Ⅰ、低剂量棉酚和甾体激素联合应用对大鼠睾丸Cyclin D1、P63和PKC-α表达的影响 Ⅱ、部分切除鱼尾后的尾鳍再生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
男性避孕药发展远远落后于女性避孕药,至今仍无安全、有效、无副作用的男性避孕药面市。我室经多年研究发现,低剂量棉酚和甾体激素联合用药可基本满足了副作用低和生殖能力可逆性恢复的要求。与单独使用棉酚和甾体激素相比,棉甾联合用药起效更快,两者在抗生育效果方面具有协同作用,但是尚不明确两者发挥协同作用位点。棉甾联合用药具有抗生育作用,能够影响睾丸中细胞的增殖、凋亡和分化等过程。而Cyclin D1和P63在细胞的增殖过程中起作用,所以棉甾联合用药可能影响Cyclin D1和P63的表达。PKC分布和作用广泛,棉甾联合用药的抗生育作用,也可能影响PKC-α在睾丸中的表达。
     成年雄性大鼠被随机分为四组,喂服棉酚12.5mg/kg·d+去氧孕烯0.125mg/kg·d+炔雌醇0.025mg/kg·d+十一酸睾酮100mg/kg·d的联合用药组(GH组),单独喂服相同剂量棉酚12.5mg/kg·d的棉酚组(G组)、单独喂服相同剂量激素,去氧孕烯0.125mg/kg-d+炔雌醇0.025mg/kg·d+十一酸睾酮100mg/kg·d的激素组(H组)以及喂服载体溶剂1%甲基纤维素的阴性对照组(C组)。用药后6、8和10周取睾丸和附睾组织,应用免疫组化和Western blot技术,检测(?)cyclin D1、P63和PKC-a的表达变化,以寻找联合用药对精原细胞的作用分子。
     研究结果显示,棉甾联合用药可有效地抑制精子发生,减少附睾成熟精子的数量,并且使睾丸和附睾的重量和体积明显变小。在本实验中,Cyclin D1蛋白免疫组化的结果为,Cyclin D1蛋白主要在生精小管管腔面的残余体中表达也在生精小管之间的睾丸间质中表达。在棉甾联合用药4w和10w后,各组间无明显差异。而Western blot结果显示4w各组中,C组的表达量明显高于其它三组, (P<0.05);10w各组中,C组的表达量明显低于其它三组, (P<0.05)。在棉甾联合用药4w后,H和GH组的P63蛋白质在生精小管之间的睾丸间质中的表达,与C和G组对比有所减弱,用药10w后明显减弱,而对其Western blot结果没有明显影响。在棉甾联合用药10w后,免疫组织化学结果显示,H和GH组的PKC-α蛋白质在生精小管之间的睾丸间质中的表达,与C和G组对比明显减弱。PKC-α蛋白表达的Western blot结果为,4w的GH组与4w的C、G和GH组比较,PKC-a蛋白表达明显下降(P<0.05)。10w的H和GH组与10w的C和G组比较,PKC-a蛋白表达明显下降(P<0.05),C和G两组间没有明显的差异。以PBS代替一抗的阴性对照,均未见阳性着色区,可见对三种蛋白的免疫组化的结果是特异性的
     总之,棉甾联合用药可有效地抑制精子发生,减少附睾成熟精子的数量,并且使睾丸和附睾的重量和体积明显变小。免疫组化的结果提示,在棉甾联合用药10w后,H和GH组的P63和PKC-α蛋白质在相应部位的表达,与C和G组对比明显减弱。以PBS代替一抗的阴性对照,均未见阳性着色区,可见免疫组化的结果是特异性的。Western blot结果提示,在棉甾联合用药10w后,三种基因在整个大鼠睾丸的总体蛋白表达量中,只有PKC-α的下降。
     所有的生物体对损伤都有生物反应,但是它们再生的能力却大不相同。这种自身稳定的更新机制是固有的特殊谱系干细胞所介导的。在这方面,硬骨鱼和两栖动物受到特别的关注,因为能够再生受损伤的器官包括部分心脏,脊髓,视网膜,和肢体/鳍。相对简单和易获得的尾鳍成为解析骨等再生分子机制的良好体系。在内骨骼水平切除鳍将不会有再生,在真皮鳍条切除将引起丢失结构大约3周内完全恢复。许多基因在鳍再生过程中的作用已经被研究。视黄酸(RA)能够改变再生尾鳍的生长情况和形态。有报道观察到鲚鱼的含有肌肉和鱼鳞的尾部。但是,有关经过断尾切除术后的鳍再生实验还没有报道。断尾再生的尾鳍再生于具有内骨骼和肌肉组织的鱼尾部分,这与现有的认识不同。但是当鲚鱼被捕到网里后都拼命挣扎而死去,所以不能够用鲚鱼做断尾再生的实验。
     四种鱼,包括草鱼、普通鲤鱼、鲤鱼和斑马鱼,用于研究鱼的断尾后尾鳍再生。鱼尾切断术是指切除部位在具有肌肉、内骨骼和鱼鳞的鱼尾的远侧边缘内侧1-2 mm处;近侧尾鳍切断术是指切除部位在具有肌肉、内骨骼和鱼鳞的鱼尾的远侧边缘外侧1-2 mm处;远侧尾鳍切断术是指切除部位恰好在尾鳍分岔前。鱼鳍经过固定、脱钙、包埋、切片。切片再经过脱蜡、梯度水化,进行H-E染色。将切下的鱼尾或者尾鳍固定清洗,在过滤的0.1%阿辛蓝溶液中染色、脱水,然后转入溶于0.5%KOH的0.1%茜素红溶液中染色。在应用BrdU进行染色的实验中,将鱼腹腔注射BrdU。固定后切片脱蜡,应用鼠源BrdU一抗处理,DAB显色。再生尾鳍中的细胞凋亡情况,应用TUNEL检测试剂盒,按照说明书中的方法进行检测。在鱼缸中加入RA至终浓度为10-6M,每天更换水和RA,连续4天。
     尾鳍切断术后,再生的锦鲤尾鳍比普通鲤鱼的分岔早。有的红色普通鲤鱼在它们再生的尾鳍上有较多的黑色素。在鱼尾或者尾鳍切断术后的尾鳍再生有区别。断尾后的尾鳍再生率约为50%,而尾鳍切断术后的再生率为100%。只有一部分断尾后再生尾鳍比较完整,而所有尾鳍切断术后再生的尾鳍均完整。在鱼尾切断术后2-4周,才有肉眼可见的尾鳍再生,而在尾鳍切断术后3天就可以见到。前者从具有肌肉、内骨骼和鱼鳞的尾部部分再生,而后者再生源于具有鳍条的尾鳍部位。一些草鱼的尾部经过切断术后2个多月,再生出不规则的部分尾鳍。断尾术后42天,单纯用肉眼仍然不能够看出明显的鳍条,鳍条样条状物是血管。这条普通鲤鱼已经断尾后3个月,再生出从形状上看完整的尾鳍已经1个月了,但是也不能够在再生的尾鳍上看到鳍条。在普通鲤鱼具有肌肉的尾后缘远侧1-2 mm处切断尾鳍,在一个月后再生出从形状上看完整的尾鳍,2个月后的再生尾鳍具有肉眼可见的鳍条。锦鲤断尾再生的尾鳍中有丰富的血管,但是没有明显的鳍条。断尾鳍后尾鳍再生的概率为100%,多数都能够再生出完整的尾鳍。斑马鱼断尾后再生尾鳍的概率约为50%,而再生的尾鳍中,只有一部分再生比较规则和完整。当断尾再生的尾鳍达到2 mm时,就可以看到鳍条,而不能够看到血管。在普通鲤鱼断尾后,很少的情况下尾部断端被鱼鳞样物质覆盖。经过阿辛蓝和茜素红染色,断尾再生锦鲤和斑马鱼的尾鳍与正常的以及断鳍再生的锦鲤和斑马鱼尾鳍显示出明显的区别。断尾再生的普通鲤鱼尾鳍经过H-E染色,显示在含有肌肉的尾部区域年和再生的尾鳍之间有不光滑的部分。断尾再生的尾鳍经过BrdU整合处理后,应用DAB检测显示增殖细胞位于再生尾鳍的边缘。TUNEL检测结果显示凋亡细胞主要存在于尾鳍的边缘。对斑马鱼进行断尾处理和RA处理,2个月以后,仅仅有一条再生出很小的尾鳍,用肉眼很难看到,再过了一个月也没有发现进一步的生长。斑马鱼经过断尾处理后,再生为期的概率约为50%,然而,经过断尾处理和RA处理后,没有斑马鱼能够再生出肉眼容易看到的尾鳍。
     与断尾后再生尾鳍的实验不同,经常有人做断尾鳍后再生尾鳍的相关实验。实验显示四种鱼:草鱼、普通鲤鱼、锦鲤和斑马鱼,在断尾后能够再生尾鳍。断尾再生的尾鳍起源自具有肌肉、内骨骼和鳞片的尾部。这与当前的认识—在内骨骼水平切断处理后不会再生—是不同的。在断尾再生的尾鳍中,应用TUNEL方法也检测到细胞凋亡。这样,可能去分化和干细胞激活都对芽基的形成起作用。尽管细胞的去分化现象只在两栖动物肢体和尾巴再生过程中得到证实,经过对斑马鱼再生尾鳍的芽基的形态学,本体论和基因表达研究,提示斑马鱼鳍再生存在相似的机制。鱼经过断尾处理后的横切面处的尾部组织与四足动物再生部位有相似的结构。因此,断尾再生尾鳍有可能揭示一个普遍的原理,即在所有脊椎动物的含有内骨骼组织部位的再生机制。而其它的“鳍再生”研究仅仅限于鳍条处的再生,这种再生与内骨骼和肌肉组织无关。对于断尾再生,RA表现出显著的抑制作用,而断鳍再生的斑马鱼,在年RA处理后都能够再生出畸形的尾鳍。
The development of male contraceptive pill has lagged far behind that of female contraceptive pill. Up to date, no even one safe, effective, reliable and reversible male contraceptive pill is on sale. Studing for many years, we have found that combined regimen of low-dose gossypol and steroid hormones has reversible antifertility action with low side effects. The combined regimen has faster effect than that of low dose gossypol or steroid hormones alone,although these results demonstrate that low-dose gossypol and steroid hormones have synergistic effect on antiferlity, the sites of synergistic effect remained unknown. Combined regimen of low-dose gossypol and steroid hormones has antifertility action and can affect proliferation, apoptosis and differentiation of cells in testis. Cyclin D1 and P63 have effect on cellular proliferation, so combined regimen of low-dose gossypol and steroid hormones may affect the expression of Cyclin D1 and P63. PKC have widespread distribution and effect, so combined regimen of low-dose gossypol and steroid hormones may also affect the expression of PKC.
     Adult male rats were divided into four groups randomly, group GH:rats were fed orally with Gossypol acetic acid (GA,12.5mg/kg·d) and Desogestrel (DSG,0.125mg/kg·d)/Ethinylestradiol (E,0.025mg/kg·d)/Testosterone undecanoate (TU,100mg/kg·d); group G:a single does of GA (12.5mg/kg·d) was given; group H:DSG(0.125mg/kg·d)/E(0.025mg/kg·d)/TU(100mg/kg·d) were administered; group C:rats only received vehicle(1% methyl cellulose). The testis and epididymis were removed at 6、8 and 10 week for detection. The expressions of cyclin D1, P63 and PKC-a, were detected by immunohistochemical method and western blot in order to find the effector molecules of the combined regiman.
     Our results show that combined low-dose gossypol and steroid hormones can supress spermatogenesis and reduce obviously the weight and volume of testis and epididymis.In this experiment, immunochemistry results show that protein Cyclin D1 is expressed mainly in residual body of seminiferous tubule cavosurface and interstitial tissue of testis among seminiferous tubule. There are no distinguished difference between group of C, G, H and GH at 4w or 10w. Western blot results of protein Cyclin D1 show that the expression of group C is higher greatly than any other group at 4w (P<0.05). While, the expression of group C is lower greatly than any other group at lOw (P<0.05) Immunochemistry results show that protein P63 is expressed mainly in interstitial tissue of testis among seminiferous tubule. The expression of P63 of group H and GH at 4w descend little compared with that of group C and G. While, the expression of P63 of group H and GH at10w descend greatly compared with that of group C and G. Western blot results of P63 show that the expression is similar among each group at 10w. Immunochemistry results show that protein PKC-a is expressed mainly in interstitial tissue of testis among seminiferous tubule.The expression of PKC-a of group H and GH at lOw descend greatly compared with that of group C and G Western blot results of PKC-a show that the expression of PKC-a of group GH at 4w compared with that of group C, G and H (P<0.05). The expression of PKC-a of group H and GH at 10w descend compared with that of group C and G (P<0.05);While there are no difference between group C and G at 10w. When antibodies are replaced by PBS, results of immunochemistry are all negtive. So those results are specific.
     In conclusion, our results show that combined low-dose gossypol and steroid hormones can supress spermatogenesis and reduce obviously the weight and volume of testis and epididymis. Immunochemistry results indicate that the expression of P63 and PKC-a of group H and GH descend compared with group C and G in corresponding region after use of low-dose gossypol and steroid hormones for 10 w. When antibodies are replaced by PBS, results of immunochemistry are all negtive. The results are specific. Results of western blot indicate that expression of PKC-a only among the three kinds of gene in whole rat testis descend after use of low-dose gossypol and steroid hormones for 10 w.
     All organisms mount biological responses to damage, but they vary widely in the degree to which they can recover from damage. These types of homeostatic renewals are thought to be mediated by resident stem cells of specific lineages. In this context, teleost fish and amphibian are of particular interest, as they have a remarkable capacity to regenerate damaged organs, including heart, spinal cord, retina and limbs/fins. The relative simplicity and the easy access of the caudal fin and of its skeletal elements make it an excellent system for dissecting the molecular pathways involved in bone regeneration. While resection of the fin at the level of the endoskeleton is not followed by regeneration, amputation of the dermal fin rays results in complete replacement of the lost structures within approximately 3 weeks. Many functional genes in fin regeneration have been researched. Retinoic acid(RA) might alter growth and morphogenesis of the regenerating fins. Fin regeneration from anchovy tail segments with musculature and scales was observed and reported in Freshwater Fisheries. But, no experiment about fin regeneration after tail amputation was reported. These caudal fins arose from segments of the endoskeleton, which contrast with currently accepted knowledge. While, they always struggle excessively when they are in fishing nets, consequently, it is difficult to use anchovies as experimental animals.
     Four kinds of fish, including grass carp, common carp, koi carp, and zebrafish (Danio rerio) were used in the present study to research further into fin regeneration from fish tail segments with musculature and scales. Tail amputation was carried out at the proximal 1-2 mm of the far margins of the tail that had musculature, endoskeleton, and scales. Proximal caudal fin amputations were done at the distal 1-2 mm of the far margin of the tail that had musculature, endoskeleton, and scales. Distal caudal fin amputations were carried out in the region just before the first bifurcation of the fin rays. Fins were fixed, decalcified, embedded, and cut into sections. Sections were dewaxed, hydrated in a gradient and stained by a routine hematoxylin-eosin(H-E) staining technique. Portions of tail and caudal fins were fixed and washed, then stained with a filtered 0.1% Alcian blue, and dehydrated. Bones were stained by placing the fins in a fresh solution of 0.1% Alizarin red in 0.5% KOH. For studies involving bromodeoxyuridine (BrdU), The fish were injected BrdU. fixed. Slides treated with primary mouse anti-BrdU antibody 3,3'-Diaminobenzidine (DAB) was used to visualize and photograph BrdU incorporation. Apoptosis in fish caudal fins on tissue slides was detected by enzymatic labeling of DNA strand breaks using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL). TUNEL was carried out using a cell death detection kit (Roche, Mannheim, Germany) according to the manufacturer's instructions. An appropriate amount of RA at a final concentration of 10-6 M was added directly into the tank water following amputation for 4 continuous days, and the water and RA were refreshed every day.
     Regenerated koi carp caudal fins bifurcate earlier than common carp. Some red common carp have a fair amount of melanin pigment in their regenerated caudal fins. There are some differences in caudal fin regeneration when caudal fins or tails are anesthetized for amputation, which was carried out at the proximal 1-2 mm of the rear margin of the tail with musculature, endoskeleton, and scales. The regeneration rate.of the caudal fin after tail amputation is about 50%, while the rate after caudal fin amputation is 100%. Only some of the tail amputations regenerated completely, while all of the caudal fin amputations completely regenerated. Caudal fins can be seen with the naked eye about 2 weeks to 4 weeks after tail amputation and about 3 days after caudal fin amputation. The former regeneration comes from the segment of the tail with musculature, endoskeleton, and scales, while the latter regeneration comes from the caudal fins with fin rays. Some grass carp whose tails had been cut two months prior regenerated irregularly only part of the caudal fin. After 42 days following tail amputation, distinct fin rays still could not be seen with the naked eye and the existing fin ray was more similar to a blood vessel.
     When the common carp tail was cut about three months previously, it regenerated a complete caudal fin according to its shape after one month. However, the regenerated caudal fins had no fin rays that could be seen with the naked eye. When the common carp caudal fin was cut distally 1-2 mm behind the margin of tail with musculature about two months prior, it regenerated a complete caudal fin according to its shape after one month. These regenerated caudal fins had fin rays that could be seen with the naked eye. Regenerated caudal fins of Koi carp had abundant blood vessels but no distinct fin rays. The probability ratio of caudal fin regeneration after tail amputation was 100% and most of these regenerated caudal fins were complete according to their shape. The probability ratio of zebrafish caudal fin regeneration after tail amputation was about 50%. Only part of the regenerated caudal fins was regular and complete. When the regenerated caudal fin after tail amputation reached 2 mm, fin rays could be seen with the naked eye, although blood vessels could not be seen. In a few cases among common carp, the broken ends of the tails that had been operated on were covered with a scale-like substance. After Alcian blue and Alizarin staining, tails of Koi carp and zebrafish with regenerated caudal fins after tail amputations showed dissection evidence that was comparable to that of normal Koi carp and zebrafish. This clearly indicates that tail amputation greatly differed from caudal fin amputation. H-E staining of regenerated common carp caudal fin after tail amputation indicated that the area between the tail with musculature and the regenerated caudal fin is not smooth. Proliferated cells stained by DAB are located at the margin of the regenerated caudal fin treated with BrdU after tail amputation. Apoptotic cells occurred primarily at the margin of the caudal fin. Zebrafish were treated with RA and with tail amputation. After 2 months, only one regenerated small caudal fin appeared, which could not easily be seen with the naked eye and which showed no further growth after another month. The regeneration ratio of zebrafish after tail amputation was about 50%, while no zebrafish regenerated caudal fins that could be seen easily with the naked eye after identical tail amputation and RA treatment.
     Caudal fin regeneration after fin amputation has been researched repeatedly, in contrast to experiments on caudal fin regeneration after tail amputation. Fin regeneration after tail amputation was demonstrated in four species of fish, including grass carp, common carp, Koi carp, and zebrafish. Fin regeneration after tail amputation come from tail segment with musculature, endoskeleton, and scales. This is different from currently held views that resection of the fin at the level of the endoskeleton is not followed by regeneration. In caudal fin regeneration after tail amputation, cell apoptosis was also found by TUNEL. Thus, it is likely that de-differentiation and stem cell activation both contribute to formation of the blastema. Although de-differentiation of cells has not yet been demonstrated in regenerating structures other than amphibian limbs and tails, the morphology, ontology, and gene expression profile of the zebrafish blastema in the regenerating caudal fin suggests that zebrafish fin regeneration occurs by similar mechanisms. Tail tissue that formed after tail amputation in the region around the cross-section had homologous structure to that seen in tetrapods. Therefore, fin regeneration after tail amputation has the potential to reveal general principles that are common to regeneration from tissue with endoskeleton in all vertebrate appendages. Other "fin regeneration" studies performed on actinopterygians have been limited to the lepidotrichia, which do not have an endoskeleton or musculature. RA was shown to have a very powerful inhibitory effect on caudal fin regeneration after tail amputation. Zebrafish with caudal fin amputation after RA treatment always regenerated deformed fins.
引文
[1]Aitken RJ, Baker MA, Doncel GF, et al. As the world grows:contraception in the21st century [J]. J Clin Invest,2008,118(4):1330-1343.
    [2]Pasqualotto FF, Lucon AM, Pasqualotto EB, et al. Trends in male contraception[J]. Rev Hosp Clin Fac Med Sao Paulo,2003,58(5):275-283.
    [3]速存梅,彭林,周曾娣.男用激素类和非激素类避孕药研究进展[J].生殖与避孕.2006,26(6):369-373.
    [4]张仁东,王亚平,杨正伟.雄孕激素男性避孕研究进展[J].中国计划生育学杂志.2004,12(12):758-761.
    [5]谷翊群,陈振文,张桂元.激素类男性避孕药的研究进展[J].中国实用妇科与产科杂志.2005,21(1):22-24.
    [6]崔毓桂,王兴海,童建孙.男性激素避孕临床研究的某些进展[J].中华男科学2003,9(5):381-384.
    [7]赵晓明,朱惠斌.激素类男性避孕药临床研究现状[J].国外医学·计划生育分册2001,20(2):79-83.
    [8]宋亚丽,邢福祺,全松.口服避孕药在体外受精周期中的应用进展[J].计划生育杂志.2009,28(2):85-88.
    [9]Ko CH, Shen SC, Yang LY, et al. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells [J]. Int J Cancer.2007,121 (8):1670-1679.
    [10]Moon DO, Kim MO, Lee JD, et al.Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells[J]. Cancer Lett.2008,264(2):192-200.
    [11]Kline MP, Rajkumar SV, Timm MM, et al.R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells[J]. Exp Hematol.2008, 36(5):568-576.
    [12]王岚,叶惟三,刘霄等.合并应用甾体激素与低剂量棉酚对雄性大鼠的抗生育效果及其作用机制[J].中国医学科学院学报.2000,22(3):214-219.
    [13]杨占君,叶惟三,王岚等.低剂量醋酸棉酚组合甲基睾酮、炔雌醇两种用药方 案对雄性大鼠抗生育效果比较[J].生殖医学杂志2004,13(2):91-95.
    [14]Yang ZJ, Ye WS, Cui GH et al. Combined administration of low-dose gossypol acetic acid with desogestrel/mini-dose ethinylestradiol/testosterone undecanoate as an oral contraceptive for men[J]. Contraception.2004,70(3):203-211.
    [15]钱晓菁,许增禄,徐园园,仇文颖.叶惟三低剂量棉酚与激素联合应用的抗生育作用位点的研究[J].解剖学报.2007,38(6):746-750.
    [16]张成侠,许增禄,常青,钱晓菁,张凤枝,邵金辉.低剂量棉酚与甾体激素联合应用对生精细胞凋亡和iNOS蛋白表达的影响[J].解剖学报.2009,40(3):491-495.
    [17]常青,邵金辉,许增禄,张成侠,钱晓菁.低剂量棉酚与甾体激素联合用药抗男性生育协同作用[J].解剖学报.2009,40(2):312-316.
    [18]赵晓荣,曹亚.真核生物细胞周期研究进展[J].国外医学生理、病理科学与临床分册.1999,19(3):167-170.
    [19]王福生,荆梦杰.周期素D1与肿瘤研究进展[J].国外医学临床生物化学与检验学分册.2000,21(3):140-142.
    [20]司少艳,张建中.p63基因研究进展[J].世界华人消化杂志2003,11(5):606-609.
    [21]郭伟,范士志.p63基因研究进展[J].重庆医学.2004,3(2):208-211.
    [22]韩梅娇,赵辉,宁小宁.蛋白激酶C的研究进展[J].中华临床医药2003,4(24):61-63.
    [23]倪同尚,武胜昔,李云庆.蛋白激酶C的分子生物学特征及研究进展[J].解剖科学进展.2001,7(4)):335-338.
    [24]Goyal HO, Braden TD, Mansour M, et al. Diethylstilbestrol-treated adult rats with altered epididymal sperm numbers and sperm motility parameters, but without alterations in sperm production and sperm morphology [J]. Biol Reprod,2001,64(3):927-934.
    [25]王岚,叶惟三,惠玲.雷公藤内酯酮的雄性抗生育作用及其作用机制[J].中国医学科学院学报,2000,22(3):223-226.
    [26]Poleo G, Brown CW, Laforest L, et al. Cell proliferation and movement during early fin regeneration in zebrafish[J]. Dev Dyn.2001.221:380-390.
    [27]汪家政,范明.蛋白质技术手册[M].北京.科学出版社.2001.
    [28]J.萨姆布鲁克,E.F.弗李奇,T.曼尼阿蒂斯等.分子克隆[M].北京.科学出版社.1992.
    [29]F.奥斯伯,R.E.金斯顿,J.G.塞德曼等.编分子生物学实验指南[M].北京.科学出版社.1999.
    [30]Wong CH, Xia W, Lee NP et al. Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes[J]. Endocrinology.2005, 146(3):1192-1204.
    [31]胡海一,张澍田.Cyclin D1表达与肿瘤关系的研究进展.临床和实验医学杂志.2007,6(7):143-5.
    [32]雷钧,邵江华.Cyclin D1与恶性肿瘤关系的研究进展[J].实用临床医学.2007,8(11):127-129.
    [33]王前,邓晶,蒋永新.cyclinDl的研究进展[J].现代肿瘤医学.2009,17(2):350-353.
    [34]Fombonne J, Charrier C, Goddard I, et al. Leptin-mediated decrease of cyclin A2 and increase of cyclin D1 expression:relevance for the control of prepubertal rat Leydig cell division and differentiation[J]. Endocrinology.2007,148(5):2126-2137.
    [35]Bartkova J, Rajpert-de Meyts E, Skakkebaek NE, et al. D-type cyclins in adult human testis and testicular cancer:relation to cell type, proliferation, differentiation, and malignancy[J]. J Pathol.1999 187(5):573-581.
    [36]Beumer TL, Roepers-Gajadien HL, Gademan IS,et al. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse[J]. Biol Reprod.2000,63(6):1893-1898.
    [37]罗兰,余敏,赖建华,等.5种细胞周期调控基因在小鼠生殖细胞发育过程中的表达研究[J].云南大学学报(自然科学版).2002.24(2):25-29.
    [38]Darwanto A, Kitazawa R, Mori K,et al. MeCP2 expression and promoter methylation of cyclin D1 gene are associated with cyclin D1 expression in developing rat epididymal duct[J]. Acta Histochem Cytochem.2008,41(5):135-142.
    [39]Murakami Y, Tateyama S, Uchida K, et al. Immunohistochemical analysis of cyclins in canine normal testes and testicular tumors [J]. J Vet Med Sci.2001,63(8):909-912.
    [40]Kang MJ, Kim MK, Terhune A, et al. Cytoplasmic localization of cyclin D3 in seminiferous tubules during testicular development [J]. Exp Cell Res. 199.7,234(1):27-36.
    [41]罗志刚,朱明华,宝建中.p63基因的研究进展[J]. 医学综述.2005,11(5):441-443.
    [42]Petre-Lazar B, Livera G, Moreno SG, et al. The role of p63 in germ cell apoptosis in the developing testis. J Cell Physiol.2007,210(1):87-98.
    [43]Nakamuta N, Kobayashi S. Developmental expression of p63 in the mouse testis[J]. J Vet Med Sci.2004,66(6):681-687.
    [44]Nakamuta N, Kobayashi S. Expression of p63 in the mouse primordial germ cells. J Vet Med Sci.2004,66(11):1365-1370.
    [45]何志巍,姚开泰.蛋白激酶C同工酶分子结构及功能研究进展[J].生理科学进展.1998,29(4):307-313.
    [46]杨或,于秉治.蛋白激酶C研究的最新进展[J].生物化学与生物物理进展.1994,21(4):308-312.
    [47]Jo Y, King SR, Khan SA, Stocco DM. Involvement of protein kinase C and cyclic adenosine 3',5'-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells[J]. Biol Reprod.2005.73(2):244-255.
    [48]Lahn M, Sundell KL, Paterson BM. The role of protein kinase C-alpha in malignancies of the nervous system and implications for the clinical development of the specific PKC-alpha inhibitor aprinocarsen (Review) [J]. Oncol Rep.2004.11(2):515-522.
    [49]Lahn M, Sundell K, Kohler G. The role of protein kinase C-alpha in hematologic malignancies[J]. Acta Haematol.2006,115(1-2):1-8.
    [50]Reyland ME. Protein kinase C isoforms:Multi-functional regulators of cell life and death[J]. Front Biosci.2009.1(14):2386-2399.
    [1]邵仕香,董庆洁,郭星等.棉酚及其衍生物的医药研究进展[J].天津理工学院学报.2002.18(1):87-89.
    [2]梁璐,汪森明. 棉酚抗肿瘤作用的研究进展[J]. 广东医学.2007,28(9):1535-1537.
    [3]王于理,巩平.棉酚抗肿瘤作用的研究进展[J]. 中国肿瘤.2008.17(7):576-579.
    [4]Yang ZJ, Ye WS, Cui GH, et al. Combined administration of low-dose gossypol acetic acid with desogestrel/mini-dose ethinylestradiol /testosterone undecanoate as an oral contraceptive for men[J]. Contraception.2004,70(3):203-211.
    [5]Waites GM, Wang C, Griffin PD.Gossypol:reasons for its failure to be accepted as a safe, reversible male antifertility drug[J]. Int J Androl. 1998,21(1):8-12.
    [6]Akingbemi BT, Rao PV, Aire TA. Chronic ethanol intake may delay the onset of gossypol-induced infertility in the male rat[J]. Andrologia. 1997,29 (4):201-207'.
    [7]Lin YC, Sanbuissho A, Coskun S, et al. Inhibition of in vitro fertilization and early embryonic development in hamsters by gossypol[J]. Life Sci. 1994;55(14):1139-1145.
    [8]Moh PP, Li PK, Darby MV, et al. Characteristics of covalent gossypol binding to microsomal proteins[J]. Res Commun Chem Pathol Pharmacol.1992, 76(3):305-322.
    [9]Teng CS. Biological activity in the repopulating rat spermatocyte after the withdrawal of gossypol treatment:Ⅲ. The activity for the transcription of messenger RNA[J]. Contraception.1992,45(2):167-176.
    [10]Kono H, Chin Lin Y, Gu Y, et al. Gossypol effects on monoamine oxidase (MAO) activity in several organs of term rats[J]. Tohoku J Exp Med.1991, 163(3):149-156.
    [11]Swan MA, Vishwanath R, White IG, et al. Electron microscopic observations on the effect of gossypol on rat cauda epididymis[J].Z Mikrosk Anat Forsch. 1990,104(2):273-286.
    [12]Vyas RK, Ranga A, Kalla NR. Early events in rat testis after gossypol administration[J]. Acta Eur Fertil.1990,21(1):39-45.
    [13]Nair IN, Bhiwgade DA.Effect of gossypol on few testicular enzymes in mature rats[J]. Indian J Exp Biol.1989,27(12):1087-1089.
    [14]Li YF, Booth GM, Seegmiller RE. Evidence for embryotoxicity of gossypol in mice and chicks with no evidence of mutagenic activity in the Ames test[J]. Reprod Toxicol.1989;3 (1):59-62.
    [15]Wang JM, Qiu JP, Wu XL, et al.The correlation between the gossypol contents in blood plasma, rete testis fluid and cauda epididymal fluid following chronic treatment with gossypol in rats[J]. J Androl.1988, 9(6):397-402.
    [16]Bender HS, Saunders GK, Misra HP. A histopathologic study of the effects of gossypol on the female rat[J]. Contraception.1988,38(5):585-592.
    [17]White IG, Vishwanath R, Swan MA, et al. Studies of the mechanism of action of gossypol as a male antifertility agent[J]. Contraception. 1988,37(3):269-277.
    [18]Beaudoin AR. A developmental toxicity evaluation of gossypol[J]. Contraception.1988,37(2):197-219.
    [19]Wang NG, Zhou LF, Guan MH, et al. Effect of (-)-and (+)-gossypol on fertility in male rats[J]. J Ethnopharmacol.1987,20(1):21-24.
    [20]Sinha Hikim AP, Hoffer AP. Quantitative analysis of germ cells and Leydig cells in rat made infertile with gossypol[J]. Contraception.1987, 35(4):395-408.
    [21]Giridharan N, Sesikeran B, Bamji MS, et al. Dose and time related changes in LDH-X activity, epididymal carnitine levels and fertility, in gossypol-treated male rats[J]. Contraception.1987,35(1):89-100.
    [22]Gafvels M, Wang J, Bergh A, et al. Toxic effects of the antifertility agent gossypol in male rats[J]. Toxicology.1984,28;32(4):325-333.
    [23]Oko R, Hrudka F. Comparison of the effects of gossypol, estradiol-17 beta and testosterone compensation on male rat reproductive organs[J]. Biol Reprod.1984,30(5):1198-1207.
    [24]Wong PY, Qiu JP, Fu WO. Gossypol does not affect testicular fluid secretion in rats[J]. Contraception.1984,29(5):471-477.
    [25]Waller DP, Bunyapraphatsara N, Martin A, Effect of (+)-gossypol on fertility in male hamsters[J]. J Androl.1983,4(4):276-279.
    [26]Xue SP, Liang DC, Fei RR, Subcellular site of antispermatogenic effect of gossypol and its possible molecular mechanism of action[J]. Sci Sin [B]. 1983,26(6):614-633.
    [27]Hoffer AP. Effects of gossypol on the seminiferous epithelium in the rat: a light and electron microscope study[J]. Biol Reprod.1983, 28(4):1007-1020.
    [28]Waller DP, Fong HH, Cordell GA, et al. Antifertility effects of gossypol and its impurities on male hamsters[J]. Contraception.1981,23(6):653-660.
    [29]Coulson PB, Snell RL, Parise C.Short term metabolic effects of the anti-fertility agent, gossypol, on various reproductive organs of male mice[J]. Int J Androl.1980,3(5):507-518.
    [30]Bai JP, Shi YL, Fang X, et al. Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca2+channels and progesterone-induced sperm acrosome reaction[J]. Eur J Pharmacol.2003,7;464(1):9-15.
    [31]Shi YL, Bai JP, Wang WP. Ion-channels in human sperm membrane and contraceptive mechanisms of male antifertility compounds derived from Chinese traditional medicine[J]. Acta Pharmacol Sin.2003,24(1):22-30.
    [32]Yuan YY, Shi QX. Inhibition of hamster sperm acrosomal enzyme by gossypol is closely associated with the decrease in fertilization capacity[J]. Contraception.2000,62(4):203-209.
    [33]Monsees TK, Winterstein U, Schill WB, et al. Influence of gossypol on the secretory function of cultured rat sertoli cells[J]. Toxicon.1998, 36(5):813-816.
    [34]Brocas C, Rivera RM, Paula-Lopes'FF, et al. Deleterious actions of gossypol on bovine spermatozoa, oocytes, and embryos [J]. Biol Reprod.1997, 57(4):901-907.
    [35]Zavos PM, Zarmakoupis-Zavos PN.The inhibitory effects of gossypol on human sperm motility characteristics:possible modes of reversibility of those effects[J]. Tohoku J Exp Med.1996,179(3):167-175.
    [36]Cowart CL, London SN, Vernon MW, et al.The effects of cyclic adenosine monophosphate, forskolin, and theophylline on motility parameters in gossypol-treated human sperm[J]. Fertil Steril.1994,61(5):929-934.
    [37]Fornes MW, Barbieri AM, Burgos MH. Sperm motility loss induced by gossypol:relation with OH. scavengers, motile stimulators and malondialdehyde production[J]. Biochem Biophys Res Commun.1993, 195(3):1289-1293.
    [38]Reddy RM, Changamma C, Reddanna P, et al. In vitro effects of gossypol and lactic acid on rat uterus and ovary during implantation and antiimplantation[J]. Indian J Exp Biol.1989,27(12):1017-1019.
    [39]Kanwar U, Batla A, Sanyal S, et al. Gossypol inhibition of Ca++uptake and Ca++-ATPase in human ejaculated spermatozoal plasma membrane vesicles[J]. Contraception.1989,39(4):431-445.
    [40]Breitbart H, Mayevsky A, Nass-Arden L. Molecular mechanisms of gossypol action on sperm motility[J].. Int J Biochem.1989,21 (10):1097-1102.
    [41]Ueno H, Sahni MK, Segal SJ, et al. Interaction of gossypol with sperm macromolecules and enzymes[J]. Contraception.1988,37(3):333-341.
    [42]Kalla NR, Gadru N, Foo TW. Studies on the male antifertility agent gossypol acetic acid. VII. Effect of motility stimulated factors on the revival of human spermatozoal motility after gossypol treatment in vitro [J]. Andrologia.1986,18(4):393-397.
    [43]Kim IC, Waller DP, Marcelle GB. Comparative in vitro spermicidal effects of (+/-)-gossypol, (+)-gossypol, (-)-gossypol and gossypolone[J]. Contraception.1984,30(3):253-259.
    [44]Stephens DT, Critchlow LM, Hoskins DD. Mechanism of inhibition by gossypol of glycolysis and motility of monkey spermatozoa in vitro[J]. J Reprod Fertil.1983,69(2):447-452.
    [45]Tso WW, Lee CS. Gossypol uncoupling of respiratory chain and oxidative phosphorylation in ejaculated boar spermatozoa[J]. Contraception.1982, 25(6):649-655.
    [46]Sakesena SK, Salmonsen R, Lau IF, et al. Gossypol:its toxicological and endocrinological effects in male rabbits[J]. Contraception.1981, 24(2):203-214.
    [47]Kalla NR, Vasudev M. Studies on the male antifertility agent-gossypol acetic acid. Ⅱ. Effect of gossypol acetic acid on the motility and ATPase activity of human spermatozoa[J]. Andrologia.1981,13(2):95-98.
    [48]Bozek SA, Jensen DR, Tone JN. Scanning electron microscopic study of spermatozoa from gossypol-treated rats[J]. Cell Tissue Res.1981, 219(3):659-663.
    [49]Lincoln AJ, Wickramasinghe D, Stein P, et al. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation[J]. Nat Genet. 2002,30(4):446-449.
    [50]Inselman A, Handel MA. Mitogen-activated protein kinase dynamics during the meiotic G2/MI transition of mouse spermatocytes[J]. Biol Reprod.2004, 71 (2):570-578.
    [51]Van der Meer T, Chan WY, Palazon LS, et al. Cyclin Al protein shows haplo-insufficiency for normal_fertility in male mice[J].Reproduction.2004, 127(4):503-511.
    [52]Lele KM, Wolgemuth DJ. Distinct regions of the mouse cyclin Al gene, Ccnal, confer, male germ-cell, specific expression and enhancer function[J]. Biol Reprod.2004,71(4):1340-1347.
    [53]Kim JM, McGaughy JT, Bogle RK, et al. Meiotic expression of the cyclin H/Cdk7 complex in male germ cells of the mouse[J]. Biol Reprod.2001, 64(5):1400-1408.
    [54]王岚,叶唯三.棉酚研究的新动态[J].国外医学:计划生育分册.2000,19(3),129-131.
    [55]吴凤茹,张志荣,叶惟三等.棉酚和雷公藤单体T对人精子ATP酶活性的比较研究[J].中国医学科学院学报.1998,20(4),267-270.
    [56]王岚.棉酚的男性避孕作用机理研究现状[J].国外医学计埘生育分.1999,18(4),197-200.
    [57]Hutchinson RW, Ing NH, Burghardt RC. Induction of c-fos, and cytochrome c oxidase subunits I and II by gossypol acetic acid in rat liver cells[J]. Cell Biol Toxicol.1998,14(6):391-399.
    [58]Teng CS. c-fos protein expression in apoptotic rat spermatocytes induced by gossypol. Contraception[J].1998,57(4):281-286.
    [59]Mohammad RM, Wang S, Aboukameel A, et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma[J]. Mol Cancer Ther.2005,4(1):13-21.
    [60]Vyas RK, Ranga A, Kalla NR. Early events in rat testis after gossypol administration[J]. Acta Eur Fertil.1990,21(1):39-45.
    [61]Huang YW, Wang LS, Chang HL, et al. Effects of serum on (-)-gossypol-suppressed growth in human prostate cancer cells[J]. Anticancer Res.2006,26 (5A):3613-3620.
    [62]Ligueros M, Jeoung D, Tang B, et al. Gossypol inhibition of mitosis, cyclin Dl and Rb protein in human mammary cancer cells and cyclin-D1 transfected human fibrosarcoma cells[J]. Br J Cancer.1997;76(1):21-8.
    [63]Chang JS, Hsu YL, Kuo PL, et al. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line[J]. Clin Exp Pharmacol Physiol.2004,31(10):716-722.
    [64]Zhang M, Liu H, Guo R, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol.2003,66(1):93-103.
    [65]Benz CC, Iyer SB, Asgari HS, et al. Gossypol effects on endothelial cells and tumor blood flow[J]. Life Sci.1991,49(12):PL67-72.
    [66]Benz CC, Keniry MA, Ford JM, et al. Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers[J]. Mol Pharmacol.1990,37(6):840-847.
    [67]Ko CH, Shen SC, Yang LY, et al. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells[J]. Int J Cancer.2007,15;121(8):1670-1679.
    [68]Moon DO, Kim MO, Lee JD, et al.Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells[J]. Cancer Lett.2008,18;264(2):192-200.
    [69]Kline MP, Rajkumar SV, Timm MM, et al.R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells[J]. Exp Hematol.2008, 36(5):568-576
    [70]张仁东,王亚平,杨正伟.雄孕激素男性避孕研究进展[J].中国计划生育学杂志2004,12(12):758-761.
    [71]谷翊群,陈振文,张桂元.激素类男性避孕药的研究进展[J].中国实用妇科与产科杂志.2005,21(1):22-24.
    [72]钱晓菁,许增禄,徐园园等.低剂量棉酚与激素联合应用的抗生育作用位点的研究[J].解剖学报.2007,38(6):746-750.
    [1]桂建芳,易梅生.发育生物学[M].科学出版社.2002.
    [2]Wolpert L. Pattern formation in epithelial development:the vertebrate limb and feather bud spacing[J].Philos Trans R Soc Lond B Biol Sci.1998,353(1370):871-875.
    [3]Hayashi T, Mizuno N, Kondoh H. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye[J]. Dev Growth Differ.2008,50(4):279-287.
    [4]Kumar A, Godwin JW, Gates PB, et al. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate[J]. Science.2007,318(5851):772-777.
    [5]Laube F, Heister M, Scholz C, et al.Re-programming of newt cardiomyocytes is induced by tissue regeneration[J]. J Cell Sci.2006,119(Pt 22):4719-4729.
    [6]陈希平,张蕾,蓝彩娟等.蝾螈的超强再生能力[J].实验动物与比较医学.2009,29(3):207-210.
    [7]鲍加荣,杨福合,荣敏等.鹿茸发育研究进展[J].特产研究.2008,2,64-69
    [8]丁小燕,李双伟.组织再生研究进展[J].第二军医大学学报.2005,26(3)233-237.
    [9]Gourevitch D, Clark L, Chen P, et al.Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model[J]. Dev Dyn. 2003,226(2):377-387.
    [10]Wernig M, Meissner A, Foreman R,et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature.2007,448(7151):318-324.
    [11]Yu J, Vodyanik MA, Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science.2007,318(5858):1917-1920.
    [12]Akimenko, M. A., Mari-Beffa, M., Becerra, J.et al. Old questions, new tools, and some answers to the mystery of fin regeneration[J]. Dev. Dyn.2003,226(2):190-201.
    [13]Poss, K. D., Keating, M. T. and Nechiporuk, A. Tales of regeneration in zebrafish[J]. Dev. Dyn.2003,226(2):202-210.
    [14]Poss,KD, Wilson,LG and Keating, MT. Heart regeneration in zebrafish[J].Science.2002,298 (5601):2188-2190.
    [15]Nishidate M, Nakatani Y,Kudo A,et al. Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish[J]. Dev Dyn. 2007,236(9):2685-2693.
    [16]Stoick-Cooper CL, Weidinger G, Riehle KJ,et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration[J]. Development.2007,134(3):479-489.
    [17]Echeverri, K. and Tanaka, E. M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration[J]. Science.2002,298(5600):1993-1996.
    [18]Laforest L, Brown CW, Poleo G, et al. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays[J]. Development. 1998,125(21):4175-4184.
    [19]Poss KD, Shen J, Nechiporuk A,et al. Roles for Fgf signaling during zebrafish fin regeneration[J]. Dev Biol.2000,222(2):347-358.
    [20]Quint E, Smith A, Avaron F,et al. one patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine[J]. Proc Natl Acad Sci U S A.2002,99(13):8713-8718.
    [21]Bai S, Thummel R, Godwin AR,et al. Matrix metalloproteinase expression and function during fin regeneration in zebrafish:analysis of MT1-MMP, MMP2 and TIMP2[J]. Matrix Biol.2005,24(4):247-260.
    [22]Makino S, Whitehead GG, Lien CL,et al.Heat-shock protein 60 is required for blastema formation and maintenance during regeneration[J]. Proc Natl Acad Sci U S A. 2005,102(41):14599-14604.
    [23]White JA, Boffa MB, Jones B, et al. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin[J]. Development.1994,120(7):1861-1872.
    [24]Geraudie J, Ferretti P. Correlation between RA-induced apoptosis and patterning defects in regenerating fins and limbs[J]. Int J Dev Biol.1997,41(3):529-532.
    [25]Andreasen EA, Mathew LK, Tanguay RL. Regenerative Growth Is Impacted by TCDD:Gene Expression Analysis Reveals Extracellular Matrix Modulation[J]. Toxicological Sciences.2006,92(l):254-269.
    [26]袁传宓,秦安舲,刘仁华,等.鲚鱼的再生能力[J].淡水渔业.1980,3:33-34.
    [27]张春光,叶恩琦.刀鲚与凤鲚尾鳍再生现象的观察[J].动物学杂志.1995,30(3):52-53.
    [28]White JA, Boffa MB, Jones B, et al.1994. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin[J]. Development 120:1861-1872.
    [29]Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, et al. Cell proliferation during blastema formation in the regenerating teleost fin[J]. Dev Dyn.2002.223:262-272.
    [30]Akimenko MA, Johnson SL, Westerfield M, et al. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish[J]. Development.1995.121:347-357.
    [31]Padhi BK, Joly L, Tellis P, et al.. Screen for genes differentially expressed during regeneration of the zebrafish caudal fin[J].Dev Dyn.2004.231:527-541.
    [32]Shidham V, Chivukula M, Basir Z, et al. Evaluation of crystals in formalin-fixed, paraffin-embedded tissue sections for the differential diagnosis of pseudogout, gout, and tumoral calcinosis[J]. Mod Pathol.2001.14:806-810.
    [33]Tertemiz F, Kayisli UA, Arici A, et al. Apoptosis contributes to vascular lumen formation and vascular branching in human placental vasculogenesis[J]. Biol Reprod.2005.72:727-735.
    [34]Ferretti P, Geraudie J. Retinoic acid-induced cell death in the wound epidermis of regenerating zebrafish fins[J]. Dev Dyn.1995.202:271-283.
    [35]Laforest L, Brown CW, Poleo G, et al. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays[J]. Development.1998.125: 4175-4184.
    [36]Poleo G, Brown CW, Laforest L, et al. Cell proliferation and movement during early fin regeneration in zebrafish[J]. Dev Dyn.2001.221:380-390.
    [37]Zodrow JM, Tanguay RL.2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration[J]. Toxicol Sci 2003..76:151-161.
    [38]Selam B, Kayisli UA, Garcia-Velasco JA, et al. Regulation of fas ligand expression by IL-8 in human endometrium[J]. J Clin Endocrinol.2002.87:3921-3927.
    [39]Sasso-Cerri E, Cerri PS, Freymuller E, et al. Apoptosis during the seasonal spermatogenic cycle of Rana catesbeiana[J]. J Anat.2006.209:21-29.
    [40]王跃祥,钟涛,宋后燕.斑马鱼发育遗传学研究进展[J].国外医学:遗传学分册.2004,2(4):220-223.
    [41]黄勇,蔡正旺.斑马鱼(Danio rerio)早期胚胎发育分子调节机制研究进展[J].牡丹江师范学院学报:自然科学版.2008,3:4-6.
    [42]Brittijn SA, Duivesteijn SJ, Belmamoune M, et al. Zebrafish development and-regeneration:new tools-for biomedical research[J].Int J Dev Biol.2009,53(5-6):835-850.
    [43]Thatcher EJ, Paydar I, Anderson KK, et al. Regulation of zebrafish fin regeneration by microRNAs[J]. Proc Natl Acad Sci U S A.2008.105:18384-18389.
    [44]Kizil C, Otto GW, Geisler R, et al. Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration[J]. Dev Biol.2009.325:329-340.
    [45]Smith A, Avaron F, Guay D, et al. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function[J]. Dev Biol. 2006.299:438-454.
    [46]Vlaskalin T, Wong CJ, Tsilfidis C. Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt (Notophthalmus viridescens) [J]. Dev Genes Evol.2004.214:423-431.
    [47]Mount JG, Muzylak M, Allen S, et al. Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration[J]. Dev Dyn.2006.235:1390-1399.
    [48]Tannuri AC, Tannuri U, Wakamatsu A, et al.. Effect of the immunosuppressants on hepatocyte proliferation and apoptosis in a young animal model of liver regeneration:an immunohistochemical study using tissue microarrays[J]. Pediatr Transplant. 2008.12:40-46.
    [49]Morrison JI, Loof S, He P, et al. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population[J]. J Cell Biol.2006. 172:433-440.
    [1]David L. Stocum.再生生物学和再生医学[M].北京.科学出版社.2007.
    [2]丁小燕,李双伟.组织再生研究进展[J].第二军医大学学报.2005,26(3)233-237.
    [3]桂建芳,易梅生.发育生物学[M].北京.科学出版社.2002.
    [4]Wolpert L. Pattern formation in epithelial development:the vertebrate limb and feather bud spacing[J]. Philos Trans R Soc Lond B Biol Sci. 1998,353(1370):871-875.
    [5]宗俊勤,刘建秀,宣继萍等,草坪草植株再生体系研究进展[J].草原与草坪2005,4(111):9-15.
    [6]徐鹏飞,张淑珍,李文滨等.大豆组织培养再生系统的研究进展[J].中国农学通报2005,21(9):47-51.
    [7]Imin N, Goffard N, Nizamidin M, et al.Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures[J].:BMC Plant Biol.2008,27;8:110-121.
    [8]Osborne DJ. Concepts of target cells in plant differentiation[J]. Cell Differ.1984,14(3):161-169.
    [9]马克学 陈广文,马克世.涡虫再生研究进展[J].生物学教学.2008,33(1):6-9.
    [10]Wang Y, Zayas RM, Guo T, et al. nanos function is essential for development and regeneration of planarian germ cells[J]. Proc Natl Acad Sci U S A. 2007,104(14):5901-5906.
    [11]Rossi L, Salvetti A, Batistoni R, et al. Planarians, a tale of stem cells[J]. Cell Mol Life Sci.2008,65(1):16-23.
    [12]樊廷俊,杜玉堂,丛日山等.棘皮动物再生研究进展[J].中国海洋大学学报2007,37(4):563-568.
    [13]Vickery MC, Vickery MS, McClintock JB, et al. Utilization of a novel deuterostome model for the study of regeneration genetics:molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration[J]. Gene.2001,262(1-2):73-80.
    [14]Pinsino A, Thorndyke MC, Matranga V. Coelomocytes and post-traumatic response in the common sea star Asterias rubens[J]. Cell Stress Chaperones. 2007,12 (4):331-341.
    [15]Siebert S, Anton-Erxleben F, Bosch TC. Cell type complexity in the basal metazoan Hydra is maintained by both stem cell based mechanisms and transdifferentiation[J]. Dev Biol.2008,313(1):13-24.
    [16]Rentzsch F, Guder C, Vocke D, et al. An ancient chordin-like gene in organizer formation of Hydra[J]. Proc Natl Acad Sci U S A. 2007,104(9):3249-3254.
    [17]Miljkovic-Licina M, Chera S, Ghila L, et al. Head regeneration in wild-type hydra requires de novo neurogenesis[J]. Development. 2007,134(6):1191-1201.
    [18]王孟卿 彩万志.昆虫肢体再生的研究进展[J].昆虫知识. 2004,41(2),127-132.
    [19]Hayashi T, Mizuno N, Kondoh H. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye[J]. Dev Growth Differ. 2008,50(4):279-287.
    [20]Kumar A, Godwin JW, Gates PB, et al. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate[J]. Science. 2007,318(5851):772-777.
    [21]Laube F, Heister M, Scholz C, et al. Re-programming of newt cardiomyocytes is induced by tissue regeneration[J]. J Cell Sci.2006,119(Pt 22):4719-4729.
    [22]陈希平,张蕾,蓝彩娟等.蝾螈的超强再生能力[J].实验动物与比较医学.2009,29(3)207-210.
    [23]Schnapp, E., Kragl, M., Rubin, L., et al. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration[J]. Development 2005,132(14),3243-3253.
    [24]Spence, J. R., Madhavan, M., Ewing, J. D., et al. The hedgehog pathway is a modulator of retina regeneration[J]. Development.2004,131(18),4607-4621.
    [25]鲍加荣,杨福合,荣敏等.鹿茸发育研究进展[J].特产研究.2008,2,64-69.
    [26]鲍加荣,李春义,邢秀梅等.鹿茸再生及干细胞研究进展[J].中国组织工程研究与临床康复.2008,12(51)10163-10167.
    [27]房佰俊,宋永平.干细胞与再生医学[J].郑州大学学报(医学版).2007,42(5):818-821.
    [28]McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferentiation induced by newt regeneration extract[J]. Proc Natl Acad Sci U S A.2001,98 (24):13699-13704.
    [29]王正国.再生医学研究进展[J].中华创伤骨科杂志.2006,8(1):1-3.
    [30]曹谊林,张文杰.组织工程与组织器官缺损修复[J].临床外科志.2007,15(1):40-41.
    [31]章培标,侯立中.组织工程与再生医学研究新进展[J].中华医学研究杂志.2005,5(8):741-746.
    [32]狄军艳,秦海明,宋福林等.肝再生的研究进展志[J].沈阳部队医药.2007,20(1):60-62.
    [33]段东明.肝脏再生医学的研究进展[J].国外医学生物医学工程分册.2005,28(9):102-104.
    [34]Yang L, Jung Y, Omenetti A, et al. Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers[J]. Stem Cells. 2008,26 (8):2104-2113.
    [35]赵建国,徐卫东.骨组织工程中骨再生相关分子的研究进展[J].中国组织工程研究与临床康复.2008,12(28):5499-5501.
    [36]Khan Y, Yaszemski MJ, Mikos AG, et al. Tissue engineering of bone:material and matrix considerations[J]. J Bone Joint Surg Am.2008,90 Suppl 1:36-42.
    [37]刘苹,朱传江.再生障碍性贫血的研究进展[J].临床和实验医学杂志.2009,8(2):137-140.
    [38]李小英,孙伟正.再生障碍性贫血的中西医研究进展[J].中医药学报.2008,36(3):65-67.
    [39]齐莉萍,戈峰.再生研究与再生医学.生命的化学.2003,23(3):201-203.
    [40]关晓明,丁文元,吴涛.椎间盘组织再生研究进展[J].国际骨科学杂志.2007,28(6):380-383.
    [41]唐娟,吴亮生,黄瑾. 中枢神经再生研究进展[J].解剖与临床2006,11(3):210-212.
    [42]袁普卫,贺西京.脊髓再生研究新进展[J].美中国际创伤杂志.2005,4(4):42-45.
    [43]姚小梅,李敏.神经再生的研究进展[J].医学研究杂志.2009,38(2):99-101.
    [44]蒋文慧,董安平,马爱群.心肌再生研究进展(2)[J].心血管病学进展.2004,25(2):146-149.
    [45]云伟,于艳秋.心肌再生医学的研究进展[J].国际病理科学与临床杂志.2006,27(2):156-160.
    [46]钟小奕,陈文霞.血管再生研究进展及其应用[J].国际口腔医学杂志.2009,36(2):183-185.
    [47]李智,李祖兵.组织工程骨血管再生的研究进展[J].国外医学口腔医学分册.2003,30(6):435-437.
    [48]田伯乐,郭志光,郝建强.胰岛β细胞再生与糖尿病治疗的研究进展[J].胰腺病学.2007,7(3):206-208.
    [49]周丽珍,郭玲.组织工程技术应用于牙髓—牙本质再生的研究进展[J].海南医学.2007,18(6):128-129.
    [50]陈希平,陈希哲.牙再生研究进展[J].云南医药.2006,27(1):70-72.
    [51]Trope M. Regenerative potential of dental pulp[J]. J Endod.2008,34(7 Suppl):S13-17.
    [52]黄瑶,李立.晶状体再生的进展[J].眼科新进展.2003,23(6):453-456.
    [53]Akimenko, MA, Mari-Beffa, M, Becerra J, et al. Old questions, new tools, and some answers to the mystery of fin regeneration[J]. Dev. Dyn. 2003,226 (2):190-201.
    [54]Poss, K. D., Keating, M. T. and Nechiporuk, A. Tales of regeneration in zebraf i sh[J].Dev.Dyn.2003,.226 (2):202-210.
    [55]Poss, K. D., Wilson, L. G. and Keating, M. T. Heart regeneration in zebrafish[J]. Science.2002,298 (5601):2188-2190
    [56]Nishidate M, Nakatani Y, Kudo A, et al. Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish[J]. Dev Dyn.2007,236(9):2685-2693.
    [57]Stoick-Cooper CL, Weidinger G, Riehle KJ,et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration[J]. Development.2007 134(3):479-489.
    [58]Fischer, A. J. and Reh, T. A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina[J]. Nat. Neurosci. 2001,4(3):247-252.
    [59]Echeverri, K. and Tanaka, E. M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration[J]. Science.2002,298(5600):1993-1996.
    [60]Morrison, J. I., Loof, S., He, P. and Simon, A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population[J]. J. Cell Biol.2006,172(3):433-440.
    [61]Nakatani Y, Kawakami A, Kudo A. Cellular and molecular processes of regeneration, with special emphasis on fish fins[J]. Dev Growth Differ. 2007,49 (2):145-154.
    [62]Becerra J, Junqueira LC, Bechara IJ, et al. Regeneration of fin rays.in teleosts:a histochemical, radioautographic, and ultrastructural study[J]. Arch Histol Cytol.1996,59(1):15-35.
    [63]Poleo G, Brown CW, Laforest L, et al. Cell proliferation and movement during early fin regeneration in zebrafish[J]. Dev Dyn.2001,221(4):380-390.
    [64]Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, et al. cell proliferation during blastema formation in the regenerating teleost fin[J]. Dev Dyn. 2002,223(2):262-272.
    [65]Akimenko MA, Johnson SL, Westerfield M, et al. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish[J]. Development.1995,121 (2):347-357.
    [66]Johnson SL, Weston JA. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration[J]. Genetics. 1995,141 (4):1583-1595.
    [67]Laforest L, Brown CW, Poleo G, et al. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays[J]. Development.1998,125(21):4175-4184.
    [68]Poss KD, Shen J, Nechiporuk A, et al. Roles for Fgf signaling during zebrafish fin regeneration[J]. Dev Biol.2000,222(2):347-358.
    [69]Poss KD, Shen J, Keating MT. Induction of lefl during zebrafish fin regeneration[J]. Dev Dyn.2000,219(2):282-286.
    [70]Martorana ML, Tawk M, Lapointe T, et al. Zebrafish keratin 8 is expressed at high levels in the epidermis of regenerating caudal fin[J]. Int J Dev Biol. 2001,45 (2):449-452
    [71]Quint E, Smith A, Avaron F, et al. one patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine[J]. Proc Natl Acad Sci U S A. 2002,99(13):8713-8718.
    [72]Murciano C, Fernandez TD, Dur(?)n I, et al. Ray-interray interactions during fin regeneration of Danio rerio[J]. Dev Biol.2002,252(2):214-224.
    [73]Geraudie J, Borday Birraux V. Posterior hoxa genes expression during zebrafish bony fin ray development and regeneration suggests their involvement in scleroblast differentiation[J]. Dev Genes Evol. 2003,213 (4):182-186.
    [[74]Nechiporuk A, Poss KD, Johnson SL, et al.ositional cloning of a temperature-sensitive mutant emmental reveals a role for slyl during cell proliferation in zebrafish fin regeneration[J]. Dev Biol.2003,258(2): 291-306.
    [75]Raya A, Koth CM, Buscher D, et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish[J]. Proc Natl Acad Sci U S A.2003,100 Suppl 1:11889-11895.
    [76]Katogi R, Nakatani Y, Shin-i T, et al. large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes[J]. Mech Dev.2004,121 (7-8):861-872.
    [77]Iovine MK, Higgins EP, Hindes A, et al. Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins[J]. Dev Biol.2005,278(1):208-219.
    [78]Bai S, Thummel R, Godwin AR,et al. Matrix metalloproteinase expression and function during fin regeneration in zebrafish:analysis of MT1-MMP, MMP2 and TIMP2[J]. Matrix Biol.2005,24(4):247-260.
    [79]Makino S, Whitehead GG, Lien CL, et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration[J]. Proc Natl Acad Sci U S A.2005,102(41):14599-14604.
    [80]Lee Y, Grill S, Sanchez A, et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration[J]. Development.2005,132 (23):5173-5183.
    [81]Thummel R, Bai S, Sarras MP Jr, et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfrl and msxb[J]. Dev Dyn.2006,235(2):336-346.
    [82]Whitehead GG, Makino S, Lien CL, et al. fgf20 is essential for initiating zebrafish fin regeneration[J]. Science.2005,310(5756):1957-1960.
    [83]Dufourcq P, Vriz S.The chemokine SDF-1 regulates blastema formation during zebrafish fin regeneration[J]. Dev Genes Evol.2006,216(10):635-639.
    [84]Mari-Beffa M, Santamaria JA, Murciano C, et al. Zebrafish fins as a model system for skeletal human studies[J]. ScientificWorldJournal. 2007,7:1114-1127.
    [85]Smith A, Avaron F, Guay D, et al. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function[J]. Dev Biol.2006,299(2):438-454.
    [86]Yin VP, Thomson JM, Thummel R, et al.Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish[J]. Genes Dev. 2008,22 (6):728-733.
    [87]Poss KD, Nechiporuk A, Hillam AM, et al. Mpsl defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration[J]. Development.2002,129(22):5141-5149.
    [88]Borday V, Thaeron C, Avaron F, et al. evxl transcription in bony fin rays segment boundaries leads to a reiterated pattern during zebrafish fin development and regeneration[J]. Dev Dyn.2001,220(2):91-98.
    [89]Tawk M, Joulie C, Vriz S. Zebrafish Hsp40 and Hsc70 genes are both induced during caudal fin regeneration[J]. Mech Dev.2000,99(1-2): 183-186.
    [90]Kubota Y, Oike Y, Satoh S, et al. Isolation and expression patterns of genes for three angiopoietin-like proteins, Angptll,2 and 6 in zebrafish[J]. Gene Expr Patterns.2005,5(5):679-685.
    [91]Wills AA, Kidd AR, Lepilina A, et al. Fgfs control homeostatic regeneration in adult zebrafish fins[J]. Development. 2008,135(18):3063-3070.
    [92]Yoshinari N, Ishida T, Kudo A, et al. Gene expression and functional analysis of zebrafish larval fin fold regeneration[J]. Dev Biol. 2009,325(1):71-81.
    [93]Offen N, Blum N, Meyer A, et al. Fgfrl signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish[J]. BMC Dev Biol.2008,8:98-113.
    [94]Kizil C, Otto GW, Geisler R, et al. Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration[J]. Dev Biol. 2009,325 (2):329-340.
    [95]Hoptak-Solga AD, Nielsen S, Jain I, et al. Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration[J]. Dev Biol. 2008,317 (2):541-548.
    [96]Weis P, Weis JS. Cadmium acclimation and hormesis in Fundulus heteroclitus during fin regeneration[J]. Environ Res.1986,39(2):356-363.
    [97]White JA, Boffa MB, Jones B, et al. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin[J]. Development.1994.120(7): 1861-1872.
    [98]Geraudie J, Monnot MJ, Brulfert A, et al. Caudal fin regeneration in wild type and long-fin mutant zebrafish is affected by retinoic acid[J]. Int J Dev Biol.1995,39 (2):373-381.
    [99]Geraudie J, Ferretti P. Correlation between RA-induced apoptosis and patterning defects in regenerating fins and limbs[J]. Int J Dev Biol. 1997,41 (3):529-532.
    [100]Brulfert A, Monnot MJ, Geraudie J. Expression of two even-skipped genes evel and evx2 during zebrafish fin morphogenesis and their regulation by retinoic acid[J]. Int J Dev Biol.1998,42(8):1117-1124.
    [101]Bechara IJ, Joazeiro PP, Mari-Beffa M, et al. ollagen-affecting drugs impair regeneration of teleost tail fins[J]. J Submicrosc Cytol Pathol. 2000,32 (2):273-280.
    [102]Zodrow JM, Tanguay RL.2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration[J]. Toxicol Sci.2003,76(1):151-161.
    [103]Andreasen EA, Mathew LK, Tanguay RL. Regenerative growth is impacted by TCDD:gene expression analysis reveals extracellular matrix modulation [J]. Toxicol Sci.2006,92(1):254-269.
    [104]Andreasen EA, Mathew LK, Lohr CV, et al. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration[J]. Toxicol Sci.2007,95(1):215-226.
    [105]Bockelmann PK, Bechara IJ. Effect of naproxen on tail fin regeneration in teleost[J]. J Submicrosc Cytol Pathol.2004,36(1):55-64.
    [106]Mathew LK, Sengupta SS, Ladu J, et al. Crosstalk between AHR and Wnt signaling through R-Spondinl impairs tissue regeneration in zebrafish[J]. FASEB J.2008,22 (8):3087-3096.
    [107]Santamaria JA, Mari-Beffa M, Santos-Ruiz L, et al. Incorporation of bromodeoxyuridine in regenerating fin tissue of the goldfish Carassius auratus[J]. J Exp Zool.1996,275(4):300-307.
    [108]Rawls JF, Johnson SL. Zebrafish kit mutation reveals primary and secondary regulation of melanocyte development during fin stripe regeneration[J]. Development.2000,127(17):3715-3724.
    [109]Rawls JF, Johnson SL. Requirements for the kit receptor tyrosine kinase during regeneration of zebrafish fin melanocytes[J]. Development. 2001,128(11):1943-1949.
    [110]Alonso M, Tabata YA, Rigolino MG, et al. Effect of induced triploidy on fin regeneration of juvenile rainbow trout, Oncorhynchus mykiss[J]. J Exp Zool. 2000,287 (7):493-502.
    [111]Espinosa E, Josa A, Gil L, et al. Triploidy in rainbow trout determined by computer-assisted analysis[J]. J Exp Zool A Comp Exp Biol. 2005,303 (11):1007-1012.
    [112]Tawk M, Tuil D, Torrente Y, et al. High-efficiency gene transfer into adult fish:a new tool to study fin regeneration[J]. Genesis. 2002,32(1):27-31.
    [113]Nechiporuk A, Keating MT. Nechiporuk A, et al. proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration[J]. Development.2002,129(11):2607-2617.
    [114]Kawakami A, Fukazawa T, Takeda H. Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration[J]. Dev Dyn.2004,231 (4):693-699.
    [115]Santos-Ruiz L, Santamaria JA, Becerra J. Cytoskeletal dynamics of the teleostean fin ray during fin epimorphic regeneration[J]. Differentiation. 2005,.73(4):175-187.
    [116]Mathew LK, Andreasen EA, Tanguay RL. Aryl hydrocarbon receptor activation inhibits regenerative growth[J]. Mol Pharmacol. 2006,69(1):257-265.
    [117]Eric AA, Li joy KM, Christiane VL, et al. Hydrocarbon Receptor Activation Impairs Extracellular Matrix Remodeling during Zebra Fish fin Regeneration[J]. Toxicological Sciences 2007,95(1):215-226.
    [118]Thatcher EJ, Paydar I, Anderson KK, et al. Regulation of zebrafish fin regeneration by microRNAs[J]. Proc Natl Acad Sci U S A. 2008,105(47):18384-18389.
    [119]Johnson SL, Bennett P. Growth control in the ontogenetic and regenerating zebrafish fin[J]. Methods Cell Biol.1999,59:301-311.
    [120]Geraudie J, Singer M. Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost Fundulus[J]. J Exp Zool.1985,234(3):367-374.
    [121]Thummel R, Burket CT, Hyde DR. Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration[J]. ScientificWorldJournal.2006,6 Suppl 1:65-81.
    [122]Schebesta M, Lien CL, Engel FB, et al. Transcriptional profiling of caudal fin regeneration in zebrafish[J]. ScientificWorldJournal.2006,6 Suppl 1:38-54.
    [123]Padhi BK, Joly L, Tellis P,et al. Screen for genes differentially expressed during regeneration of the zebrafish caudal fin[J]. Dev Dyn.2004,231(3):527-541.
    [124]Sekimizu K, Tagawa M, Takeda H. Defective Fin Regeneration in Medaka Fish (Oryzias latipes) with Hypothyroidism[J]. Zoolog Sci. 2007,24(7):693-699.
    [125]Santamaria JA, Mari-Beffa M, Becerra J. Interactions of the lepidotrichial matrix components during tail fin regeneration in teleosts[J]. Differentiation.1992,49(3):143-150.
    [126]Yin VP, Poss KD. New regulators of vertebrate appendage regeneration[J]. Curr Opin Genet Dev.2008,18(4):381-386.
    [127]White RM, Zon LI. Melanocytes in development, regeneration, and cancer[J]. Cell Stem Cell.2008,3(3):242-252.
    [128]Eyries M, Siegfried G, Ciumas M, et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis[J]. Circ Res.2008,103(4):432-440.
    [129]Smith A, Zhang J, Guay D, et al. Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method[J]. Dev Dyn.2008,237(2):417-425.
    [130]Smith A, Perez-Claros J, Smith A, et al. Position dependence of hemiray morphogenesis during tail fin regeneration in Danio rerio[J]. Dev Biol. 2007,312(1):272-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700