基于激光雷达和高光谱遥感的森林单木关键参数提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感技术的快速发展,传统光学遥感虽然在林业领域的应用广泛,但仅仅能提供简单的空间信息和光谱信息,远远无法满足森林资源调查的需求。近十年来,激光雷达(Light Detection and Ranging,LiDAR)技术和高光谱遥感技术分别凭借高精度的三维空间信息和高光谱分辨率,迅速在各行各业得到广泛应用。高密度的LiDAR点云数据与高空间分辨率的高光谱数据不仅能够提供林分尺度的森林参数,还能提供单木尺度的森林参数。因此,本文以利用LiDAR数据和高光谱遥感数据获取单木尺度的参数为目的,进行了以下几个方面的研究工作:
     (1)针对冠层高度模型(Canopy Height Model,CHM)中普遍存在的无效值,提出了冠层控制的概念。冠层控制近似地决定了CHM中真实树冠区域,忽略无效值的存在,这为后续的CHM优化和单木分离提供了较为准确的树冠范围。冠层控制主要使用形态学闭运算进行,树冠区域通过由目标区域枝下高决定的冠层控制阈值在闭操作后的CHM上判断获得。
     (2)结合冠层控制的CHM优化算法。CHM的质量直接或间接地影响了基于CHM的各种森林参数提取精度,因此对CHM进行优化是十分必要的。无效值的存在是影响CHM质量的主要因素之一,为了只填充无效值而不填充冠层间隙,本文提出结合冠层控制的CHM优化算法,算法首先使用拉普拉斯算子从CHM中寻找可能无效值,然后引入冠层控制以确定其是否落在树冠范围内,是则属于无效值,反之则是冠层间隙,最后采用全局平滑的CHM对应像素对无效值进行填充。
     (3)结合冠层控制的分水岭郁闭林区单木分离算法。经过优化的CHM已经适合进行单木尺度的森林参数提取,但是郁闭林区的单木分离仍然是LiDAR单木分离的难题之一,因此本文针对郁闭林区提出了结合冠层控制的分水岭郁闭林区单木分离。算法引入冠层控制进行外部标记(树冠区域)的确定且辅助内部标记(树顶)的查找,根据外部和内部标记进行简化标记分水岭变化,最后结合归一化的点云得到单木的位置、树高和冠幅三个参数。
     (4)基于LiDAR和高光谱遥感数据的单木树种识别算法。获取单木的位置、树高和冠幅之后,结合高空间分辨率的高光谱遥感影像获得单木的树种成为提高后续单木参数估计精度的重要步骤之一。本文基于LiDAR数据的单木分离结果,从高光谱遥感影像中提取单木树冠区域对应的光谱并优化,再对优化的单木光谱分别进行支持向量机(Supporting Vector Machine,SVM)和光谱角制图(Spectrum Angle Mapper,SAM)法分类得到单木树种。
     通过在黑龙江凉水试验区进行试验的结果和甘肃大野口试验区补充试验的结果表明,冠层控制能够有效地在CHM上恢复真实冠层区域;结合冠层控制的CHM优化填充了CHM上大多数的无效值,同时保留了冠层间隙;结合冠层控制的分水岭郁闭林区单木分离能较好地识别目标区域的优势与亚优势单木,识别部分中庸木,提取的单木树高精度超过90%;基于LiDAR和高光谱遥感数据的单木树种识别能够较好的识别大多数的单木树种,优势树种的识别正确率大于90%,优势与亚优势树种识别平均正确率大于70%。
     总之,LiDAR和高光谱数据结合能够很好地提供单木尺度的森林参数。通过冠层控制优化CHM,可以更高质量地获得单木的位置、树高和冠幅,配合高光谱数据的光谱信息则可以获得单木树种信息,为提高后续的各种单木或林分森林参数的估计精度奠定了基础,因此,本文的研究工作在森林资源调查中具有巨大的实用价值和应用前景。
Following the rapid development of remote sensing techniques, traditional passive optical remote sensing is applied in forestry more and more broadly. However, its relatively simple spatial and spectrum information can't satisfy the requirement of forest resource investigation. Fortunately, Light Detection and Ranging (LiDAR) and hyper-spectrum techniques are applied in various fields including forestry quickly by the high quality3-dimension spatial information and high spectrum resolution respectively. High density LiDAR point cloud data, as well as the high spatial resolution hyper-spectrum image, can provide not only forest parameters in stand scale, but also in individual tree scale. To obtain individual tree parameters using LiDAR and hyper-spectrum data, following topics were studied:
     (1) A concept, named crown control, was proposed for the invalid values which were regularly existed in canopy height model (CHM). The crown control determined the real tree crown areas in CHM approximatively, neglected existing of the invalid values. Relatively exact crown areas were provided for the following CHM optimization and individual tree isolation. The crown contrl was carried out using morphological closing operation. The crown areas were determined by a threshold, which was decided by the crown base height of target area, based on the CHM after closing operation.
     (2) Filling Invalid Values in CHM with Morphological Crown Control was studied. The quality of CHM directly or indirectly influences the accuracy of various forest parameters extraction based on CHM. As a result, it was necessary to optimize CHM. The existing of the invalid values was one of the main factors which influenced the CHM quality. A CHM optimization algorithm with crown control was proposed to fill the invalid values, and retain canopy gaps. The algorithm firstly found potential invalid values in CHM using Laplacian operator. Then these potential invalid values located in canopy area by crown control, they were invalid values, otherwise canopy gaps. Finally the invalid values in CHM were replaced by corresponding pixels in global smoothed CHM.
     (3) Isolating individual trees in closed forest using watershed with crown control. The optimized CHM was suitable for the forest parameters extraction in individual tree scale. However, isolatiog individual trees in closed forest was a difficult problem. This paper proposed a watershed with crown control method for this issue. The method imported crown control to determine outer markers (crown areas) and assist find inner markers (treetop). Then simplified marker controlled watershed transform was applied to CHM with outer and inner markers. At last, the position, height and crown radius were gained from the watershed results and height normalized point cloud.
     (4) Individual tree species identification based on LiDAR and hyper-spectrum data. Once the individual tree position, height and crown radius were gained, individual tree species identification based on LiDAR and hyper-spectrum data should be an important step to improve the accuracy of subsequent tree parameters estimations. The method firstly extracted tree spectrum from hyper-spectrum image based on the individual tree isolation results, and then combined them. Then the classification was carried out with the combined individual tree spectrums using Supporting Vector Machine (SVM) and Spectrum Angle Mapper (SAM) respectively. Lastly, the tree species were obtained.
     Through the experiments in Heilongjiang Liangshui sample plot and the supplement experiment in Gansu Dayekou sample plot, some conclusions were concluded. The crown control recovered real crown areas in CHM effectively. The CHM optimization with crown control filled the most invalid values in CHM, as well as retained canopy gaps. The individual tree isolation with crown control found the most dominant and subdominant trees, and some medium trees in the plot well, and the accuracy of the tree height estimation was greater than90%. The individual trees species identification based on LiDAR and hyper-spectrum data identified dominant tree species in the plot with correctness of over90%, and sub dominant tree species with correctnes of over70%.
     In summary, LiDAR and hyper-spectrum data provide good forest parameters in individual tree scale. Higher quality individual tree position, height and crown radius can be extracted using optimized CHM with crown control. And the hyper-spectrum data can provide individual tree species, which is useful for the subsequent forest parameters estimations. As a result, these studies have high pratical values and application prospects in forest resource investigations.
引文
Anderson H., Reutebuch S.E., Schreuder G.F.. Automated Individual Tree Measurement Through Morphological Analysis of a LiDAR-Based Canopy Surface Model. In:Proceeding of the First International Precision Forestry Cooperative Symposium, Seattle, Washington,2001:11-22
    Anderson J.E., Plourde L.C., Martin M.E., et al. Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment,2008,112(4):1856-1870
    Axelsson P.. Processing of laser scanner data-algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:138-147
    Baugh W. M., Kruse F.A., AtkinsonW.W.. Quantitative geochemical mapping of ammonium minerals in the southern Ceder Mountains, Nevada, using airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment,1998,65:292-308
    Ben-Arie J.R., Hay G.J., Powers R.P., et al. Development of a pit filling algorithm for LiDAR canopy height models. Computers&Geosciences,2009,35:1940-1949
    Benediktsson J.A., Kanellopoulos I.. Classification of multisource and hyperspectral data based on decision fusion. Geoscience and Remote Sensing, IEEE Transactions on,1999,37(3):1367-1377
    Boser B.E., Guyon I.M., Vapnik V.N.. A training algorithm for optimal margin classifiers. In:5th Annual ACM Workshop on COLT, Pittsburgh, PA,1992:144-152
    Brandtberg T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS Journal of Photogrammetry&Remote Sensing,2007,61:325-340
    Brandtberg T., Warner T. A., Landenberger R. E., et al. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment,2003,85:290-303
    Bulcock H.H., Jewitt W.. Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrology and Earth System Sciences,2010,14:383-392
    Bunting P., Lucas R.M.. The delineation of tree crowns within CASI data of Australian mixed species woodlands. Remote Sensing of Environment,2006,101:230-248
    Chen Q., Baldocchi D., Gong P., et al. Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data, Photogrammetric Engineering&Remote Sensing,2006,72:923-932
    Chen Q., Gong P., Baldocchi D., et al. Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data. Photogrammetric Engineering&Remote Sensing,2007,72(12):1355-1365
    Coillie F., Verbeke L., Wulf R.. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium. Remote Sensing of Environment,2007,110(4):476-487
    Davison D., Achal S., Mah S., et al. Determination of tree species and tree stem densities in Northern Ontario forest using Airborne CASI data. In:Proceeding of4th International Airborne Remote Sensing Conference and Exhibition, Ontario, Canada,1999,2:187-196
    Dalponte M., Bruzzone. L., Gianelle. D.. Trento Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. Geoscience and Remote Sensing,2008,46(5):1416-1427
    Dalponte M., Bruzzone. L., Gianelle. D.. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment,2012,123:258-270
    Dickie S.. Application of airborne scanning LiDAR to forestry:examining stand height and crown closure in Annapolis County, Nova Scotia. In:Applied Geomatcis Research Group and Centre of Geographic Sciences (COGS),2001
    Dorrena L.K.A., Maierb B., Seijmonsbergena A.C.. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management,2003,183(1-3):31-46
    Dougherty E., Lotufo R.. Hands-on Morphological Image Processing. Bellingham:SPIE Press,2003:91-162
    Ferro-Famil L., Kugler F., Pottier E., et al. Forest Mapping and Classification at L band using POL-inSAR Optimal Coherence Set Statistics. In:European Conference on Synthetic Aperture Radar Proceedings, Dresden, Germany,2006, ID.207
    Garcia M., Riano D., Chuvieco E., and et al. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sensing of Environment,2011,115(6):1369-1379
    Gaveau D.L.A., Hill R.A.. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Canadian Journal of Remote Sensing,2003,29:650-657
    Gatziolis D., Fried J.S., Monleon V.S.. Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests:A Parable from Western Oregon, Forest Science,2010,56:139-155
    Gjertsen A.K.. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sensing of Environment,2007,110(4):420-430
    Gong P., Biging G., Pu R.L.. Retrieval of surface reflectance and estimation of forest Leaf Area Index (LAI) Using Hyperion, ALI, and AVIRIS. In:NASA Science validation, validation summaries report.2004:1-6
    Gonzalez R.C., Woods R.E.. Digital Image Processing, Second Edition (In Chinese). Beijing:Publishing House of Electronics Industry,2007:147-215
    Goodenongh D.G., Bhogall A.S.. Monitoring forests with Hyperion and ALI. In:Proceeding of IGARSS Ⅲ, Tporonto, ON, Canada,2002:882-885
    Goodenough D.G., Andrew D.K., Niemann O.. Processing Hyperion and ALI for forest classification. IEEE Tran on Geoscience and Remote Sensing,2003,41(6):1321-1331
    Goodenough D. G, Chen H., Hobart G., et al. Data Fusion Study between Polarimetric SAR, Hyperspectral and Lidar Data for Forest Information. In:Geoscience and Remote Sensing Symposium,2008. IGARSS2008. IEEE International,2008, Vol2:Ⅱ-291-284
    Guo Z.F., Sun G.Q., Ranson K.J., et al. The Potential of Combined Lidar and SAR Data in Retrieving Forest Parameters using Model Analysis. In:Geoscience and Remote Sensing Symposium,2008. IGARSS2008. IEEE International,2008, Vol5:V-542-545
    Hartfield K.A., Landau K.I., van Leeuwen W.. Fusion of High Resolution Aerial Multispectral and LiDAR Data:Land Cover in the Context of Urban Mosquito Habitat. Remote Sensing,2011,3(11):2364-2383
    Hollaus M., Wagner W., Eberhofer C., and et al. Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS Journal of Photogrammetry&Remote Sensing,2006,60:323-338
    Holmgren J., Nilsson M., Olsson H.. Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Science,2003,49(3):419-428
    Huang Z., Turner B.J., Dury S.J., and et al. Estimating Foliage Nitrogen Concentration from Hymap Data Using Continuum Removal Analysis. Remote Sensing of Environment,2004,93(1-2):18-29
    Jones T.G., Coops N.C., Sharma T.. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of Environment,2010,114(12):2841-2852
    Kruse F.A., Lefkoff A.B., Boardman J.W., et al. The spectral image processing system (SIPS) interactive visualization and analysis of image spectrometer data. Remote Sensing of Environment,1993,44:145-163
    Koch, B., Heyder, U., Weinacker, H.. Detection of Individual Tree Crowns in Airborne LiDAR Data. Photogrammetric Engineering&Remote Sensing,2006,72:357-363
    Kokaly R.F., Clark R.N.. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. RemoteSensing of Environment,1999,67(3):267-287
    Koukoulas S., Blackburn G.A.. Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. International Journal of Remote Sensing,2004,25:3049-3071
    Koukoulas S., Blackburn G.A.. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LiDAR and multi-spectral remotely sensed data. International Journal of Remote Sensing,2005,26(3):431-455
    Kozak J., Estreguila C, Ostapowicz K.. European forest cover mapping with high resolution satellite data: The Carpathians case study. International Journal of Applied Earth Observation and Geoinformation,2008,10(1):44-55
    Kruse F.A., Lefkoff A.B., Boardman J.W., et al. The Spectral Image Processing System (Sips)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment,1993,44:145-163
    Leckie D., Gougeon F., Hill D., et al. Combined high-density LiDAR and multispectral imagery for individual tree crown analysis. Canadian Journal of Remote Sensing,2003,29:633-649
    Lee A.C., Lucas R.M. A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests. Remote Sensing of Environment,2007,111(4):493-518
    Lefsky M. A.. Application of lidar remote sensing to the estimation of forest canopy and stand structure. Virginia:Doctoral dissertation, University of Virginia,1997,1-10
    Lefsky M. A., Cohen W. B., Acker S. A., et al. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment,1999a,70:339-361
    Lefsky M. A., Harding D., Cohen W. B., et al. Surface Lidar Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, USA. Remote Sensing of Environment,1999b,67:83-98
    Liu L.J., Pang Y., Fan W.Y., and et al. Fusion of airborne hyperspectral and LiDAR data for tree species classification in the temperate forest of northeast China. In:19th International Conference on Geoinformatics,2011:1-5
    Lucas R.M., Lee A.C., Bunting P.J.. Retrieving forest biomass through integration of CASI and LiDAR data. International Journal of Remote Sensing,2008a,29(5):1553-1577
    Lucas R.M., Bunting P.J., Paterson M., et al. Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sensing of Environment,2008b,112(5):2088-2103
    MacMillan R.A., Martin T.C., Earle T.J., et al. Automated analysis and classification of landforms using high-resolution digital elevation data:applications and issues. Canadian Journal of Remote Sensing,2003,29:592-606
    Magnussen S., Boudewyn P.. Derivations of stand heights from airborne laser scanner data with canopybased quantile estimators. Canadian Journal of Forest Research,1998,28:1016-103
    Magnussen S., Eggermont P., LaRiccia V.N.. Recovering tree heights from airborne laser scanner data. Forest Science,1999,45:407-422
    Mahamo M., Eerikaihen K., Pitkanen J., et al. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution function. Remote Sensing of Environment, 2004,90:319-330
    Mallet C., Bretar F.. Full-waveform topographic lidar:State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64:1-16
    Maltamo M., Packalen P., Yu X., et al. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology and Management,2005,216:41-50
    Means J.E., Aeker S.A., Fitt B.J., et al. Predicting forest stand characteristics with airborne scanning LiDAR. Photogrammetric Engineering&Remote Sensing,2000,66:1367-1371
    Mitchell J., Glenn N., Sankey T., et al. Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics, Photogrammetric Engineering&Remote Sensing,2011,77:1-10
    Monnet J.M., Mermin E., Chanussot J., et al. Tree top detection using local maxima filtering:a parameter sensitivity analysis. In:Silvilaser2010, Freiburg, Germany,2010, unpaginated CD-ROM
    Naesset E.. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing,1997,52:49-56
    Naesset E., Bjerknes K.O.. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Environment.2001,78:328-340
    Nilsson M.. Estimation of tree heights and stand volume using an airborne LiDAR system. Remote Sensing of Environment,1996,56:1-7
    Pang Y., Zhao F., Li Z.Y.. Study of Average Tree Height Extraction using Airborne LiDAR. Journal of Remote Sensing,2008,12,152-158
    Pang Y., Tan B., Solberg S., et al. Forest LAI estimation comparison using LiDAR and hyperspectral data in boreal and temperate forests. In:Proceedings Vol.7454Remote Sensing and Modeling of Ecosystems for Sustainability VI,2009,74540Q:1-8
    Popescu S.C.. Estimating Plot-Level Forest Biophysical Parameters Using Small-Footprint Airborne Lidar Measurements. Virginia:Doctoral dissertation, Virginia Tech,2002:1-29
    Popescu S.C., Wynne R.H., Nelson R.F.. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing,2003,29(5):564-577
    Popescu S.C., Wynne R.H., Scrivani J.A.. Fusion of small-footprint LiDAR and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. Forest Science,2004,50(4):551-565
    Popescu S.C.. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy,2007,31:646-655
    Pu R.L., Gong P.. Wavelet transform applied to EO-1hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment,2004,91:212-224
    Puttonen E., Litkey P., Hyyppa J.. Individual Tree Species Classification by Illuminated-Shaded Area Separation. Remote Sensing,2010,2(1):19-35
    Ritchie J.C., Evans D.L., Jacobs D., et al. Measuring canopy structure with an airborne laser altimeter. Transactions of the ASAE,1993,36:1235-1238
    Shapiro L.G., Stockman G.C., Computer Vision. New Jersey:Prentice-Hall,2001,279-325
    Shen G., Sakai K., Hoshino Y.. High Spatial Resolution Hyperspectral Mapping for Forest Ecosystem at Tree Species Level. Agricultural Information Research,2010,19(3):71-78
    Soille P.. Morphological Image Analysis:Principles and Applications, Second Edition. Heidelberg: Springer-Verlag,2003:63-138
    Spies T.A., Franklin J.F.. Gap characteristics and vegetation response in coniferous forests of the Pacific Northwest. Ecology,1989,70:543-545
    Treuhaft R.N., Asner G.P., Law B.E., and et al. Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. Journal of geophysical research,2002,107:45-68
    Varga T.A., Asner G.P.. Hyperspectral and lidar remote sensing of fire fuelsin Hawaii volcanoes national park. Ecological Applications,2008,18(3):613-623
    Vapnik V.N., Statistical Learning Theory. New York:John Wiley and Sons, Inc.,1998
    Vosselmann G., Maas H.. Adjustment and filtering of raw laser altimetry data. In:Proceedings of OEEPE (The European Organisation for Experimental Photogrammetric Research) Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden,2001:62-72
    Wagner W.,Ullrich A.,Melzer T.,et al.From single-pulse to full-waveform airborne laser scanners:potential and practical challenges. International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,2004,35:201-206
    Wagner W.,Ullrich A.,Ducic V.,et al.Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner.ISPRS Journal of Photogrammetry and Remote Sensing,2006,60(2):100-112
    Walker J.S.,Briggs J.M..An Object-oriented Approach to Urban Forest Mapping in Phoenix. Photogrammetric Engineering&Remote Sensing,2007,73(5):577-583
    Wang L.,Gong P.,and Biging G.S..Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery.Photogrammetric Engineering&Remote Sensing,2004,70:351-357
    Wang Z.Y.,Boesch R.,Ginzler,C..Color and LiDAR data fusion:Application to automatic forest boundary delineation in aerial images.In:International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,Vol.ⅩⅩⅩⅩⅥ,Part1/W51,2007:545-548
    Wilson T.A., Rogers S.K., Myers L.R.. Perceptual-based hyperspectral image fusion using multiresolution analysis.Optical Engineering,1995,34(11):3154-3164
    Wulder M.Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters.Progress in Physical Geography,1998,22(4):449-476
    Zarco-Tejada P.J.,Miller J.R.,Mohammed G.H.,and et al.Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance:Ii.Laboratory and Airborne Canopy-Level Measurements with Hyperspectral Data.Remote Sensing of Environment,2000,74(3):596-608
    Zhao K.G.,Popescu S..Hierarchical watershed segmentation of canopy height model for multi-scale forest inventory.International Archives of Photogrammetry and Remote Sensing,Vol.ⅩⅩⅩⅥ,Part3/W52,2007:436-441
    Zhao K.G.,Popescu S.,Nelson R..Lidar remote sensing of forest biomass:A scale-invariant estimation approach using airborne lasers.Remote Sensing of Environment,2009,113:182-196
    陈尔学,李增元,谭炳香等.高光谱数据森林类型统计模式识别方法比较评价.林业科学,2007,43(1):84~89
    程武学,刘悦翠,马胜利.基于RS和GIS的林相图制作.西北林学院学报,2007,22(4):110~114
    宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析.遥感学报,1998,2(3):21l~217
    何祺胜,陈尔学,曹春香等.基于LIDAR数据的森林参数反演方法研究.地球科学进展,2009,24(7):748~755
    李春干,代华兵,谭必增等.基于SPOT5图像分割的森林小班边界自动提取.林业科学研究,2010a,23(1):53~58
    李春干,邵国凡.面向对象的SPOT5图像森林分类.林业科学,2010b,46(8):130~139
    李奇,马洪超.基于激光雷达波形数据的点云生产.测绘学报,2008,37(3):349~354
    李卫正.基于遥感影像分割的小班界线提取研究—以广东翁源县九曲水林场为例.南京:南京林业大学博士论文,2009
    刘建泉.甘肃祁连山国家级自然保护区综合科学考察报告.兰州:甘肃科学技术出版社,2008:1~6
    刘丽娟.基于机载LiDAR和高光谱融合的森林参数反演研究.哈尔滨:东北林业大学博士论文,2011
    刘清旺,武红敢,石进等.基于TM影像的森林病虫灾害遥感监测系统.遥感信息,2007,2:46~49
    刘清旺,李增元,陈尔学等.利用机载激光雷达数据提取单株木树高和树冠.北京林业大学学报,2008,30(6):83~89
    刘清旺.机载激光雷达森林参数估测方法研究.北京:中国林业科学研究院博士论文,2009
    刘清旺,李增元,陈尔学等.机载LIDAR点云数据估测单株木生物量.高技术通讯,2010,7:765~770
    庞勇.星载干涉雷达和激光雷达数据森林参数反演.北京:中国科学院遥感应用研究所博士论文,2005
    庞勇,李增元,陈尔学等.激光雷达技术及其在林业上的应用.林业科学,2005,41(3):129~136.
    庞勇,孙国清,李增元.林木空间格局对大光斑激光雷达波形的影响模拟.遥感学报,2006,10(1):97~103
    庞勇,于信芳,李增元等.星载激光雷达波形长度提取与林业应用潜力分析.林业科学,2006,42(7):137~140
    庞勇,李增元,孙国清等.地形对大光斑激光雷达森林回波影响研究.林业科学研究,2007,20(4):464~468浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报,1997,1(2):115~123
    浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
    谭炳香,李增元,陈尔学等.Hyperion高光谱数据的森林郁闭度定量估测研究.北京林业大学学报,2006,28(3):95~101
    谭炳香,李增元,陈尔学等.高光谱遥感森林信息提取研究进展.林业科学研究,2008,21(增刊):105~111徐光彩.机载LIADR波形数据处理及分类研究.南京:南京林业大学硕士论文,2010
    徐希孺.遥感物理.北京:北京大学出版社,2005:292~382吴春争,冯益明,舒清态等.基于SPOT5遥感影像的小班区划技术.东北林业大学学报,2011,39(7):120~122
    邬伦,刘瑜,张晶等.地理信息系统—原理、方法和应用.北京:科学出版社,2001:195~216
    张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计.遥感学报,1997,1(2):111~114张煜星.基于SPOT数据的森林林相图更新技术研究.北京:中国林业出版社,2008:1~3
    赵峰,李增元,王韵晟等.机载激光雷达(LiDAR)数据在森林资源调查中的应用综述.遥感信息,2008,1:106~110
    赵广亮,游晓斌,姚永剐.应用于森林资源二类调查的多遥感信息源适用性分析与评价.北京林业大学学报,2003,25(特刊):24~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700