徐州侧柏人工林生物量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物量和生产力是评估森林生态服务功能的重要指标,也是人工林可持续经营的科学依据。对徐州石灰岩山地50年生的侧柏纯林生物量、影响因子、间伐对其生物量的影响以及侧柏人工林碳储量进行研究,结果如下:
     (1)单株侧柏的生物量为8.88-80.71kg,各个器官生物量比例总体呈树干>树枝>树根>树叶或树干>树枝>树叶>树根的顺序;侧柏各部分干重与胸径及D2H之间存在着紧密的相关性,与树高的相关性较弱;8块侧柏人工林生物量的变动范围为28.92 -75.42 t/hm2,平均值为54.35 t/hm2。
     (2)朝北指数与林分生物量显著相关,其他因子同林分生物量没有明显的相关关系;林分密度与林分生物量、林分密度与地上生物量都呈现出单峰曲线关系。当林分密度为2600 individual/hm2左右时,林分生物量和林分地上生物量数值接近最大。
     (3)未间伐样地生物量总量为67.64 t/hm2,一次间伐提高了整个林分的生物量,两次间伐林分生物量反而明显减少了;一次间伐和两次间伐都提高了树干生物量在林分总生物量中的比例;一次间伐和两次间伐后,单株侧柏各器官及单株总生物量都比未间伐林地有显著增加;未间伐样地,生物量集中在小径级的立木,间伐后生物量集中到了大径级立木。
     (4)5块样地的碳储量在46.66t/hm2-76.77t/hm2之间变化,平均碳储量为64.79t/hm2,各生物组分碳储量所占比例大小顺序为树干>树枝>树根>树叶;平均生物碳储量为42.01 t/hm2,土壤碳储量为64.79 t/hm2,分别占总碳储量的22.77%和42.01%。
Biomass and productivity are critical parameters assessing forest carbon sequestration capability and the quantitative estimates are required for forest biomass carbon accounting. Study on biomass, effect factors, thinning effect to biomass and carbon storage of the 50 years old Platyclatdus orientalis plantations in the Limestone Mountains of Xuzhou, the results showed that:
     (1) Biomass for a whole tree was in a range of 8.88-80.71kg.Allocation of biomass to organs followed a sequence of trunk>branch>root>leaves or trunk>branch>leaves>root; Significant correlations were found between organ biomass and diameter at breast height or D2H.Biomass for stands of 8 plots was in the range of 28.92 t/hm2-75.42 t/hm2,the mean of which was 54.35 t/hm2.
     (2) Biomass for stands was positively correlated with the north aspect index, while other factors were fewer effective. The response curves of biomass or aboveground biomass to stand density were both unimodal. Biomass and aboveground biomass had the maximum value when stand density closed to 2600 individual/hm2.
     (3)Total biomass of the control plots is lower than first thinning plots but higher than second thinning plots. Both the original thinning and secondary thinning increase the proportion of the trunks; After each thinning, individual biomass is higher than the control plots; The biomass allocation among different DBH classes was concentrated in the small classes, after each thinning, the biomass allocation among large classes.
     (4)The total carbon storage of 5 plots was in the range of 46.66t/hm2 to 76.77t/hm2, the mean of which was 64.79t/hm2. Carbon storage of different organs was in order as follow: stem >branch> root > leaves. The carbon storage in the vegetation was 42.01 t/hm2, accounted for 22.77%,and the carbon storage in the soil was 64.79 t/hm2,account for 42.01%.
引文
[1] Andersson F O ,Agren G I,Fuhrer E. Sustainable tree biomass production[J ].Forest Ecology and Management, 2000(132):51-62.
    [2] Campbell J, Alberti G, Martin J, et al. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada[J].Forest Ecology and Management,2009,257:453–463.
    [3] Dong J, Kanfmann R K, Myneni R B,et al. Remote sensing estimates of boreal and temperate forest woody biomass:Carbon pools, sources and sinks[J]. Kemote Sensing of Envioronment,2003,84,393-410.
    [4] Eriksson E. Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine[J]. Biomass and Bioenergy,2006,30:848-854.
    [5] Guo Q F, Berry W.Species richness and biomass: dissection of the hump-shaped relationships [J].Eccology,1998,7:2555-2559.
    [6] Hese S,Lucht W,Schmullius C,et al. Global biomass mapping for an improved understanding of the CO2 balance-the earth observation mission Carbon-3D[J].Remote Sensing of Environment,2005,94:94-104.
    [7] Janssens I A, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7% to 12% of European anthropogenicCO2 emissions [J].Science,2003,300:1538-1542.
    [8] Jingyun Fang, Anping Chen, Changhui Peng, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998[J].Science,2001,292:2320-2322.
    [9] Jonathan Boudreau, Ross F. Nelson, Hank A. Margolis, et al. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec[J]. Remote Sensing of Environment 2008,112:3876-3890.
    [10] Leith HRH,Whittaker. Primary Productivity of Biosphere [M].Berlin:Springer-Verlag, 1975.
    [11] Majdi H, PregitzerK, MorenAS,et al.Measuringfine rootturnover in forest ecosystems[J]. Plant and Soil, 2005.276: 1-8.
    [12] Matamala R, Gonzalez-Meler M A, Jastrow J D,et al. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential[J].Science, 302: 1385-1387.
    [13] Matthias Peichl, M. Altaf Arain. Allometry and partitioning of above and belowground tree biomass in an age-sequence of white pine forests[J].Forest Ecology and Management, 2007, 253:68-80.
    [14] Mitchell C. P.,Zsuffa F. Andersson S.,Stevens, D.J. Forestry, forest biomass and biomass conversion: the IEA bioenergy agreement (1986-1989) summary report [C].Elsevier Science Publishers LTD, 1990.
    [15] Munoz F, Rubilar R, Espinosa M, Cancino J, Toro J, Herrera M. The effect of pruning and thinning on above ground aerial biomass of Eucalyptus nitens (Deane & Maiden) Maiden[J]. Forest Ecology and Management, 2008, 255:365-373.
    [16] Nabuurs G J, Schelhaas M J, Mohren G M J, et al. Temporal evolution of European forest sector sink from 1950 to 1999[J].Global Change Biology,2003,9:152-160.
    [17] Nadelhoffer K J, Raich J W. 1992. Fine root production estimates and belowground carbon allocation in forestry ecosystems[J].Ecology, 73:1139-1147.
    [18] Rangaswamy M,Vyjayanthi N, Chandra S,et al.Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka[J]. India International Journal of Applied Earth Observation and Geoinformation, 2008,10:211-219.
    [19] Rapp M, Regina I S, Rico M, et al. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests[J].Forest Ecology and Management,1999, 119:39-49.
    [20] Pablo L, Peri, Verónica Gargaglione, et al.Above and belowground nutrients storage and biomass accumulation in marginalNothofagus antarctica forests in Southern Patagonia[J].Forest Ecology and Management, 2008,255:2502-2511.
    [21] Rasse DP, Longdoz B, CeulemansR. 2001. TRAP: amodeling approachto below-ground carbon allocation in temperate forests[J]. Plant and Soil,229: 281-293.
    [22] R.J. Luxmoore, M.L. Tharp, W.M. Post. Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States[J]. Forest Ecology and Management, 2008,254:291-299.
    [23] Susanne Thein, Christiane Roscher, Ernst-Detlef Schulze. Effects of trait plasticity on aboveground biomass production depend on species identity in experimental grasslands[J]. Basic and Applied Ecology,2008,9: 475-484.
    [24] Vogt K A, Crier C C, Vogt D J. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests[J]. Advance Ecology Research, 15: 303-377.
    [25] Vogt K A, Vogt D J, Palmioto P A. 1996. Reviewof root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 187: 159-219.
    [26] Xiangping Wang, Jingyun Fang, Biao Zhu. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255:4007-4020.
    [27]毕君,马增旺,许云龙,等.人工侧柏群落结构及生物量[J].东北林业大学学报,2000,28(1):13-15.
    [28]陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林及其生物量研究[J].植物生态学与报,1986,10(1):17-24.
    [29]陈美高.不同年龄马尾松人工林生物量结构特征[J].福建林学院学,2006,26(4):332-335.
    [30]陈德祥,李意德,骆土寿,林明献,孙云霄.海南岛尖峰岭鸡毛松人工林乔木层生物量和生产力研究[J].林业科学研究,2004,17(5):598-604.
    [31]程堂仁,马钦彦,冯仲科,等.甘肃小陇山森林生物量研究[J].北京林业大学学报,2007,29(1):31-36.
    [32]邓坤枚,石培礼,杨振林.长白山树线交错带的生物量分配和净生产力[J].自然资源学报,2006,21(6):942-948.
    [33]范少辉,肖复明,汪思龙,等.毛竹林细根生物量及其周转[J].林业科学,2009,45(7):1-6.
    [34]方精云.全球生态学-气候变化与生态响应[M].北京:高等教育出版,2000.
    [35]方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [36]方精云,朴世龙,赵淑清.CO2:失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    [37]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19.
    [38]房用,王淑君.石灰岩山地中侧柏、油松混交林的生物量[J].南京林业大学学报(自然科学版),2007,31(3):63-67.
    [39]冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [40]冯宗炜,陈楚莹.杉木幼林群落的生产量的研究[J].生态学报,1983,3(2):119-130.
    [41]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [42]光增云.河南森林生物量与生产力研究[J].河南农业大学学报,2006,40(5):493-497.
    [43]郭榇娟.沙棘-侧柏混交林土壤养分、微生物及酶活性研究[D].杨凌:西北农林科技大学,2007.
    [44]郭忠玲,郑金萍,马元丹,等.长白山几种主要森林群落木本植物细根生物量及其动态[J].生态学报,2006,26(9): 2855-2862.
    [45]韩恩贤,韩刚,薄颖生.黄土高原油松、侧柏与沙棘人工混交林生长及土壤特性研究[J].西北林学院学报,2007,22(3):100-104.
    [46]郝文芳,陈存根,梁宗锁,等.植被生物量的研究进展[J].西北农林科技大学学报(自然科学版),2008,36(2):175-182.
    [47]胡建利,杨万勤,张健,等.川西亚高山冷杉和白桦细根生物量与碳储量特征[J].应用与环境生物学报,2009,15(3):313-317.
    [48]黄玫,季劲钧,曹明奎,等.中国区域植被地上与地下生物量模拟[J].生态学报,2006,26(12):4156-4163.
    [49]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展[J].生态学报,1999,19(3): 270 -277.
    [50]李春明,杜纪山,张会儒.抚育间伐对森林生长的影响及其模型研究林业科学研究[J].西北林学院学报,2003,16(5):636-641.
    [51]李春明,杜纪山,张会儒.间伐对长白落叶松林分生物量的影响西北林学院学报[J].2008,23(6): 69-73.
    [52]李江,黄从德,张国庆.川西退耕还林地苦竹林碳密度、碳贮量及其空间分布[J].浙江林业科技,2006,26(4):1-5.
    [53]李凯辉,胡玉昆,阿德力?麦地,等.天山南坡高寒草地物种多样性及地上生物量研究[J].干旱区资源与环境,2007,21(1):155-159.
    [54]李校.八达岭林场水源保护林生态功能评价研究[D].保定:河北农业大学,2007.
    [55]李轩然,刘琪王景,胡理乐,等.不同方法计算湿地松林生物量的比较[J].生态学杂志,2006,25(12):1594-1598.
    [56]李意德.海南岛热带山地雨林林分生物量估测方法比较分析[J].生态学报,1993,13(4):313-320.
    [57]李意德,曾庆波,吴仲民,等.尖峰岭热带山地雨林生物盆的初步研究[J].植物生态学与地植物学学报,1992,16(4):293-300.
    [58]林娜.浅议生物多样性与森林生态系统生产力的关系[J].世界林业研究,2006,19(2):34-38.
    [59]刘波,余艳峰,张贇齐,等.亚热带常绿阔叶林不同林龄细根生物量及其养分[J].2008,32(5):81-84.
    [60]刘明春,马兴祥,尹东,等.天祝草甸、草原草场植被生物量形成的气象条件及预测模型[J].草业科学,2001,18(3):65-68.
    [61]刘金梁,梅莉,谷加存,等.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J].生态学杂志,2009,28(1):1-6.
    [62]刘盛,李国伟.林分碳贮量测算方法的研究[J].北京林业大学学报,2007,29(4):166-169.
    [63]刘苑秋,罗良兴,杨国平,等.退化红壤重建森林林下植被恢复及其环境影响分析[J].江西农业大学学报,2004,26(5):695-699.
    [64]卢义山,梁珍海,吴仲祥,等.苏北海堤防护林主要造林树种林分生物量与生产力的研究[J].江苏林业科技,2000,27(2):12-15.
    [65]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J].植物生态学报,2000,24(2)191-196.
    [66]罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111-1118.
    [67]吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征[J].植物生态学报,2007,31(1):11-22.
    [68]马履一,李春义,王希群,徐昕.不同强度间伐对北京山区油松生长及其林下植物多样性的影响.林业科学,2007,43(5):1-9.
    [69]马明,王得祥,刘玉民.秦岭天然华山松林碳素空间分布规律及其动态变化[J].2008,5:75-78.
    [70]马明东,江洪,罗承德,等.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究[J].植物生态学报,2007,31(2)305-312.
    [71]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):97-101.
    [72] Martin H(孙达,陈洪滨译).当代全球碳循环和100年前Arrhenius和Hogherm的预见的回顾[J].人类环境杂志(AMBIO),1997,26(1):17-24.
    [73]孟宪宇.测树学[M].北京:中国林业出版社,1996.
    [74]潘辉,张金文,林顺德等.不同间伐强度对巨尾桉林分生产力的影响研究[J].林业科学,2003,39(专刊1):106-111.
    [75]平晓燕,贾丙瑞,袁文平.羊草种群生物量分配动态模拟[J].应用生态学报,应用生态学报,2007,18(12): 2699-270.
    [76]漆良华,彭镇华,张旭东,等.退化土地植被恢复群落物种多样性与生物量分配格局[J].生态学杂志,2007,26(11):1697-1702.
    [77]孙祥水.间伐对楠木杉木混交林生长影响的研究[J].亚热带农业研究,2008,4(3),184-187.
    [78]唐建维,张建候,宋启示,等.西双版纳热带人工雨林生物量及净第一性生产力的研究[J].应用生态学报,2003,14(1):1-6.
    [79]田大伦,方晰,项文化.湖南会同杉木人工林生态系统碳素密度[J].生态学报,2004,24(11):2382-2386.
    [80]田大伦,项文化,闫文德,等.速生阶段杉木人工林产量结构及生产力的代际效应[J].林业科学,2002,38(4):14-18.
    [81]佟金权.不同地位指数不同密度杉木人工林生产力的比较[J].福建农林大学学报(自然科学版),2008,37(4):369-373.
    [82]王光军,田大伦,闫文德,等.湖南马尾松人工林群落细根生物量及时空动态研究[J].中国水土保持,2009,5:38-40.
    [83]王俊玲,金红喜,杨占彪,等.盘山华北落叶松人工林多样性、生产力研究[J].兰州大学学报(自然科学版),2008,44(1):31-36.
    [84]王婷,袁志良,叶永忠,等.嵩山国家森林公园不同年龄侧柏人工林生物量初步研究[J].河南科学,2009,27(7):817-820.
    [85]汪家社.杉木生态系统生物量与固碳能力的分析与评价[J].福建林业科技,2008,35(2):1-5.
    [86]王鹏飞.太行山低山丘陵区典型植物群落养分循环研究[D].郑州:河南农业大学,2008.
    [87]魏媛,喻理飞,张金池.喀斯特地区不同干扰条件下构树萌株种群生物量构成[J].南京林业大学学报(自然科学版),2007,31(1):123-127.
    [88]魏文俊,王兵,白秀兰.杉木人工林碳密度特征与分配规律研究[J].江西农业大学学报2008,30(1):73-80.
    [89]吴小山,黄从德.退耕还林地桦木林生态系统碳素密度、贮量与空间分布[J].生态学杂志,2007, 26(3):323-326.
    [90]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [91]项文化,田大伦,闫文德.中低强度间伐对杆材阶段马尾松林生物量的影响[J].中南林学院学报,2001,21(1):10-13.
    [92]闫平.帽儿山林场4类天然次生林碳储量研究[J].林业资源管理,2004,4:61-65.
    [93]闫平,冯晓川.原始阔叶红松林碳素储量及空间分布[J].东北林业大学学报2006,34(5):23-25.
    [94]杨秀云,韩有志.关帝山华北落叶松人工林细根生物量空间分布及季节变化[J].植物资源与环境学报,2008,17(4): 37-40.
    [95]尹锴,崔胜辉,石龙宇,等.人为干扰对城市森林灌草层植物多样性的影响——以厦门市为例[J].生态学报,2009,29(2):563-572.
    [96]余雪标,徐大平,龙腾,等.连栽杉木人工林生物量及生产力结构的研究[J].华南热带农业大学学报,1999,5(2):10-17.
    [97]袁渭阳,李贤伟,张健,等.不同年龄巨桉林土壤呼吸及其与土壤温度和细根生物量的关系[J].林业科学,2009,45(11)1-8.
    [98]袁渭阳,李贤伟,张健,等.不同年龄巨桉人工林枯落物和细根碳储量研究[J].林业科学研究,2009, 22(3): 385-389.
    [99]曾凡荣,施家月,阎恩荣,等.天童常绿阔叶林次生演替过程中细根的生物量动态[J].华东师范大学学报(自然科学版) 2008,6:56-62.
    [100]张雷,项文化,田大伦,等.第2代杉木林土壤有机碳、全氮对细根分布及形态特征的影响[J].中南林业科技大学学报,2009,29(3):11-15.
    [101]张千千,王彦辉,缪丽萍,等.六盘山叠叠沟小流域草本地上生物量的空间变化及其与环境因子的关系[J].中国农学通报,2009,25(04):82-87.
    [102]张任好.14年生翅荚木生物量及生产力的研究[J].福建师范大学学报(自然科学版),2006,22(4):102-106.
    [103]张小全,吴可红. 2001.森林细根生产和周转研究.林业科学,37(3):126-138.
    [104]张忠恒,张崇邦,李建东.退化草原碱茅的生物量与环境因子动态关系的研究[J].植物学通报,1999,16(6):708-711.
    [105]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    [106]郑晓翾,赵家明,张玉刚,等.呼伦贝尔草原生物量变化及其与环境因子的关系[J].生态学杂志,2007,26( 4): 533-538.
    [107]朱源,康慕谊,刘全儒,等.贺兰山高山草甸生物多样性和地上生物量的关系[J].应用与环境生物学报,2007,13(6): 771-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700