塔河林区林火对土壤性质与植被恢复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以“3S”技术和数学统计软件为主要技术手段,根据1974-2004年30多年来发生的各类火灾的基础数据,绘制30年塔河林业局森林火灾火烧迹地分布图,结合该地区地理信息系统,将火点分布图与不同类型专题图相叠加,分析了各影响因子与塔河林业局林火的关系,并以该地区的不同时期发生不同火烧强度的火烧迹地为研究对象,研究不同林火强度对不同林型下植被更新及土壤环境的影响,并根据不同经营目标,选择合适的森林植被更新恢复模式,缩短火后森林生态系统恢复时间,提高森林恢复质量。研究结果如下:
     (1)方差分析结果表明,火烧年限对土壤物理性质如含水率,容重和孔隙度影响显著,而火烧强度对土壤含水率和容重的影响无明显的规律性,但各火烧迹地数据随火烧强度呈现出的变化趋势表明火烧可以使土壤结构变紧实。
     (2)重度火烧对土壤有机质和速效磷含量的增加有一定的促进作用,并使土壤中水解氮的含量呈增加趋势,但随着年限的增加,速效磷的含量下降,速效钾的含量呈不规律变化;中度的火烧有利于土壤中全氮的增加,轻度火烧和中度火烧使土壤中水解氮的含量有所下降,土壤速效钾含量呈现逐年增加的趋势。经过不同年限和不同强度火烧后的铜、锌、铁、锰含量呈现出无规律的变化。但土壤中的铜和铁存在着一定的相关性,其含量经过不同强度的火烧后在各年限上所表现出来的变化趋势非常相似。
     (3)不同林型乔木更新能力由大到小的顺序为:草类落叶松林>落叶松白桦林>杜香落叶松林>杜鹃落叶松林>坡地落叶松林>杜鹃樟子松林;不同火烧强度对不同树种的更新有很大影响,大多数重火烧迹地将在很长一段时间内形成以杨桦为主的阔叶林;中度火烧初期更新最初形成以杨桦为优势树种的阔叶林,后逐渐演变为针阔混交林;轻度火烧有利于针叶林的更新。
     (4)不同火烧强度对植被更新数量的影响在各林分类型有所不同。杜鹃落叶松林不同火烧强度下与为火烧前植被种类数量相差不大;落叶松白桦林林型与坡地落叶松林型火烧后植物种类明显增加;各林分类型中乔木层和灌木层盖度随火后恢复时间的推移呈升高的趋势,而草本层盖度则随时间的推移而呈下降的趋势;随着火烧强度的增大,高频物种所占的比例降低,植物分布的均匀性显著下降。
     (5)不同火烧迹地应采取不同的森林的恢复途径:经营条件和立地条件较好的区域应该采用人工植苗更新;经营条件差,火烧面积较大的区域,森林更新恢复很大程度上要依赖于天然更新程度。
     (6)针叶林遭轻度火烧后,林内环境变化不大;在中度火烧迹地上,针叶林的天然更新情况是比较差的,经过很长时间的恢复阔叶树将会占有很大的比例;重度火烧后的森林,必须加大人工促进更新的力度,缩短植被恢复所需要的时间。
     (7)根据塔河林业局火烧迹地上5个主要林型:杜鹃落叶松林、草类落叶松林、杜香落叶松林、杜鹃樟子松林和落叶松白桦林林型特点,分析不同林分类型在不同火烧强度下植被及土壤理化性质的变化情况,提出了相应的更新措施和技术。
     (8)火烧迹地上落叶松和樟子松人工更新现状调查结果表明,人工更新比天然更新对土壤结构、植被状况的改造具有更明显的效果,植被恢复时间更短。以商品林和生态公益林为不同的培育目标,提出塔河林业局火烧迹地人工更新技术,并提出了落叶松和樟子松两个人工更新主要树种的四种更新模式。
     本文可从理论上完善国内在林火对植被恢复和土壤环境影响等内容。在实践中,可为合理有效的确定火后森林植被恢复模式,加速火后被破坏森林的恢复,制定有效的森林经营措施对策,提供可靠的科学依据。
Some technologies such as Remote Sensing, Geographic Information System and mathematical statistical methods were used in this paper. The fire area distribution map of Tahe forestry bureau in the past 30 years were plotted based on the fire base data from 1974 to 2004. The relationship between influence factors and forest fire was analyzed according to the overlay of fire distribution map and different thematic map. The vegetation regeneration and physical and chemical characteristics variety of soil was also studied in the fire area after the fire of different intension and time interval in different forest type to select proper forest recovery mode according to different cultivation goal, shorten recovery time and improve forest recovery quality.
     The time factor is the main effect of forest fire that can affect soil moisture content, bulk density and porosity significantly. There no obvious rules of soil moisture and porosity affected by fire intension. The data indicates that fire can make soil structure more tightened.
     Severely burning can promote the increasing of soil organic matter, available phosphor and hydrolysable nitrogen. But available phosphor decreased with the process of time. There is no obvious rule for soil available potassium. Moderate burning is benefit for the increasing of total nitrogen. Lightly and moderate burning can reduce the soil hydrolysable nitrogen and increase the available potassium. The Cu, Zn, Fe, Mn in soil of the burned area after different time interval and fire intensity have no obvious rules. But the Cu in soil is related with the Fe in soil. They have similar variety tendency in different fire interval and fire intensity.
     The regeneration degree is different in different forest type, Ass·Herbage-Larix gmelini forest is highest and Ass·Rhododendron dauricum-Pinussylvestrisvar mongolica is lowest. Fire intensity can affect the regeneration of different tree species. The broadleaved forest of birth and poplar appeared in most severely burned area. In the moderately burned area the broadleaved forest of birth and poplar was firstly formed and gradually evolved to mixed forest of coniferous and broadleaved. Lightly burning is benefit for the regeneration of coniferous.
     The effect of fire intensity on plant type is different in different forest type. The plant type number has no difference among the burned area suffered by different fire intensity in Ass.Rhododendron dauricum-Larix gmelini forest but in Larix gmelini-Populus and slope-Larix gmelini forest, the plant type number increased obviously after the fire. The coverage of arbor and shrub in all forest increase gradually, but herbage coverage decrease after the fire. With the increase of fire intensity, the ratio of high-frequency plant and the equality of plant distribution decreased.
     Different plant regeneration mode selection should be adopted in different burned area. Artificial sapling regeneration should be performed in the area with good management and site conditions. In the area with poor management conditions and large burned area, the forest regeneration mainly depends on the natural regeneration.
     The environment in conifer forest has no obvious difference after lightly burning. Its natural regeneration is poor in moderately burned area and broad-leaved species will account for a large ratio after long recovery. The forest in high burned area should increase artificial approach to promote nature regeneration to shorten plant recovery time.
     According to the characteristic of 5 main forest type in the burned area of Tahe forest bureau, this paper analyzes the variance of plant and soil property of different forest after the fires with different intensity, puts forward relevant regeneration measure and technique.
     The actuality investigation of artificial regeneration on the burned area of Larix gmelini and Pinussylvestrisvar mongolica indicates that artificial regeneration has obviously effect on the rebuilding of soil structure and plant conditions and has shorter plant recovery time compared with nature regeneration. This paper puts forward the artificial technique of burned area in Tahe forestry bureau according to different cultivation goals of merchandise forest and ecology-benefit forest. It also puts forward 4 artificial regeneration modes for the 2 tree species.
     This paper can perfect the theory of fire time and space distribution, the effect of fire on plant recovery and soil environment. It also can provide scientific basis for determining reasonable and effective forest recovery mode, quickening up the recovery of destroyed forest, and establishing effective forest management measure.
引文
1. 陈因硕.澳大利亚百令湖早在全新世森林演替中的森林火[J].植物学报,1990,32(1):69-75.
    2. 程焕章.大兴安岭北部林区火烧迹地恢复森林的对策[J].东北林业大学学报,1987,15(3):82-87.
    3. 崔晓阳,清文主编.现代森林经营与资源利用研究.哈尔滨:黑龙江科学技术出版社,1994.
    4. 董和利,徐鹤忠,刘滨辉.大兴安岭火烧迹地主要目的树种的天然更新[J].东北林业大学学报,2006,34(1):22-24.
    5. 董智勇.世界林业发展道路[M].北京:中国林业出版社,1992.
    6. 段建田,魏世强,于萍萍等.林火迹地森林生态系统恢复研究[J].安徽农业科学,2007,35(1):182-184.
    7. 樊顺.计划烧除可行性探讨[J].森林防火,1991.
    8. 关百钧,魏宝麟主编.世界林业发展概论[M].北京林业大学,北京:中国林业出版社,1992.
    9. 关克志,张大军.大兴安岭森林火灾对植被影响分析[J].环境科学,1989,11(5):82-90.
    10.郭晋平.森林景观生态研究.北京:北京大学出版社,2001:12-26.
    11.国家林业部.东北内蒙古林区营林用火技术规程.林业部发部,1996.
    12.韩恩贤,薄颖生,韩刚.森林火灾灾害等级划分初探[J].西北林学院学报,1998,13(1):79-82.
    13.胡海清.大兴安岭森林火动态研究[M].北京林业大学,北京:1996.
    14.胡海清.林火与环境.哈尔滨:东北林业大学出版社,1999.
    15.胡海清.我国森林燃烧性研究综述.森林防火,1986.
    16.胡海清等.林火生态与管理.中国林业出版社,北京,2005.
    17.黄清麟.营林用火新技术-计划烧除.森林防火,1985.
    18.蒋伊尹,李凤日,李长胜.兴安落叶松幼、中龄林生长规律的研究[J].东北林业大学学报,1990,18(1):1-7.
    19.焦洪双.采伐干扰和火干扰对兴安落叶松更新及种群结构影响的研究[M].东北林业大学,哈尔滨:2001.
    20.康文发,张建云.关于大兴安岭林区森林资源管护问题的商榷[J].内蒙古林业调查设计,2004,27(1):36-39.
    21.李景光,山晓燕,郭晓燕,白乃波.2005.白狼林业局”5.21”火烧迹地天然更新调查与研究[J].内蒙古林业调查设计28(4):37-38.
    22.李景文.森林生态学,中国林业出版社,1990.
    23.李为海,崔克城,刘萍.2000.火烧迹地次生林天然更新株数模型的建立[J].内蒙古林业调查设计,2:28-30.
    24.刘恩海,普德萍,刘兴刚等.樟子松开花结实规律的研究樟子松球果变异与种子预测方法的关系[J].林业科技,1995,2(2):19-24.
    25.刘国范.大兴安岭北部主要土壤性质与林业木生长关系的比较研究[D].东北林业大学,哈尔滨.1988.
    26.骆介禹.森林燃烧能量学,哈尔滨[M].东北林业大学出版社,1992.12
    27.吕馨.气象要素与森林火灾关系研究综述[J].内蒙古林业调查设计,2000,4:41-45.
    28.马雪华.森林生态系统定位研究方法.北京:中国科学技术出版社,1994,28-29.
    29.南京农业大学.农业土壤化学分析第二版.北京:中国农业出版社,1900
    30.彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000,3:188-192.
    31.邱雪颖.大兴安岭北方针叶林火生态和火历史的研究[M].东北林业大学,哈尔滨:1994.
    32.单建平,杨善勋.兴安落叶松结实规律与长短枝习性的关系[J].生态学杂志.1990,9(6):20-23.
    33.舒立福,寇晓军.森林特殊火行为格局的卫星遥感[M].林科院森林保护研究所.北京:1997.
    34.舒立福,田晓瑞,马林涛.林火生态的研究与应用[J].林业科学研究,1999,12(4):422-427.
    35.舒立福,田晓瑞.近10年来世界森林火灾状况[J].世界林业研究,1998,11(6):31-36.
    36.舒立福,左继春等.1996.大兴安岭“五.六”大火火烧迹地天然更新的探讨[J].林业资源管理(6).43-45.
    37.舒立福.大兴安岭林火生态与火烧迹地天然更新的研究[M].东北林业大学.哈尔滨:1996.
    38.舒立福.国外林火管理.东北林业大学,1999.
    39.舒立福等.林火生态的研究与应用[J].林业科学研究,1999,12(14).
    40.宋玉福,杨立强,马广辉,等.兴安岭火烧区森林恢复的研究[J].森林防火,1996(2):16-17.
    41.陶大力.景观生态学-理论、方法与应用.北京:中国林业山版社,1991.
    42.田晓瑞,舒立福.林火与可持续发展[J].世界林业研究,2003,16(2):38-41.
    43.汪祥森.大兴安岭塔河、阿穆尔、图强和西林吉林业局主要森林类型火烧迹地概况及恢复森林的建议[J].林业资源管.1987,10(28):20-24.
    44.王金锡.计划火烧对云南松生长的影响[J].森林防火,1992.
    45.王金锡等.云南松计划烧除试验研究(之一)[J].森林防火,1993,36(1):9-13.
    46.王绪高,李秀珍,孔繁花等.大兴安岭北坡火烧迹地自然与人工干预下的植被恢复模式初探[J].生态学杂志,2003.22(5):30-34.
    47.王英杰.火烧后森林动态的研究概况.森林防火,1990.
    48.文定元.林火理论知识.东北林业大学,1999.
    49.肖功武.计划烧除.东北林业大学出版.1999.
    50.肖功武.林内计划火烧技术的研究[J].森林防火,1987.
    51.肖功武.森林可燃物管理研究[J].林业科技,1994.
    52.徐化成,丘扬.大兴安岭北部地区原始林火干扰历史的研究[J].生态学报,1997,17(4):337-343.
    53.徐化成.中国大兴安岭森林[M].北京:科学出版社,1998,41-43.
    54.徐化成.景观生态学.北京:中国林业出版社,1996,28-42.
    55.闫厚.森林火险等级预报系统的开发[J].林业资源管理,2001,3:69-73.
    56.杨传平,杨书文,刘桂丰等.兴安落叶松种源试验研究.地理变异的规律和模式[J].东北林业大学学报,1990,8(4)10-20.
    57.杨春田,李宝印,何静涛等.火烧迹地更新的策略与技术[J],1989,(66):23-24.
    58.杨春田,李宝印.大兴安岭北坡火烧迹地更新的策略与技术[J].林业科技,1989(6):23-24.
    59.杨树春,刘新田,曹海波,等.大兴安岭林区火烧迹地植被变化研究[J].东北林业大学学报,1998,26(1):19-23.
    60.杨玉盛,李振问.火对森林生态系统营养元素循环的影响[J].森林防火,1992,3(4):12-14.
    61.叶兵.国内外森林防火技术及其发展趋势[D].北京:中国林业科学研究院,2000.
    62.张景忠.森林火灾经济损失分类初探[J].森林防火,2000(2):27-28.
    63.张敏.林火对土壤环境影响的研究[D].东北林业大学,哈尔滨,2002.
    64.张文兴.计划烧除兴利避害[J].森林防火,1990.
    65.郑焕能,胡海清.森林燃烧环[J].东北林业大学学报,1987,15(5):1-6.
    66.郑焕能,贾松青,胡海清.大兴安岭林区的林火与森林恢复[J].东北林业大学学报,1986,14(4):1-7.
    67.郑焕能.林火灾变域值[J].火灾科学,1999,8(3):1-5.
    68.郑焕能.林火管理.东北林业大学,1989.
    69.郑焕能.森林防火.东北林业大学,1994.
    70.郑焕能等.林火生态.哈尔滨:东北林业大学出版社,1992.
    71.中国土壤学会.农业土壤化学分析方法.北京:中国农业科技出版社,2000
    72.钟章成.我国植物种群生态研究的成就与展望[J].生态学杂志,1992,1(1):4-8.
    73.周道玮等编译.植被火生态与植被火管理[J].长春:吉林科学出版社,1995.
    74.周以良,乌弘奇,陈涛等.按植物群落生态学特性,加速恢复大兴安岭火烧迹地的森林[J].东北林业大学学报,1989,17(3):1-10.
    75.周以良等.中国大兴安岭植被.北京:科学出版社,1991.
    76. Ahlgren C.E. The effect of fire soil organisms.In T.T.Koalowski and C.E. Ahlgren Eds. Fire and Ecosystems, Acaclemic.Now York,1974, pp67-62.
    77. Alain Vidal, Claire Devaux-Ros. Evaluating forest fire hazard with a Landsat TM derived water stress index. Agricultural and Forest Meteorology.1995,77:207-224.
    78. Allen M.F.The Ecology of Mycorrhizae.Cambridge Unive.Press, Cambridge.1991.Pp.189.
    79. Almendros C.;Gonzalee-Viva F.J.Fire induced transfermation of soil organic matter for man Oak forest:anexperimented approad to the effects of on humic substances Soil. Sci.1990, 149(3):158-168.
    80. Anderson J.M., The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol. Vol.1, No.3, Aug.,1991, pp.326-347.
    81. Androws P.L.R.C.Rothermel. Charts for interpreting wild land fire behavior characteristics. USDA.Gen. Tech. Report. INT-131.1982.21.
    82. Antonio V, Jose M. Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecology and Management,2001,147:55-65.
    83. Associated Press,1997. Report calls 1997 world's worst year for fires.Arizona Papublic, Wednesday, December 17.p. A20. Aston,A.R., Gill, A.M.,1976. Coupled soil moisture, heat, and water vapour transfers under simulated fire conditions Aus. J. Soil Res.14,55-56.
    84. Austin R.C.and R.H.Blasinger. Some effects of burning on forest soil of western Oregion and Washington. J.For.1955, (53):275-280.
    85. Bell.S. Fonseca, M.S., Motten, L, B., Linking restoration and landscape ecology. Soc. Ecol Rest. 1997.5,318-323.
    86. Bentienga S.P.,Hetrick, B.A.D., Relationship between mycorrhizal activity, burning, and plant productivity in tallgrass parairie.Can. J. Bot.1991.69:2597-2602.
    87. Blair J., Fire, N availability, and plant responses in grasslands:a test of the transient maxima hypothesis. Ecology 1997.78,2359-2368.
    88. Bock C., Bock, J., Shrub densities in relation to fire,Livestock grazing, and precipitation in an Arizona desert grassland. Southwest Nat.1997.42,188-193.
    89. C.H.Sieg and H.A. Wirght.The Role of Prescibed Burning in Regenerating Querous Marcocarpa and Associated W900 By Plants in Stinger Woodlands in Black Hills,South Dakota.Intemational Journal of Wild and Fire,1996,6(1):21-29.
    90. C.P.S. Larsen, G M. MacDonald. An 840-year record of fire and vegetation in a boreal white spruce forest. Ecology,1998.79:106-118.
    91. Chandler C.et al. Forest Fire Behavior and effects. John Wiley and sons. New York. NY 10158, USA.1983.
    92. Conant. R.,Klopatek, Malin, J.M.,R.,Klopatek and C.C. Carbon pools and fluxes along an environmental gradient in norther Arizona Biogeochem.1998.43(1):43-61.
    93. Covington.W.W., Bebano L.F. Soil nitrogen changes associated with slash pile burning in pinyon-juniper woodlands. For.Sci.1991.37(1):347-355.
    94. Daniel G.Neary, Carole C.Klopatek and Leonard F.De.Bano. Fire effects on belowground sustainability a review and synthesis. Forest Ecology and Management 1999.122,51-71.
    95. De Bano.L.F.P.H.Dumn and C.E.Conrad. Fires effect on physical and chemical properties of chaparral sforoils. USDA.For.Serv.Gen.Tech.Rep.1977,146(4)65-74.
    96. De Bano.L.F., Neary, D.G., Efolliott and P.E. Fire effect of ecosystems John Wiley and Sons, New York.1998.
    97. Debano.L.F.et al. Effects of burning on chaparral Soils I. Soil nitrogen. Soil Sci. Soc. Amer.J. 1979.43:504-509.
    98. Dix.R. L, and J. M, A. Swan. The roles of disturbance and succession in upland forest at Candle Lake, Saskatche wan. Canadian Journal of Botany,1971,49:657-676.
    99. DOI and FS. Federal Wildland Fire Management Policy and Program Review. Impel mentation Action Plan Report. U. S. Department of Interior and Department of Agriculture, National Interagency Fire Center,Boise,ID.1996.
    100. Eright H.A.et al. Fire Ecology. Wiley & Sons,1981.
    101. Fastie.C. L. Causes, and ecosystem consequences of multiple pathways of primary Glacier Bay.Alaska.Ecology,1995,76:1899-1916.
    102. Feller.M.C.. Relationships between fuel properties and slash burning-induced nutrient losses. Forest Science.1988,34(4):pp.998-1015.
    103. G.Giorannini, R.Vallejo and S.Lucchesi. Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. Forest Ecology and Management,2001,147:15-23.
    104. GOA. Western National Forests:A cohesive strategy is needed to address catastrophic wildfires. United States General Accounting Office report GAO/RCED.99-65.Washington,DC.1990.60p.
    105. Grognan P, BrunsTD Chapin FS. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest.Oecologia,2000,122(4):537-544.
    106. Hery.A.Wright;ArthurW.Bailey.Fire ecology.NewYork:JohnWilley&Sons,1982.
    107. Hingston E.J., Galbraith J.H.,Nutrients in ash fall-out during forest fires in the south-west of western Australia, Australia Forestry.1989,52(4):321-326.
    108.1.A.Barid,P.C.Calting and J.R.Ive.Fire Planting for Wild Fire Management:A Decision Support System for Nadgee Nature Reserve,Australia.International Journal of Wild and Fire,1994,4(2):107-122.
    109. J.Schimmel and A.Granstrom.Fire Severity and Vegetation Response in the Boreal Swedish Forest.Ecology,1996,77(5):1436-1450.
    110. James A.H. Positive effects of prescribed burning on wildfire intensities. Fire managenment Notes. 1979.
    111. Joan Romanya, Pere Casals and V.R.Vallejo. Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrablands growing in old fields. Forest Ecology and Management 2001.147:39-53.
    112. Johnson, E K.Miyanishi, and H. Kleb. reconstructions in a Pinus-931.The hazards of interpretation contorta-Picea engelmannii of static age structures. Journal of Ecology,1994,82:923.
    113. Jordan C.F.Nutrient cycling in Tropical Forest Ecosystem.John wiley and sons. New York.1985.
    114. Jorge Castellanos,Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystem in Mexico 2001 Forest Ecology and Management 2001,148,41-50
    115. K.G.Driscoll, J.M.Arocena and H.B.Massicotte. Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forest of British columbias central interior, Canada. Forest Ecology and Management 1999.121:227-237.
    116. Kandya A K, Kimothi M M, Jadhav R N, Agarwal J P. Application of GIS in identification of fire prone areas--a feasibility study in parts of Junagarh (Gujrat, India). Indian For.1998, 124(7):531-535.
    117. Kanffman T.B.;Martin R.E. Spronting shrub response to different seasons and fuel consumption levels of prescribed fire in sierra Nevada mixed conifer ecosystems. For. Sci.1990:36(3):748-764.
    118. Kirsten T, Sergey V, Stephen S, et al. The role of fire disturbance for global vegetation dynamics coupling fire into a Dynamic Global Vegetation Model. Global Ecology & Biogeography,2001,10: 661-677.
    119. Komared E.V.Sr The meteorological basis for fire ecology. Proc.Tall Timbers Fire Ecol. Conf, 1966,5:85-125.
    120. Kozlowski T, Pallardy S G. Growth Control in Woody Plants. Academic Press, San Diego, CA, USA.1997.
    121. Kozlowski T. Responses of woody plants to human-induced environmental stresses:issues, problems and strategies for alleviating stress. Crit. Rev. Plant Sci.2000,19:91-170.
    122. Lawal M. Marafa and K.C.Chau. Effect of hill fire on upland soil in Hong Kong. Forest Ecology and Management 1999.120:97-104.
    123. Levine J S. Global Biomass Burning Atmospheric Climatic and Biospheric Implications, The MIT Press, Cambridge, MA.1991.
    124. M.G.Weber;S.W.Taylor.The Application of Prescribed Burning in Canadian Forest management.The Forestry Chronocle,1992,68.(31):155-168.
    125. Mac Cleery,D.W.1996 American Forests:a History of Resiliency and Recovery.Forest History Society Issues Series,Forest History,Durham,Noeth Carolina.58 pages.
    126. McColl J.G.,Gressel and N. Forest soil organic matter characterization and modern methods of analysis. In:McFee, W.W.,Kelley, J.M.Carbon Forms and Functions in Forest soils, Chap.2.Soil Science Society of America, Madison, WI.1995.pp.13-32.
    127. Metz L.Tand Iott R.A.Klawitter. Some effects of prescribed burning on coastal plain forest soil. U.S.For.Serv.Sta 1961:123-133.
    128. Monleon. V., Cromack Jr., K., Long-term effects of prescribed underburning on litter decomposition and nutrient release in ponderosa pine stands in central Oregon. For. Ecol.Manage. 1996.81,143-152.
    129. Moore, J.C., de Ruiter, P.C., Temporal and special heterogeneity of trophic interactions within below-ground food webs. In:Crossley, D.A., Coleman, D.C., Beare, M.H.,Edwards, C.A.(Eds.),Modem Techniques in Soil Ecology. Elsevier, Amsterdam.1991.pp.371-398.
    130. Morris, L.A., Miller, R.E., Evidence of long-term productivity change as provided by field trials. In: Dyck, W.J., Cole, D.W.,Comerford, N.B.(Eds.),Impacts of Forest Harvesting on Long-Term Site Producivity, Chap.3.Chapman and Hall, London.1994. pp.41-80.
    131. Murphy.K.,Klopatek, J.M.,Klopatek, C.C., Effects of litter quality and climate on litter decomposition along an elevation gradient in Northern Arizona. Ecol. Appl.1998,8,1061-1071.
    132. Ostendorf B, MillerPearson S M, Turner M G, Drake J B. Landscape Change and Habitat Availability in the southern Appalachian High-lands and Olympic Peninsula. Ecological Applications,1999,9(4):1288-1304.
    133. Ostendorf B, Reynolkds J F. A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology,1998,13(3):187-201.
    134. Pastor J. et al. The spatial pattern of a Northern conifer-hardwood landscape, Landscape Ecology, 1990,4(1):55-68.
    135. Peter S.,Prescribed burning increased nitrogen availability in loblolly stand, For. Ecol. Manage.1986,14(1):13-22.
    136. Pyne, S.J.,Andrews, P.L., Laven, R.D., Introduction to wildland Fires. John Wiley and Sons, Inc., New York, N.1996.
    137. R. William Furman. Evaluating the adequacy of fire danger rating network. Forest Science (American),1984,30(4):1045-1058.
    138. Ralph E.J.Boerner.Sherri Jeakins Morris, Elaine Kenedy Sutherland and Todd F.Hutchinson. Spatial Variability in soil nitrogen dynamics after prescribed burning in Ohio mixed-oak forests. Printed in the Netherlands. Landscape Ecology.2000.15:425-439
    139. Raymond A. Young Introduction to forest science. John wiley and sons Inc. New York.1982.
    140. Robert R.Blank and Desiderio C.Zamudio. The influence of wildfire on aqueous-extractable. Soil solute in forested and tet meadow ecosystems along the eastern front of the sierra-nevada range, California. IAWF.Printed in U.S.A.Int. J.Wildland Fire 1998,8(2):79-85,
    141. Room P M, Hanan J S, Prusinkiewicz P. Virtual plants:new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science,1996,1:33-38.
    142. Schoen D., Primary productivity:the link to globle health. Bioscience 1997.47:477-480.
    143. T.H.Deluca and K.L.Zouhar. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. Forest Ecology and Management 2000.138:263-271.
    144. Thorsten, W.,Richard, D,.W,.Milton,S.,Simulated plant disturbances to small -scale disturbances in semi-arid shrublands J.veg.Sci.1997.8.163-176.
    145. Tinner W, Hubschmid P, Wehrli M, et al. Long-term forest fire ecology and dynamics in Southern Switzerland J.Ecology,1999,87(2):273-289.
    146. W.bohm. Reseach For Root. Beijing:Chinese Forest Press.1985.7-26.
    147. Wagner. D., The influence of ant nests on Acacia seed production, herbivory and soil nutrients. J.Ecology 1997.85,83-93.
    148. White C.S..,1991. The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochem,12,43-68.
    149. William J.Bond and Brian W.vzn Wilgen.Fire and Plants.London:Chapman&Hall,1996.
    150. Wilson C.C.and Davis,J.B. Forest fire laboratory at River side and fire research in Calific Southwest Forest and Range Experiment Station,Berkeley,CA.Gen.Tech.Rep.PSW-1998.105.22p.
    151. Wright A Bailey W.Fire ecology.NewYork:John Willey&Sons,1982:272-289.
    152. Wright, H.A.,F.M.Churohill. and W.C.Stevens. Effects of prescribed burning on sediment. Water yields, and water quality from dozed Juniper lands in central Texas. J.Range manages. 1976.29:294-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700