关中西部苹果林地和耕地土壤微形态特征研究及对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微形态直观地记录了土壤形成过程的各种信息(如矿物组成、物质的迁移、土地利用的方式、土壤发育的方向等等)。本论文通过对关中西部耕地和苹果林地土壤微形态研究,试图探索不同土地利用方式及利用时间对土壤微形态特征的影响,为该地区土地资源的可持续利用提供一些依据。本次研究选择了三种不同土地利用的土壤剖面作为研究对象,分别是:长期的农耕土壤、10年树龄的苹果林地土壤和20年树龄的苹果林地土壤。通过DMRX偏光显微镜对土壤微形态特征(包括粗颗粒特征和矿物组合、孔隙特征、微垒结类型、土壤形成物类型和分布特征等)进行了详细观察描述,采用SISC IAS V8.0图象分析软件对土壤粗颗粒和孔隙进行了定量分析和测量。通过研究,主要获得下列认识:
     1不同土地利用方式下土壤微形态有一定的差别。长期耕地的土壤微形态特征是:粗颗粒在Ap层C/F10μm值为0.35、定向性为91°、长度为23μm、宽度为14.3μm、圆度为0.1、粗糙度为0.3、长宽比为1.71,BC层C/F10μm值为0.26、定向性为92°、长度为21.4μm、宽度为13.2μm、圆度为0.11、粗糙度为0.3、长宽比为1.73,Bt层C/F10μa值为0.23、定向性为93.3°、长度为20.78μm、宽度为12.841μm、圆度为0.1、粗糙度为0.29、长宽比为1.73;微结构类型在Ap层和Bt层为海绵状结构,在BC层为团粒状结构;孔隙在Ap层以复合堆集状为主,少量孔道,边沿锯齿状,孔隙度主要为10.81%,在BC层和Bt层主要为孔洞,孔隙壁平滑,孔隙度分别为9.51%和9.18%;土壤形成物在Ap层以残积粘土浓聚物为主,其次为方解石,在深层可见针状碳酸盐,粘土矿物分布广泛,被铁不同程度的浸染。苹果林地土壤微形态特征是:粗颗粒在A层C/F10μm值为0.41、定向性为92.1°、长度为25.31μm、宽度为15.9μm、圆度为0.11、粗糙度为0.39、长宽比为1.69,BC层C/F10μm值为0.26、定向性为91.9°、长度为20.21μm、宽度为12.71μm、圆度为0.1、粗糙度为0.36、长宽比为1.65,Bt层C/F10μm值为0.3、定向性为89.7°、长度为21.98/μm、宽度为13.681μm、圆度为0.11、粗糙度为0.35、长宽比为1.71:孔隙在Ap层以简单堆集状为主,孔隙度为11.3%,在BC层和Bt层主要为孔洞,孔隙壁平滑,孔隙度分别为11.42%和8.1%;微结构类型在Ap层和Bt层为孔道结构,在BC层为海绵状微结构;具有大量铁染粘土和光性定向粘土分布,铁染团聚物广泛分布,偶见铁质结核。
     2土地利用时间对土壤微形态的影响。20年苹果林地土壤中,粗颗粒在A层C/F10μm值为0.41、定向性为92.1°、长度为25.31μm、宽度为15.91μm、圆度为0.11、粗糙度为0.39、长宽比为1.69,BC层C/F10μm值0.26、定向性为91.9°、长度为20.2μm、宽度为12.7μm、圆度为0.1、粗糙度为0.36、长宽比为1.65,Bt层C/F10μm值为0.3、定向性为89.7°、长度为21.98μm、宽度为13.681μm、圆度为0.11、粗糙度为0.35、长宽比为1.71;以简单堆集状大孔隙为主,孔隙度8.1-11.89%;微结构类型为孔洞-孔道为主;表层有较多量新鲜的植物残体出现,蚯蚓粪粒较少。10年苹果林地土壤中,粗颗粒在A层C/F10μm值为0.28、定向性为88.6°、长度为21.4μm、宽度为13.21μm、圆度为0.1、粗糙度为0.3、长宽比为1.7,BC层C/F10μm值为0.28、定向性为87.6°、长度为22μm、宽度为13.6μm、圆度为0.1、粗糙度为0.3、长宽比为1.73,Bt层C/F10μm值为0.22、定向性为86.5°、长度为21μm、宽度为13μm、圆度为0.11、粗糙度为0.32、长宽比为1.74,各个土壤发生层的粗颗粒变化较小;A层以复杂堆集状中小孔隙为主,BC和Bt层以孔道为主,整个剖面孔隙度在8.7-10.5%之间;微垒结类型以孔洞-孔道结构为主,又可见海绵状微结构类型;在表层可见大量的植物根系和大量的蚯蚓粪粒。
     3不同发生层的微形态特征明显不同。同一土壤剖面随着深度的变化微结构特征呈现明显的变化,以耕地为例来看:从Ap-BC-Bt层,C/F10μm值分别为0.35、0.26、0.23;长度分别为23、21、20:宽度分别为14.3、13.2、12.8:定向性分别为91、92、93;圆度分别为0.09、0.11、0.1,其中C/F值、长度、宽度由表层向下变化呈现出递减的规律,定向性的变化则表现为递增的规律,圆度呈现出先递增后递减的规律。不同层孔隙类型不同,在A层孔隙主要为堆集孔隙,在BC和Bt层为孔道,孔隙度也在发生着变化,从Ap-BC-Bt层分别为10.4%、9.5%、9.1%,随着深度的变化而逐渐降低。微结构类型在Ap_1层为中等分离的海绵状结构、Ap_2层为弱分离的海绵状结构、BC层为中等分离的团粒状结构、Bt层为海绵状结构。
Soil micromorphology record the information of forming processes (such as mineral composition, material movement, land use, soil development direction, etc.). Studying the micromorphological of farmland soil and Apple woodland soil in west of Guanzhong Areas, the thesis explore the influence of different land use on the soil micro-morphological characteristics, for the sustainable use of soil resources to provide some basis, The study choice three different land-use soil profile as research object, namely: long-term farming soil, ten years old Apple woodland soil and twenty years old Apple woodland soil. The research observe and describe the soil micro-morphological features (including coarse grains characteristics and mineral composition, voids characteristics, microstructure, the pedofeature, etc.) under the DMRX polarizing microscope, at the same time useing SISC IAS V8.0 optical image analysis software the research analysis and measures the coarse grains and voids characteristics. The results obtained in this study were the following major understanding:
     1. The soil micromorphological of different land use patterns have some differences. Soil micromorphology of long-term farmland: From coarse grains on Ap soil layers, C/F_(10μm) ratio is 0.35、orientation91~0, length23μm、breadth14.3μm、roundness0.1、coarseness0.3、aspect ratio1.71, on BC Soil layers C/F_(10μm) ratio is 0.26、orientation 92~0、length 21.4μm、breadth 13.2μm、roundness 0.11、coarseness 0.3、aspect ratio 1.73, on Bt soil layers C/F_(10μm) ratio is 0.23、orientation 93.3~0、length 20.78μm、breadth 12.84μm、roundness 0.1、coarseness 0.29、aspect ratio 1.73; The microstructure of Ap and Bt are belong to the spongy microstructure, and the microstructure of BC is belong to grainy microstructure; Voids of Ap are complex stack voids and little channel, the voids edge is sawtooth, and voids ratio is 10.81 percent, BC and Bt vugh voids ratio are 9.51 percent; pedofeatures of Ap is abundand tesidual clay concretion and calcite. In apple woodland soil micromorphology: coarse grains on Ap soil layers, C/F10μm ratio is 0.41、orientation92.1~0、length25.3μm、breadth15.9μm roundness0.11、coarseness0.39、Aspect ratio1.69, on soil layers of BC, C/F_(10μm) ratio is 0.26、orientation91.9~0、length 20.2μm、breadth 12.7μm、roundness0.1、coarseness0.36、Aspect ratio 1.65, on Bt Soil layers C/F_(10μm) ratio is 0.3、orientation 89.7~0、length 21.98μm、breadth 13.68μm、roundness 0.11、coarseness 0.35、Aspect ratio 1.71; Voids of Ap is briefness stack and voids ratio is 11.3 percent, on BC and Bt voids ratio of BC and Bt are11.42 percent or 8.1 percent; microstrueture are channel and spongy; there are lots of clay.
     2. Different land use time effect micromorphology. In twenty years old Apple woodland soil, coarse grains on A soil layers, C/F10μm ratio is 0.41、orientation92.10、length25.3μm、breadth15.9μm、roundness0.11、coarseness0.39、aspect ratio1.69, on BC Soil layers C/F10μm ratio is 0.26、orientation91.90、length 20.2μm、breadth 12.7μm、roundness0.1、coarseness0.36、Aspect ratio 1.65, on Bt Soil layers C/F_(10μm) 0.3、orientation 89.7~0、length 21.98μm、breadth 13.68μm、roundness 0.11、coarseness 0.35、Aspect ratio 1.71; voids is briefness stack and voids ratio is 8.1 percent to 11.89 percent; With regard to the microstructure is belong to the vugh-channel complex; there are some origanic constituents and earthworm excrement. In ten years old Apple woodland soil, coarse grains on A Soil layers, C/F_(10μm) ratio is 0.28、orientation88.6~0、length21.4μm、breadth13.2μm、roundness0.1、coarseness0.3、Aspect ratio1.7, on BC C/F_(10μm) ratio is 0.28、orientation87.6~0, length 22μm、breadth13.6μm、roundness0.1、coarseness0.3、Aspect ratio 1.73, on Bt Soil layers C/F_(10μm) ratio 0.22、orientation 86.5~0、length 21μm、breadth 13μm、roundness 0.11、coarseness 0.32、Aspect ratio 1.74; voids is complex stack and vugh, and voids ratio is 8.7 percent to 10.5 percent; With regard to the microstructure is belong to the vugh-channel complex; but have any spongy microstructure; There are some origanic constituents and lots of earthworm excrement.
     3. Soil micromorphology characteristic of different layers is significantly different. the microstructure characteristics of the same soil profile is changes with the depth, such as farmland: Form Ap to Bt, C/F_(10μm) ratio is 0.35、0.26、0.23; length 23、21、20; breadth 14.3、13.2、12.8; orientation91、92、93; roundness0.09、0.11、0.1.The C/F ratio、length and breadth are decrease by degrees, and the orientation is increase by degrees, at the same time the roundness is first increase by degrees then decrease by degrees. The voids types is change. In A soil layers, the voids type is stack, but in the BC and Bt soil layers are channel. At the same time the voids ratio are change. In Ap_1, the elementary fabric is moderately separated crumb microstrcture; In Ap_2,the elementary fabric is weakly separated crumb microstrcture; In BC, the elementary fabric is moderately separated Spongy microstrcture; In Bt, the elementary fabric is crumb microstrcture.
引文
[1] 黄瑞采.土壤微形态学[M].北京:高等教育出版社,1990
    [2] 曹升赓.土壤微形态在土壤发生、分类研究中的应用[J].土壤专报,1980,37:25-50.
    [3] 孔祥斌,张凤荣,齐伟,等.集约化农区土地利用变化对土壤养分的影响——以河北省曲周县为例[J].地理学报,2003,58(3):333-342
    [4] 傅伯杰,郭旭东,陈利顶,等.土地利用变化与土壤养分的变化[J].生态学报,2001,21(6):927-931
    [5] 傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246
    [6] 高富,沙丽清,许建初.西庄河流域土地利用方式对土壤肥力影响的研究[J].土壤与环境,2000,9(3):223-226
    [7] 沙丽清,邱学忠,甘建民,等.云南保山西庄山地流域土地利用方式与土壤肥力关系研究[J].生态学杂志,2003,(4):9-11
    [8] Kubiena. W. L. Micropedology. Collegiate Press, lowa. 1938
    [9] 曹升赓.土壤微形态学,中国农业大百科全书—土壤卷[M].北京农业出版社1996:390-392
    [10] 曹升赓译.土壤微形态研究指南[M].北京:农业出版社,1987:1-5
    [11] F. Terribile & E. A. Fitzpatrick, The Application of some image-analysistechniques to recognition, of. soil. micromorphological, features. [J]. European Journal of soil Science, 1995,46:29-45
    [12] 曹升庚,土壤微形态学的历史、进展和将来[J].土壤专报,1989,43:1-12
    [13] Brewer, R. Fabric and Mineral Analysis of Soils [M]. New York. John Wiley & Sons. 1964
    [14] Jongerius, A., Rutherford, G.K., Glossary of Soil MicromorpHology [M]. Wageningen, the Netherlands. Centre of Publication and Documentation. 1979
    [15] 黄瑞采.土壤微形态学发展及应用[M].北京:高等教育出版社,1990
    [16] Kubiena,W.L.著.李连捷译.曹升赓校.土壤地理的微形态特征[M].北京:科学出版社,1979
    [17] E.H.帕尔芬诺娃等著.曹升赓译.土壤微形态研究指南[M].北京:农业出版社,1987
    [18] 唐克丽.古土壤的类型及其微形态特征的鉴别[J].土壤通报,1981,4:22-26
    [19] 唐克丽.武功黄土沉积中埋藏古土壤的微形态及其发生学[J].科学通报,1981,3:177-179
    [20] Bullock. P, Fedoroff, N, Jongerius,. Handbook for Soil Thin Section Description [M]. Wolverhampton. UK. WAINE Research Publications. 1985
    [21] Stoops, G., Guidelines for Analysis and Description of Soil and Regolith Thin sections [M]. Madison, Hardbound. Soil Science Society of America, 2003
    [22] Carole Ampe, Roger Langohr, MorpHological characterization of humus forms in recent coastal dune ecosystems in Belgium and northern France [J], Catena, 2003, 54:363-383
    [23] H. Khademia, A.R. Mermut, MicromorpHology and classification of Argids and associated gypsiferous Aridisols from central Iran[J], Catena, 2003, 54:439-455
    [24] Feijtel T C, Jongmans A J, VanBreeman N, et al. Geoderma, 1988, 43:249-269
    [25] Dorroson C. Geoderma, 1994, 61:237~250
    [26] 谢萍若等.应用扫描电镜对几种土壤特征层的微形态观察[J].土壤学报,1980,17(2):182-185
    [27] 曹升庚.我国红壤的微形态特征[J].土壤专报,1986,40:1-28
    [28] 黄成敏,龚子同.土壤发生和发育过程定量研究进展[J].土壤,2000,3:145-151
    [29] 何毓蓉,黄成敏,周红艺.成都平原水耕人为土诊断层的微形态特征与土壤基层分类[J].山地学报,2002,20(2):157-163
    [30] 赵其国等.我国富铝化土壤发生特性的初步研究[J].土壤学报,1983,20(4):334-345
    [31] 仇荣亮等.不同生态条件下海涂土壤的微形态特征[J].热带亚热带土壤科学,1994,3(2):105-109
    [32] 吴克宁,曲晨晓,吕巧灵.耕淀铁质湿润淋溶土的诊断层和诊断特性[J].土壤通报,1998,29(4):145-147
    [33] 李德成,B.Velde等.利用土壤切片及数字图象研究低丘缓坡不同部位土壤的孔隙结构特征[J].土壤通报.2002,33(1):6-8
    [34] 李德成,B.Velde等.免耕制度下耕作土壤结构演化的数字图像分析[J].土壤学报.2002,39(2):214-220
    [35] 何毓蓉,黄成敏,徐建忠.湘赣浙滇川紫色土微形态比较研究[J].山地研究.1996,14(增):9-13
    [36] 何毓蓉,黄成敏.变性土滑擦面的特征与形成机制[J].科学通报.1996,41(12):1100-1102
    [37] 高子勤等,东北几种耕作土壤的微形态研究[J].土壤学报.1982,19(1):85-91
    [38] 史培军、江源、王静爱等.土地利用/覆盖变化与生态安全响应机制[M].北京:科学出版社,2004.
    [39] 陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报.1994,31(1):18-25
    [40] 姚贤良,于德芬.关于集约农作制下的土壤结构问题Ⅲ不同培育条件下土壤结构的微形态特征[J].土壤学报.1988,25(1):55-58
    [41] 何毓蓉.紫色土的微形态特征[A].中国科学院成都分院土壤研究室冲国紫色土(上)[M].北京:科学出版社.1991:141-159
    [42] Nagarajarao, Jayasree, Effect of different long-term soil management practices on strength and swell-shrink characteristics, void and microstructure[A]. In: transaction of 15th World Congress of Soil Science[C]. Mexico. 1994
    [43] 谢萍若,左敬兰,国际翔.我国辽西几种褐土的微形态研究[J].土壤学报.1985,22(2):177-181
    [44] 何毓蓉.四川盆地丘陵区紫色土侵蚀的微形态特征及水土保持意义[J].中国水土保持.1985,(3):1-5
    [45] 何毓蓉.四川盆地丘陵区紫色土退化研究Ⅱ紫色土退化的微形态特征[J].资源开发与保护.1990,6(2):67-70
    [46] 庞奖励、黄春长、张占平.周原全新世复合古土壤和成壤环境的微形态学研究[J].土壤学报,2003,1:22-28.
    [47] 夏艳玲、东野光亮 不同棚龄大棚土壤微形态特征研究[J],云南农业大学学报,2003.4:340-343
    [48] 郑毅等,土壤结构和耕作对根际微生态系统的影响[J],云南大学学报,2003,18:193-197
    [49] 文倩,赵小蓉,张书美,妥德宝,李贵桐,陈焕伟,林启美.半干旱地区不同土壤团聚体中微生物量磷的分布特征.中国农业科学.2005.38:327-332.
    [50] Davidson A D. Bioturbation in old arable soils: quantitative evidencefrom soil micromorphology. Journal of Archaeological Science, 2002, 29: 1247-1253.
    [51] 闫立梅、王丽华 不同龄温室土壤微形态结构与特征的研究[J],山东农业科学,2004,(3):60-61
    [52] 庞奖励等 关中地区古耕作土壤和现代耕作土壤微形态特征及其意义[J],中国农业科学,2006,39(7):1395-1402
    [53] Davidson D A, Carter S P. Micromorphological evidence of pastagricultural practices in cultivated soils: the impact of a traditionalagricultural system on soils in PApa Stour, Shetland. Journal of Archaeological Science, 1998, 25: 827-838
    [54] Usai M R. Textural pedofeatures and pre-hadrian' s wall ploughedpaleosols at Stanwix, Carlisle, Cumbria, U.K. Journal of Archaeological Science, 2001, 28: 541-553.
    [55] Scarciglia F, Terribile F, Colombo C. Micromorphological evidence of paleoenvironmental changes in Northern Cilento (South Italy) during the Late Quaternary. Catena, 2003, 54: 515-536
    [56] Mooney S J. Using micromorphology to understand the rewetting mechanisms in milled peat. Catena, 2003, 54:665-678
    [57] 门明新,赵同科,彭正萍,宇振荣.基于土壤粒径分布模型的河北省土壤可蚀性研究.中国农业科学2004,37:1647-1653
    [58] 靳桂云 土壤微形态分析及其在考古学中的应用[J],地球科学进展,1999,(4):197-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700