapidus. Journal experimental Biology, 1976, 195(1):129~136.
    [238] Chen J.C., Nan F.H., Cheng S.Y., ect. Effects of ambient ammonia on ammonia-N and protein concentrations in hemolymph and ammonia-N excretion of Penaeus chinensis. Marine Ecology Progress Series, 1993, 98:203~208.
    [239] Chen J.C., Chen C.T., Cheng S.Y.. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Marine Ecology Progress Series, 1994, 110:85~94.
    [240] Campbell J.W.. Nitrogen excretion. In: Prosser C.L., Comparative animal physiology. Philadelphia, W. B. Saunders Company, 279~316.
    [241] Kinne O.. Cultivation of marine organism: water quality management and technology. In: Kinne O., Marine ecology, Vol.Ⅲ, Part 1, New York, Wiley-Interscience, 79~300.
    [242] Hanlon D.P.. The distribution of arginase and urease in marine invertebrates. Comparative Biochemistry and Physiology part B, 1975, 52(2):261~264.
    [243]于敏,王顺昌,卢韫.中华绒螯蟹在不同pH下氨氮排泄和血淋巴含氮成分的变化.水生生物学报,2008,32(1):62~67.
    [244] Chen J.C., Chen J.M.. Arginase specific activity and nitrogenous excretion of Penaeus japonicus exposed to elevated ambient ammonia. Marine ecology progess series, 1997,153:197~202.
    [245]孔祥会,王桂忠,李少菁,等.锯缘青蟹不同器官组织中4种类型ATPase活性比较研究.厦门大学学报(自然科学版),2004,43(1):98~101.
    [246]王轲,杨茜,芦楷钧,等.沙苑子提取物对运动训练大鼠不同组织Na+,K+—ATPase和Ca2+, Mg2+—ATPase活性的影响.西北大学学报(自然科学版),2010,40(6):1031~1034.
    [247] Zylinska L., Legutko B.. Neuroactive sterioid modulate in vitro the Mg2+-dependent Ca2+ Mg2+-ATPase activity in cultured rat neurons . General Pharmaccology, 1998, 30(4):533~536.
    [248] Lionetto M.G., Maffia M., Cappello M.S., ect. Effect of cadmium on carbonic anhydrase and Na+ K+-ATPase in eel, Anguilla angiulla, intestine and gills. Comparative Biochemistry and Physiology part A, 1998, 120:89~91.
    [249] Armstrong D.A., Chippendale D., Knight A.W., ect. Interaction of ionized and un-ionized ammonia on short-term survival and growth of prawn larvae, Macrobrachium rosenbergii. Biological Bulletin, 1978,154(1):15~31.
    [250] Chen J.C., Nan F.H.. Effect of ambient ammonia on ammonia-N excretion and ATPase activity of Penaeus chinensis. Aquatic Toxicology, 1992, 23:1~10.
    [251] Watson T.A., Beamish F.W.H.. Effect of zinc on brachial ATPase activity in vivo in rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology C, 1980,66(1):77~82.
    [252]贾秀英,陈志伟.铜、镉对鲫鱼组织Na+-K+-ATPase酶活力的影响.科技通报,2003,19(1):50~53.
    [253] Haya K., Waiwood B.A.. Adenylate energy charge and ATPase activity: potential biochemical indicators of sublethal effects caused by pollutants in aquatic animal. Advaces in environmental science and technology, 1983,13:307~333.
    [254] Daksha M., Dhavale V.B., Giridhar B.A.. Cadmium induced inhibition of Na+/K+ ATPase activity in tissues of crab Scylla serrata (Forskal). Bulletin of environmental contamination and toxicology, 1988, 40:759~763.
    [255]曾媛媛.环境因子对拟穴青蟹生理生化影响.厦门:厦门大学,2009.
    [256]徐志红,蒋志胜. Spinosyn A对家蝇生长发育及Na+,K+-ATPase、Ca2+,Mg2+-ATPase和AChE的影响.长江大学学报(自然科学版),2009,6(4):7~12.
    [257] Wojtaszek P.. Oxidative burst: an early plant response to pathogen infection. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 1997,332:681~692.
    [258] Bell K.L., Simith V.J.. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Developmental and Comparative Immunology, 1993, 17(3):211~219.
    [259] Muňoz M., Cedeňo R., Rodríguez J., ect. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 2000,191:89~107.
    [260]樊甄娇,刘志鸿,杨爱国.氨氮对栉孔扇贝血淋巴活性氧含量和抗氧化酶活性的影响.海洋水产研究,2005,26(1):23~27.
    [261] Arnaud L., Shelagh K.M.. Stress-induced immune changes in the oyster Crassostrea gigas.Development & Comparative Immunology, 2002,26(1):1~9.
    [262]温海深.水产动物生理学.青岛:中国海洋大学出版社, 2009,252~254.
    [263]张钧,许豪文,黄叔怀等.力竭运动对大鼠心肌线粒体游离钙及磷脂酶A2的影响.中国运动医学杂志,1998,17:26~27.
    [264]魏源,罗桂珍,林石梅,等.炮台训练和力竭运动对Ca2+酶活性的影响.吉首大学学报(自然科学院),2002,23(1):83~85.
    [265]Zhang Q.L., Li F.H., Zhang X.J., ect. cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase of Chinese shrimp Fenneropenaeus chinensis. Fish & Shellfish Immunology, 2008,24(5):584~591.
    [266] Aebi H.. Catalase in vitro. Methods Enzymol, 1984,105:121~126.
    [267] Kang S.W., Rhee S.G., Chang T.S., ect. 2-Cys peroxiredoxin function in intracelluar signal transduction, therapeutic implications. Trends in Molecular Medicine, 2005, 11(12):571~578.
    [268] Chea H.Z., Robison K., Poole L.B., ect. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiolspecific antioxidant define a large family of antioxidant enzymes. Proceeding of the National Academy of Sciences of the United States of America, 1994,91(15):7017~7021.
    [269] Lim Y.S., Cha M.K., Kim H.K., ect. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochemical and Biophysical Research Communications, 1993,192(1):273~280.
    [270] Panaretou B., Prodromou C., Roe S.M., ect. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO Journal, 1998,17(16):4829~4836.
    [271] McLaughlin S.H., Smith H.W., Jackson S.H.. Stimulation of the weak ATPase activity of human hsp90 by a client protein. Journal of Molecular Biology, 2002,315(4):787~798.
    [272] Galea-Lauri J., Richardson A.J., Latchman D.S., ect. Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: a possible role in immunopathology. The Journal of Immunology, 1996,157(9):4109~4118.
    [273] Chen G., Cao P., Goeddel D.V.. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Molecular Cell, 2002,9:401~410.
    [274] Ovelgonne J.H., Souren J.E., Wiegant F.A., ect. Relationship between cadmium-induced expression of heatshock genes, inhibition of protein synthesis and cell death. Toxicology, 1995,99(1-2):19~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700