苏云金芽胞杆菌分离鉴定及对马铃薯二十八星瓢虫特异活性菌株研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bt)是世界上研究最多应用范围最广的杀虫微生物,杀虫活性物质包括Cry和Cyt两大类蛋白,在害虫生物防治中发挥了重要作用,但是也暴露了一些弊端,如杀虫谱窄、昆虫易产生抗性等问题,所以进一步分离特异活性或者高活性的野生菌株,鉴定其基因型,为害虫防治提供更多的基因资源。
     本论文针对含有cry7类基因的苏云金芽胞杆菌野生菌株进行了鉴定和评价,从中筛选出了对马铃薯二十八星瓢虫特异活性的新菌株,针对这一新菌株生物学特性、蛋白型、基因型以及作用机理等方面进行了一系列的研究,主要内容和结果如下。
     1.利用醋酸钠筛选法并经基因型分析,从河北省土壤中分离筛选出了56株含有cry7基因的Bt菌株。在这些菌株中,10株菌同时含有cry7基因和其他cry基因,46株菌只含有单一cry7基因。大部分Bt菌株表达130kDa蛋白,仅有BQZ-12菌株产生80kDa和70kDa蛋白,BQZ-8菌株产生130kDa和80kDa蛋白。通过生物活性测定得到一株对马铃薯二十八星瓢虫幼虫具有特异杀虫活性野生菌Bt WZ-9。
     2. WZ-9菌株在胞晶分离期产生菱形伴胞晶体,蛋白分子量为130kDa,对马铃薯二十八星瓢虫2龄幼虫的LC50值为0.209 mg/mL。基因型鉴定结果表明该菌只含有单一的cry7基因,序列分析显示该基因与cry7Ab1同源性达到99%,被Bt命名委员会命名为cry7Ab3(登录号ABX 24522)。
     3.为了明确Cry7Ab3蛋白的杀虫活性,从Bt WZ-9菌株中克隆了cry7Ab3基因,该基因在大肠杆菌BL21和Bt无晶体突变株HD73 cry-中都能正确表达130kDa蛋白,其表达产物对马铃薯二十八星瓢虫2龄幼虫都具有较高毒力,LC50值分别为0.460 mg/mL和0.205 mg/mL,cry7Ab3基因在转Bt无晶体突变株HD73-Cry7Ab3中形成的晶体(0.86μm×1.23μm)比野生菌产生的晶体(0.73μm×1.00μm)略大一些。这些结果证实了cry7Ab3基因编码蛋白发挥杀虫作用。
     4.为明确Cry7Ab3蛋白最短活性区序列,利用特异性引物分别克隆表达不同长度的cry7Ab3基因片段,E. coli Cry7Ab3-1(Met1-Phe657)、E. coli Cry7Ab3-2( Met1-Phe626 )、E. coli Cry7Ab3-3 ( Asn30-Phe657 )和E. coli Cry7Ab3-4(Lys87-Phe657),并测定了表达产物对马铃薯二十八星瓢虫2龄幼虫的毒力。结果表明E. coli Cry7Ab3-1表达的75kDa蛋白毒力最高,LC50值为0.114mg/mL,可以确定Met1-Phe657为Cry7Ab3蛋白的最短活性区。
     5.分别利用胰蛋白酶和马铃薯二十八星瓢虫中肠蛋白酶液体外酶解130kDa的Cry7Ab3原毒素(质量比为100:1),均得到75kDa的酶解产物。与相同浓度的原毒素相比,75kDa的酶解产物对马铃薯二十八星瓢虫2龄幼虫具有较高杀虫毒力。对马铃薯二十八星瓢虫幼虫中肠组织病理学研究表明,3龄幼虫取食Cry7Ab3原毒素蛋白3d后,中肠细胞严重破坏,细胞间出现明显孔洞,幼虫表现出活动缓慢,取食量下降的现象。取食5d后,中肠组织完全被破坏,幼虫开始死亡。通过Ligand blotting技术,检测到马铃薯二十八星瓢虫中肠BBMV上存在分子量为220kDa的Cry7Ab3毒素结合受体,经质谱分析鉴定该受体蛋白为钙粘蛋白。
     本论文创新之处在于发现了对马铃薯二十八星瓢虫幼虫特异活性的Cry7Ab3蛋白,构建了转cry7Ab3基因的Bt工程菌,明确了Cry7Ab3蛋白最短活性区为75kDa的Met1-Phe657蛋白片段以及Cry7Ab3毒素的作用靶标是马铃薯二十八星瓢虫幼虫中肠组织上的BBMV,初步确定了其在中肠BBMV上结合蛋白可能是钙粘蛋白。这些研究结果为更好地应用Cry7Ab3蛋白防治马铃薯二十八星瓢虫提供了理论基础。
Bacillus thuringiensis is a spore-forming entomopathogenic bacterium that produces parasporal crystals composed of proteins calledδ-endotoxins during sporulation. There are two known classes ofδ-endotoxins in B. thuringiensis: the insect-specific insecticidal crystal (Cry) proteins and the Diptera-specific cytolytic (Cyt) proteins. Currently, the Cry proteins have been shown to be highly active against a wide variety of insect larvae. These toxins are widely sought after for controlling agricultural pests due to both their specificity and their applicability in transgenic plants. Although any particular toxin has a desirably restricted host range, there is a large number of different toxins, each showing toxicity to one of many diverse pests. For these reasons there is currently great interest in isolating novel strains of B. thuringiensis with either unique host specificity or elevated toxicity. New B. thuringiensis strains with cry7 gene were isolated and identified in this paper. Furthermore, characterization of the new Bt strain with cry7 gene against Henosepilachna vigintioctomaculata was studied. The results were as the following.
     1. The detection of cry gene of these isolates was done by a method based on polymerase chain reaction (PCR). 56 Bt isolates were identified to contain cry7 gene in which 10 isolates possessed cry7 gene and other cry gene, 46 isolates had only cry7 gene. SDS–PAGE analysis indicated that most of 56 isolates produced 130kDa protein bands, but Bt BQZ-12 produced 80kDa and 70kDa proteins, Bt BQZ-8 produced 130kDa and 80kDa proteins. The results of bioassay showed that just only Bt WZ-9 strain was toxic to larvae of H. vigintioctomaculata.
     2. Bt WZ-9 strain produces a bipyramidal crystal consisting of a 130 kDa protein. A novel gene, cry7Ab3, encoding a polypeptide of 1138 amino acids with a deduced molecular mass of 129.6 kDa was identified from Bt WZ-9 strain and submitted to GenBank with accession numbers ABX 24522. The results of bioassay demonstrated that Bt WZ-9 crystal proteins had high toxicity to larvae of H. vigintioctomaculata (LC500.209 mg/mL).
     3. The cry7Ab3 gene was successfully expressed as 130kDa protein in Escherichia coli BL21 and Bt acrystalliferous strain HD73 cry-. The expressed Cry7Ab3 proteins all had significant activity against second instar larvae of H. vigintioctomaculata, the estimated 50% lethal concentrations (LC50) were 0.460mg/mL and 0.205 mg/mL,respectively. Bt recombinant HD73-Cry7Ab3 produced bipyramidal crystals which were larger than those from Bt WZ-9 strain. The crystal volume were 0.86×1.23μm and 0.73×1.00μm.
     4. To determine the minimal active fragment of Cry7Ab3 protein, the four different cry7Ab3 fragments gene were cloned and expressed in E. coli BL21 respectively. Bioassay results showed that the toxicity (LC50=0.114 mg/mL) of expressed protein of E. coli Cry7Ab3-1(Met1-Phe657) was one time higher than that from Bt WZ-9. The expressed protein from E. coli Cry7Ab3-3(Asn30-Phe657) and E. coli Cry7Ab3-4(Lys87-Phe657) were no toxic to H. vigintioctomaculata. The minimal activated Cry7Ab3 toxin fragment was located at N-terminal of Cry7Ab3 between position Met1 and Phe657.
     5. The trypsin and gut juice proteases from H. vigintioctomaculata larvae all could proteolyse 130kDa Cry7Ab3 protoxin into 75kDa active toxin. The toxicity of 75kDa processing products against H. vigintioctomaculata was the higher than that of Cry7Ab3 protoxin. Histopathological observations indicated that Cry7Ab3 ingestion by H. vigintioctomaculata larvae caused acceleration in the blebbing of the midgut epithelium cells into the gut lumen and eventual lysis of the epithelium cells resulting in larval death. Ligand blotting experiment demonstrated that Cry7Ab3 toxin bounded a 220kDa BBMV protein from midgut of H. vigintioctomaculata larvae. This putative receptor protein was identified as cadherin by matrix assisted laser desorption-time of flight-mass spectrometry (MALDI-TOF-MS).
     Highlights of this paper are finding of a novel Cry7Ab3 toxin specific to H. vigintioctomaculata larvae, identifying the minimal active fragment of Cry7Ab3 and putative receptor protein of Cry7Ab3 in BBMV of H. vigintioctomaculata larvae. The data obtained may contribute to a better understanding of the mechanism of Cry7Ab3 toxin against H. vigintioctomaculata larvae and a better usage of Cry7Ab3 for controlling H. vigintioctomaculata larvae.
引文
[1] Mohamed A Ibrahim, Natalya Griko, Matthew Junker,et al. Bacillus thuringiensis, A genomics and proteomics perspective[J]. Bioengineered Bugs, 2010, 31~50.
    [2] Sanahuja G, Banakar R, Twyman RM, et al. Bacillus thuringiensis: a century of research, development and commercial applications[J]. Plant Biotechnol J., 2011, 9(3):283~300.
    [3] Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis: A story of a successful bioinsecticide[J]. Insect Biochem Mol Biol., 2011, 41(7):423 ~ 431.
    [4] Bravo A, Gill S S, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon, 2007, 49:423~ 435.
    [5] Barton K A, Whiteley H R, Yang N S. Bacillus thuringiensisδ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects[J]. Plant Physiology, 1987, 85:1103 ~ 1109.
    [6] Cadavid-Restrepo G, Sahaza J, Orduz S. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance[J]. Mem Inst Oswaldo Cruz., 2012 , 107(1):74 ~ 79.
    [7] Zhang H, Yin W, Zhao J, et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China[J]. PLoS One., 2011, n6(8):e22874.
    [8] Gillis A, Dupres V, Delestrait G, et al. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy[J]. Nanoscale, 2012, 4(5):1585 ~ 1591.
    [9]黄大昉,林敏.农业微生物基因工程[M].北京:科学出版社, 2001.
    [10] Leckie S E,Preseott C E,Grayston S J, et al. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability[J]. Microb Ecol.,2004, 48(l):29 ~ 40.
    [11] Wang J,Boets A,Van R J,et al.Charaeterization of cryl,cry2,and cry9 genes in Bacillus thuringiensis isolates from China[J]. J Invertebr Pathol., 2003, 82(l):63 ~ 71.
    [12] Bravo alejandra, Sergio sarabia, Lorena lopez, et al. Characterization of cry Genes in a Mexican Bacillus thuringiensis Strain Collection[J]. Appl Environ Micro., 1998, 64(12):4965 ~ 4972
    [13] Amin Nazarian, Rosa Jahangiri, Gholamreza Salehi Jouzani, et al. Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection[J]. J Invertebr Pathol., 2009, 102:101 ~ 109.
    [14] Vidal-Quist J C, Casta?era P, González-Cabrera J. Diversity of Bacillus thuringiensis Strains Isolated from Citrus Orchards in Spain and Evaluation of Their Insecticidal Activity Against Ceratitis capitata[J]. J Microbiol Biotechnol., 2009, 19(8):749 ~ 759.
    [15] Carmen Sara Hernández, RenéAndrew, Yolanda Bel, et al. Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia[J]. J Invertebr Pathol., 2005, 88: 8 ~16.
    [16] Patel KD, Chudasama CJ, Ingle SS. Molecular characterization of Bacillus thuringiensis isolated from diverse habitats of India[J]. J Basic Microbiol., 2011, doi: 10.1002/jobm.
    [17] Baig DN, Mehnaz S. Determination and distribution of cry-type genes in halophilc Bacillus thuringiensis isolates of Arabian Sea sedimentary rocks[J]. Microbiol Res., 2010, 165(5):376 ~383.
    [18] González A, Díaz R, Díaz M, et al. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes[J]. Rev Biol Trop., 2011, 59(3):1007 ~1016.
    [19] Aboussaid H, Vidal-Quist JC, Oufdou K, et al. Occurrence, characterization and insecticidal activity of Bacillus thuringiensis strains isolated from argan fields in Morocco[J]. Environ Technol., 2011 , 32:1383 ~1391.
    [20]戴顺英,高梅影,李小刚,等.我国南北方土壤中苏云金芽孢杆菌的分布及杀虫特性[J].微生物学报, 1996, 36 (4): 295~302.
    [21]张令要,袁平,张用梅,等.神农架原始森林高毒力苏云金芽胞杆菌菌株分离鉴定研究[J].中国媒介生物学及控制杂志, 2001, 12(4):271 ~274.
    [22]冯书亮,范秀华,邢建民,等.河北省不同生态区的苏云金杆菌资源调查[J].中国生物防治, 1996, 12 (3): 110~113.
    [23]谢月霞,杜立新,李瑞军,等.河北省不同生态区的苏云金芽胞杆菌cry基因的多样性研究[J].中国农学通报, 2008, 24(12):407 ~409.
    [24]雷会霄.苏云金芽孢杆菌的分离鉴定及杀虫基因的克隆[D].河北农业大学硕士学位论文,2010.
    [25]谢柳,张文飞,全嘉新.广西大王岭和大明山自然保护区苏云金芽胞杆菌收集与鉴定[J].基因组学与应用生物学, 2009, 28(1):62~68.
    [26]朱军.四川盆地苏云金芽胞杆菌cry和cyt基因的鉴定及其新型模式cry基因研究[D].四川农业大学博士学位论, 2010.
    [27]周长梅.苏云金芽胞杆菌的筛选鉴定及新型cry基因克隆、表达的研究[D].东北农业大学农学博士学位论文, 2010.
    [28]杨自文,吴宏文,王开梅,等.从土壤中高效分离苏云金芽胞杆菌的方法[J].中国生物防治, 2000, 16(l): 26~30.
    [29] Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78: 2893~2897.
    [30] Schnepf H E, Wong H C, Whiteley H R. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence[J]. The Journal of Biological Chemistry, 1985, 260: 6264~6272.
    [31] H?fte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiol Rev., 1989, 53, 242~255.
    [32] Crickmore N D, Zeigler R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and molecular biology reviews, 1998, 62:807~813.
    [33] Kuo W S, Chak K F. Identification of novel cry-type genes from Bacillus thuringiensis strains onthe base of restriction fregment length polymorphism of the PCR-amplified DNA[J]. Appl Environ Micron Microbiol., 1996, 62(4):1369 ~ 1377.
    [34]宋福平,张杰,谢天健,等.苏云金芽孢杆菌cry基因PCR-RFLP鉴定体系的建立[J].中国农业科学, 1998, 31 (3): 13~18.
    [35] Corina M Berón, Leonardo Curatti, Graciela L Salerno. New Strategy for Identification of Novel cry-Type Genes from Bacillus thuringiensis Strains[J]. Applied and Environmental Microbiology, 2005, 71(2): 761~765.
    [36] Eitan ben-dov, Qingfeng wang, Arieh zaritsky, et al. Multiplex PCR Screening to Detect cry9 Genes in Bacillus thuringiensis Strains[J]. Applied and Environmental Microbiology, 1999, 3714~3716.
    [37] Masson L., Erlandson M., Puzstai-Carey M., et al. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains[J]. Applied and Environmental Microbiology, 1998, 64:4782~4788.
    [38] Converts D, Houssier C, Lasters I, et al. The Bacillus thuringiensisδ-endotoxin evidence for a two domain structure of the minimal toxic fragment[J]. The Journal of Biological Chemistry, 1990, 265:1369~1375.
    [39] Choma C T,Surewicz W K,Carey P R,et al.Secondary structure of the entomocidal toxin from Bacillus thuringiensis subsp. kurstski HD-73[J]. J Protein Chem, 1990, 9:87~94.
    [40] Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol Mol Biol Rev., 1998, 62(3):775 ~806.
    [41] Jurat-Fuentes J L,Adang M J. Importance of Cry1δ-endotoxin Domain II Loops for Binding Specificity in Heliothis virescens (L.) [J]. Applied and Environmental Microbiology, 2001, 323~329.
    [42] Dammak M, Ali MB, Jaoua S, et al. Amino acids Y229 and F603 are involved in Bacillus thuringiensis Cry1Acδ-endotoxin stability and toxicity[J]. FEMS Microbiol Lett., 2012, 329(1):54~60.
    [43] MacKinnon R , Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K + channels[J]. Science, 1990, 250:276~279.
    [44] Grochulski P, Masson L, Borisova S, et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. J Mol Biol., 1995, 254(3): 447~464.
    [45] Li J, Carroll J, Ellar D J. Crystal structure of insecticideδ-endotoxin from Bacillus thuringiensis at 2.5 ? resolution[J]. Nature, 1991, 353: 815~821.
    [46] Hofmann C, Luthy P, Hutter R, et al. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae) [J]. European Journal of Biochemistry, 1988, 173:85~91.
    [47] Aronson A I, Han E S, McGaughey W, et al. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects[J]. Appl Environ Microbiol., 1991, 57(4):981~986.
    [48] Bradley D, Harkey M A, Kim M K, et al. The insecticidal Cry1b Crystal protein of Bacillus thuringiensis has dual specificity to coleopteran and lepidopteran larvae[J]. Journal of Invertebrate Pathology, 1995, 65:162 ~ 173.
    [49] Lambert B, H?fte H, Annys K, et al. Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae[J]. Applied and Environmental Microbiology, 1992, 58(8):2536~2542.
    [50] Peng D, Wang F, Li N, et al. Single cysteine substitution in Bacillus thuringiensis Cry7Ba1 improves the crystal solubility and produces toxicity to Plutella xylostella larvae[J]. Environ Microbiol., 2011, 2820~2831.
    [51] Milne R., Kaplan H. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation ofδ-endotoxin from Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology, 1993, 23: 663~673.
    [52] Johnston K A, Lee M J, Brough C, et al. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes[J]. Insect Biochemistry and Molecular Biology, 1995, 25: 375~383.
    [53] Novillo C, Castanera P, Ortego F. Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae[J]. Archives of Insect Biochemistry and Physiology, 1997. 36: 181~201.
    [54] Van R J, Jansens S, Hofte H, et al. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins[J]. Appl Environ Microbiol 1990, 56: 1378~1385.
    [55] Bravo A, Gomez I, Conde J, et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains[J]. Biochim Biophys Acta, 2004, 1667: 38~46.
    [56] Denolf P, Jansens S, Van H S, et al. Biotinylation of Bacillus thuringiensis Insecticidal Crystal Proteins[J]. Appl Environ Microbiol 1993, 59: 1821~1827.
    [57] Hodgman T C, Ellar D J. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis[J]. DNA Seq, 1990, 1: 97~106.
    [58] Zavala LE, Pardo-López L, Cantón PE, et al. Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane[J]. J Biol Chem., 2011, 286(21):19109~19117.
    [59] Zhuang M, Oltean D I, Gomez I, et al. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation[J]. J Biol Chem, 2002, 277: 13863~13872.
    [60] Gomez I, Sanchez J, Miranda R, et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin[J]. FEBS Lett, 2002, 513: 242~246.
    [61] Zhang X, Candas M, Griko N B, et al. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxindepends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells[J]. Cell Death Differ, 2005, 12: 1407~1416.
    [62] Zhang X, Candas M, Griko N B, et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis[J]. Proc Natl Acad Sci USA, 2006, 103: 9897~9902.
    [63] Jurat-Fuentes J L, Adang M J. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae[J]. J Invertebr Pathol., 2006, 92: 166~171.
    [64] Knowles B H,Ellar D J. Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensisδ-endotoxins with different insect specificity[J].Biochem Biophy Acta., 1986, 924:509~518.
    [65] Craig R Pigott, David J Ellar. Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity[J]. Microbiology and Molecular Biology Reviews, 2007, 71(2): 255~281.
    [66] Griffitts J S, Haslam S M, Yang T, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin [J]. Science, 2005, 307: 922 ~ 925.
    [67] Ochoa-Campuzano C, Real M D, Martínez-Ramírez A C, et al. An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor[J]. Biochem Biophys Res Commun., 2007, 362(2):437 ~ 442.
    [68] Rausell C, Ochoa-Campuzano C, Martínez-Ramírez AC, et al. A membrane associated metalloprotease cleaves Cry3Aa Bacillus thuringiensis toxin reducing pore formation in Colorado potato beetle brush border membrane vesicles [J]. Biochim Biophys Acta., 2007 , 1768(9):2293 ~ 2299.
    [69] Sayed A, Nekl E R, Siqueira H A A, et al. A novel cadherin-like gene from westerncorn rootworm, Diabrotica virgifera (Coleoptera: Chrysomelidae), larval midgut tissue [J]. Insect Molecular Biology, 2007, 16(5): 591 ~ 600.
    [70] Fabrick J, Oppert C, Lorenzen M D, et al. A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin [J]. The Journal of Biological Chemistry, 2009, 284(27): 18401 ~ 18410.
    [71] Tomita T,Obara H,Takesue Y,et al. Purification of glycosylphosphatidylinositol anchoring aminopeptidases N from the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori[J]. Int J Biochem, 1994, 26: 977 ~ 986.
    [72] Knight P J K, Crickmore N, Ellar D J. The receptor of Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N [J]. Molecular Microbiology, 1994, 11: 429 ~ 436.
    [73] Hua G, Tsukamoto K, Rasilo M L, et al. Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut: a putative receptor for Bacillus thuringiensis CryIA toxin[J]. Gene, 1998, 214: 177 ~ 185.
    [74] Gill S S, Cowles E A, Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens [J]. JBiol Chem, 1995, 270: 27277 ~ 27282.
    [75] Luo K, Sangadala S, Masson L, et al. The Heliothis virescens 170 kDa aminopeptidase functions as "receptor A" by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation [J]. Insect Biochem Mol Biol 1997, 27: 735 ~ 743.
    [76] Valaitis A P, Lee M K, Rajamohan F, et al. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis [J]. Insect Biochem Mol Biol, 1995, 25: 1143 ~ 1151.
    [77] Yaoi K, Kadotani T, Kuwana H, et al. Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin[J]. Eur J Biochem., 1997, 246: 652~657.
    [78] Saengwiman S, Aroonkesorn A, Dedvisitsakul P, et al. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae[J]. Biochem Biophys Res Commun., 2011, 407(4):708~713.
    [79] Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper[J]. Proc Natl Acad Sci USA., 2011, 108(34):14037~14042.
    [80] Zhu Y C, Kramer K J, Oppert B, et al. cDNAs of an inopeptidase-like protein genes Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins[J]. Insect Biochem Mol Biol., 2000, 30: 215~224.
    [81] Herrero S, Gechev T, Bakker PL, et al. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes[J]. BMC Genomics, 2005, 6:96.
    [82] Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor [J]. J Biol Chem., 2002, 277(49):46849 ~ 46851.
    [83] Sivakumar S, Rajagopal R, Venkatesh GR, et al. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac[J]. J Biol Chem., 2007, 282(10):7312 ~ 7319.
    [84]苗素丽,张少平,程红梅,等.氨肽酶N(APN)与鳞翅目昆虫对Bt抗性的关系[J].中国农业科技导报, 2008, 10(S1):12 ~ 17.
    [85]梁革梅,徐广,王桂荣,等.棉铃虫中肠Bt毒素受体蛋白(APN)的分离与纯化[J].农业生物技术学报, 2005, 13(1): 102 ~ 107.
    [86] Vadlamudi R K, Ji T H, Bulla L A. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner [J]. J Bio1 Chem., 1993, 268 (17):12334 ~12340.
    [87] Angst B D, Marcozzi C, Magee A I. The cadhefin superfanfily: diversity in form and function [J]. Journal of Cell Science, 2001, 114(4): 629 ~ 64l.
    [88]王桂荣,吴孔明,梁革梅.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1A结合区定位[J].中国科学C辑生命科学, 2004, 34:537 ~546.
    [89] Wang G, Wu K, Liang G, et al. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region [J]. Sci China C Life Sci., 2005, 48(4):346 ~356.
    [90] Dorsch J A, Candas M, Griko N B, et al. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis [J]. Insect Biochem Mol Biol., 2002, 32: 1025 ~1036.
    [91] Hua G, Jurat-Fuentes J L, Adang M J. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity [J]. J Biol Chem., 2004, 279: 28051 ~ 28056.
    [92] Chen J, Brown MR, Hua G, et al. Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta [J]. Cell Tissue Res., 2005, 321(1):123 ~ 129.
    [93] Aimanova K G, Zhuang M, Gill S S. Expression of Cry1Ac cadherin receptors in insect midgut and cell lines [J]. J Invertebr Pathol., 2006, 92(3):178 ~ 187.
    [94] Hara H, Atsumi S, Yaoi K, et al. A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae[J]. FEBS Lett., 2003, 538, 29~34.
    [95]王玲,江幸福,罗礼智,等.粘虫类钙粘蛋白基因的克隆、序列分析及时空表达[J].昆虫学报, 2011, 54(10): 1094 ~ 1103.
    [96] Park Y, Abdullah M A, Taylor M D, et al. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to Coleopteran larvae by a toxin-binding fragment of an insect cadherin[J]. Appl Environ Microbiol., 2009, 75, 3086~3092.
    [97] Gao Y, Jurat-Fuentes J L, Oppert B, et al. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment [J]. Pest Manag Sci., 2011, doi: 10.1002/ps.2149.
    [98] Peng D, Xu X, Ruan L, et al. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis [J]. Res Microbiol., 2010a, 161(5):383 ~ 389.
    [99] Peng D, Xu X, Ye W, et al. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation[J]. Appl Microbiol Biotechnol., 2010b, 85(4):1033 ~ 1040.
    [100] Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens[J]. Science, 2001, 293: 857 ~ 860.
    [101] Morin S, Biggs R W, Sisterson M S, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J]. Proc Natl Acad Sci USA, 2003, 100: 5004 ~ 5009.
    [102] Yang Y, Chen H, Wu S, et al. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera [J]. Insect Biochem Mol Biol., 2006, 36(9):735 ~ 740.
    [103] Yang Y, Chen H, Wu Y, et al. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac[J]. Appl Environ Microbiol., 2007, 73(21):6939 ~ 6944.
    [104] Yang Y H, Yang Y J, Gao W Y, et al. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac [J]. Bull Entomol Res., 2009, 99(2):175 ~ 181.
    [105]秦悦.小菜蛾对Bt杀虫蛋白Cry1Ac抗性的分子机制研究[D].中国农业科学院硕士学位论文, 2011.
    [106] Zhao J, Jin L, Yang Y, et al. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera [J]. Insect Biochem Mol Biol., 2010, 40(2):113 ~ 118.
    [107] Xinjun Xu, Liangying Yu, Yidong Wu. Disruption of a Cadherin Gene Associated with Resistance to Cry1Acδ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera [J]. Applied and Environmental Microbiology, 2005, 71(2):948 ~ 954.
    [108] Krieg A, Huger A M, Langenbruch G A. Bacillus thuringiensis subsp. tenebrionsis, a new pathotype effective against larvae of Coleoptera[J]. Journal of Applied Entomology, 1983, 96: 500 ~ 508.
    [109] Herrnstadt C , Gilroy T E , Sobie D A , et al. A novel cry gene from the strain of Bacillus thuringiensis with active against coleopteran insects [J]. Gene, 1987, 57 (1) : 37 ~ 46.
    [110] Rausell C, García-Robles I, Sánchez J, et al. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say)[J]. Biochim Biophys Acta., 2004, 1660(2):99 ~ 105.
    [111] Perlak F J, Stone T B, Muskopf Y M, et al. Genetically improved potatoes: protection from damage by Colorado potato beetles[J]. Plant Mol Biol., 1993, 22(2):313 ~ 321.
    [112] Hussein HM, HabustováO, Turanli F, et al. Potato expressing beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces performance of a moth [J]. J Chem Ecol., 2006, 32(1):1 ~ 13.
    [113]张杰,宋福平,李长友,等.对鞘翅目害虫高毒力Bt基因cry3Aa7的分离克隆及表达研究[J].中国农业科学, 2002, 35( 6) : 650 ~ 653.
    [114] Haffani Y Z, Cloutier C, Belzile F J. Bacillus thuringiensis Cry3Ca1 protein is toxic to the Colorado potato beetle, Leptinotarsa decemlineata (Say) [J]. Biotechnol Prog., 2001,17(2):211 ~ 216.
    [115] Galitsky N, Cody V, Wojtczak A, et al. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis [J]. Acta Crystallogr D Biol Crystallogr, 2001,57: 1101 ~ 1109.
    [116] Nowatzki T M, Zhou X, Meinke L J, et al. Effect of Bacillus thuringiensis cry3Bb1 protein on the feeding behavior and longevity of adult western corn rootworms (Coleoptera: Chrysomelidae) [J]. J Econ Entomol., 2006, 99(3):927 ~ 930.
    [117] Meissle M, Hellmich R L, Romeis J. Impact of Cry3Bb1-expressing Bt maize on adults of thewestern corn rootworm, Diabrotica virgifera (Coleoptera: Chrysomelidae) [J]. Pest Manag Sci., 2011, 67(7):807 ~ 814.
    [118] Ellis R T, Stockhoff B A, Stamp L, et al. Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte [J]. Appl Environ Microbiol., 2002 , 68(3):1137 ~ 1145.
    [119] Masson L, Schwab G, Mazza A, et al. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes[J]. Biochemistry., 2004, 43(38):12349 ~12357.
    [120] Baum JA, Chu CR, Rupar M, et al. Binary toxins from Bacillus thuringiensis active against the western corn rootworm, Diabrotica virgifera virgifera LeConte [J]. Appl Environ Microbiol., 2004 , 70(8):4889 ~4898.
    [121] Naimov S, Weemen-Hendriks M, Dukiandjiev S, et al. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle [J]. Appl Environ Microbiol., 2001, 67(11):5328 ~ 5330.
    [122] Martins ES, Monnerat RG, Queiroz PR, et al. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis [J]. Insect Biochem Mol Biol., 2010 , 40(2):138 ~ 145.
    [123] Ruiz de Escudero I, Estela A, Porcar M, et al. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae [J]. Appl Environ Microbiol., 2006, 72(7):4796 ~ 4804.
    [124] Ohba M, Iwahana H, Asano S, et al. A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles[J]. Letters in Applied Microbiology, 1992, 14: 54 ~57.
    [125] Sato R, Takeuchi K, Ogiwara K, et al. Cloning, heterologous expression, and localization of a novel crystal protein gene from Bacillus thuringiensis serovar japonensis strain buibui toxic to scarabaeid insects[J]. Curr Microbiol., 1994, 28: 15 ~19.
    [126]冯书亮,王容燕,范秀华,等.一株对金龟子类幼虫具有杀虫活性的苏云金杆菌新分离株[J].中国生物防治, 2000, 16(2): 74 ~ 77.
    [127] Shu C, Liu R, Wang R, et al. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae [J]. Current Microbiology, 2007, 55(6): 492 ~ 496.
    [128]茅洁瑜,束长龙,李克斌,等.对蛴螬有活性的苏云金芽胞杆菌菌株的筛选与基因鉴定[J].中国生物防治学报, 2011, 27( 2): 176 ~ 181.
    [129] Yu H, Zhang J, Huang D, et al. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela [J]. Current Microbiology, 2006, 53(1): 13 ~ 17.
    [130] Shu C, Yu H, Wang R, et al. Characterization of two novel cry8 genes from Bacillus thuringiensisstrain BT185[J]. Current Microbiology, 2009, 58(4): 389 ~ 392.
    [131] Abad, Andre R, Duck Nicholas, et al. Genes encoding novel proteins with pesticidal activity against Coleopterans[P]. 2002. WO 02/34774 A2
    [132]陈军,王学聘,卢孟柱,等.抗光肩星天牛苏云金芽胞杆菌Bt886菌株的分离及对毒蛋白编码基因的初步鉴定[J].林业科学, 2004, 40(5):138~142.
    [133] Chen J, Dai L Y, Wang X P, et al. The cry3Aa gene of Bacillus thuringiensis Bt886 encodes a toxin against long-horned beetles[J]. Appl Microbiol Biotechnol., 2005, 67(3):351~356.
    [134] Guo C H, Zhao S T, Ma Y, et al. Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle [J]. Appl Microbiol Biotechnol., 2012, 93(3):1249~1256.
    [135] Qi G, Lu J, Zhang P, et al. The cry1Ac gene of Bacillus thuringiensis ZQ-89 encodes a toxin against long-horned beetle adult[J]. J Appl Microbiol., 2011, 110(5):1224~1234.
    [136]黄玉明,任琴.马铃薯二十八星瓢虫发生规律与防治技术试验研究[J].现代农业科技, 2009, 171 ~173 .
    [137]高梅影,李荣森,戴顺英,等.杀鞘翅目苏云金芽孢杆菌新菌株及其杀虫剂的研究[J].微生物学报, 1999, 39(6):515~520.
    [138]宋萍,王勤英,吴会贤,等.苏云金芽胞杆菌WZ-9菌株对马铃薯二十八星瓢虫的毒力及其杀虫基因的研究[J].农业生物技术学报, 2008, 26(3):515~520.
    [139]金冬雁.分子克隆实验指南(第二版)[M].北京:科学出版社, 1992.
    [140]关雄.苏云金芽孢杆菌研究回顾与展望[J].中国农业科技导报, 2006, 8 (6): 5~11.
    [141] Narva, Kenneth E, Payne J M, et al. Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematodes-active toxin from Bacillus thuringiensis isolates [P]. European Patent Office, EP0462721, 1991 .
    [142] Fujita M, Losick R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator SpoOA [J]. Genes Dev., 2005, 19(18): 2236 ~2244.
    [143] Du L, Wei J, Han L, et al. Characterization of Bacillus thuringiensis sigK disruption mutant and its influence on activation of cry3A promoter[J]. Wei Sheng Wu Xue Bao, 2011, 51(9):1177~1184.
    [144] Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein [J]? J Bacteriol., 1995, 177(21): 6027 ~ 6032.
    [145] Wu D, Federici B A. Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using cry1A(c) promoters to express the gene for an associated 20-kDa protein [J]. Appl Microbiol Biotechnol., 1995, 42(5):697 ~ 702.
    [146] Shao Z, Liu Z, Yu Z. Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis [J]. Appl Environ Microbiol., 2001, 67(12):5362 ~ 5369.
    [147] Diaz-Mendoza M, Bideshi DK, Ortego F, et al. The 20-kDa chaperone-like protein of Bacillus thuringiensis ssp. israelensis enhances yield, crystal size and solubility of Cry3A [J]. Lett ApplMicrobiol., 2012, 54(2):88 ~ 95
    [148]宋荣.苏云金芽胞杆菌杀虫晶体蛋白的C-半段对Vip3Aa7和Cry7Ba1蛋白包含体形成的影响[D].华中农业大学博士学位论文, 2010.
    [149]陈建武,唐丽霞,宋少云,等.苏云金芽胞杆菌vip3A基因的检测及保守性分析[J].生物工程报, 2003, 19(5): 538~543.
    [150] Tang J D, Shelton A M, Van Rie J, et al. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistance Diamond Back Moth (Plutella xylostella) [J]. Appl Environ Microbiol., 1996, 62(2):564 ~569.
    [151] Nickerson K W, Julian St G, Bulla L A. Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis[J]. Appl Microbiol., 1974, 28: 129~132.
    [152]丁之铨.杀虫遗传工程荧光假单孢菌的构建及生物学特性研究[D].中国农业大学博士学位论文, 1997.
    [153] Gamel P H, Piot J C. Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids [J]. Gene, 1992, 120(1): 17~26.
    [154] Yu X, Liu T, Sun Z, et al. Co-expression and Synergism Analysis of Vip3Aa29 and Cyt2Aa3 Insecticidal Proteins from Bacillus thuringiensis[J]. Curr Microbiol., 2012, 64(4):326~331.
    [155] Wang G, Zhang J, Song F, et al. Recombinant Bacillus thuringiensis strain shows high insectcidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field [J]. J Appl Microbiol., 2008, 105(5):1536 ~ 1543.
    [156] Wang G, Zhang J, Song F, et al. Engineered Bacillus thruingiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests[J]. Appl Microbiol Biotechnol., 2006, 72(5):924 ~ 930.
    [157] Yu J, Pang Y, Tang M, et al. Highly toxic and broad-spectrum insecticidal Bacillus thuringiensis engineered by using the transposon Tn917 and protoplast fusion[J]. Curr Microbiol., 2001, 43(2):112 ~ 119.
    [158]闫贵欣.对金龟甲科、叶甲科害虫高毒力苏云金芽胞杆菌杀虫基因及工程菌的研究[D].中国农业科学院博士学位论文, 2009.
    [159] Letourneau D K, Robinson G S, Hagen J A. Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores[J]. Environ Biosafety Res., 2003, 2(4):219 ~246.
    [160] Koziel M G, Carozzi N B, Currier T C, et al. The insecticidal crystal proteins of Bacillus thuringiensis: past, present and future uses [J]. Biotechnology and Genetic Engineering Reviews, 1993, 11: 171 ~ 228.
    [161] Vaeck M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack [J]. Nature, 1987, 328: 33 ~ 37.
    [162] Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expression of insect control protein genes [J]. Proc Natl Acad Sci USA., 1991, 88(8):3324~3328.
    [163]吴玉娥,张杰,曹景萍,等.苏云金芽孢杆菌Cry1Ie1蛋白末端缺失的研究[J].植物保护,2003, 29 (5): 15~18.
    [164] Liu Y J, Song F P, He K L, et al. Expression of a modified cry1Ie gene in E. coli and in transgenic tobacco confers resistance to corn borer [J]. Acta Biochim Biophys Sin (Shanghai), 2004, 36(4): 309 ~313.
    [165] Park H W, Bideshi D K, Federici B A. Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield[J]. Appl Environ Microbiol., 2000, 66(10):4449 ~ 4455.
    [166]吴玉娥.苏云金芽孢杆菌Cry1Ie1末端缺失蛋白的研究[D].东北农业大学硕士学位论文, 2003.
    [167] Hayakawa T, Shimizu Y, Ishida T, et al. Mutational analyses of Cry protein block7 polypeptides that facilitate the formation of protein inclusion in Escherichia coli[J]. Appl Microbiol Biotechnol., 2011, 90(6):1943~1951.
    [168] Wolfersberger M G,Luthy P,Maurer A,et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from larval mid-gut of the cabbage butterfly (Pieris brassicae) [J].Comp Biochem Physiol.,1987, 86:301~308.
    [169] Lightwood D J, Ellar D J, Jarrett P. Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac delta-endotoxin[J]. Appl Environ Microbiol., 2000 , 66(12):5174~5181.
    [170] Audtho M, Valaitis A P, Alzate O, et al. Production of chymotrypsin-resistant Bacillus thuringiensis Cry2Aa1 delta-endotoxin by protein engineering[J]. Appl Environ Microbiol., 1999, 65(10):4601~ 4605.
    [171] Carroll J, Convents D, Van Damme J, et al. Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3Aδ-endotoxin may facilitate its coleopteran toxicity[J]. Journal of Invertebrate Pathology, 1997, 70(1): 41~49.
    [172] Takuya Yamaguchi, Ken Sahara, Hisanori Bando, et al. Intramolecular proteolytic nicking and binding of Bacillus thuringiensis Cry8Da toxin in BBMVs of Japanese beetle[J]. Journal of Invertebrate Pathology, 2010, 105 (3):243~247.
    [173] Martin M M, Martin J S. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts[J]. Oecologia, 1984, 61:342~345.
    [174] Arthur I Aronson, Yechiel Shai. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action[J]. FEMS Microbiology Letters, 2001, 195:1~8.
    [175] Frederick S Walters, Cheryl M Stacy, Mi Kyong Lee, et al. An Engineered Chymotrypsin/Cathepsin G Site in Domain I Renders Bacillus thuringiensis Cry3A Active against Western Corn Rootworm Larvae[J]. Applied and Environmental Microbiology, 2008, 74(2):367~374.
    [176] Jeff Fabrick, Cris Oppert, MarcéD Lorenzen, et al. Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin[J]. The Journal of Biological Chemistry, 2009, 284(27):18401~18410.
    [177] Vadlamudi R K, Weber E, Ji I, et al. Cloning and expression of a receptor for an insecticidal toxinof Bacillus thuringiensis[J]. J Biol Chem., 1995, 270: 5490~5494.
    [178]刘小民.华北大黑鳃金龟中肠cDNA文库的构建及其围食膜靶标蛋白的分离与鉴定[D].河北农业大学博士学位论文, 2011.
    [179]李杰.棉铃虫中肠靶标蛋白的分离与鉴定[D].河北农业大学硕士学位论文, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700