松嫩平原盐碱化草地模拟模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松嫩平原盐碱化草地是我国著名的天然草场,又是东北西部绿色生态屏障,
    具有较高的经济价值和重要的生态意义。但是由于各种自然因素和人为因素,
    致使草地出现退化、沙化和盐渍化,尤其是草地盐渍化加重,生态环境日趋恶
    化。当地地形条件和气候要素是导致草地原生盐碱化的主要原因。而人类对草
    地的过度使用,如过度放牧和割草等则是导致草地快速次生盐碱化的主要原因,
    不仅导致土壤的退化,而且引起草地群落发生次生演替过程。在典型的次生演
    替过程中,常常可以出现羊草(Aneurolepidium chinense)群落、羊草和—虎尾草
    (Aneurolepidium chinense & Chloris virgata)群落、虎尾草(Chloris virgata)群落、
    碱蓬(Suaeda glauca)群落等演替阶段。
     本文试图建立一个过程模型,来模拟草地的生态学过程机理以及人类过度
    放牧对草地生态系统的影响。本模型包括5个部分:1)主要气候因子的模拟,
    2)土壤水分动态的模拟,3)土壤盐碱化动态的模拟,4)草地群落生长的模拟,
    5)不同放牧强度对草地生态系统的影响评价。以下将对各个部分分别描述。
     在气候因子模拟子模型中,给出了影响草地生态系统主要气候因子的种类,
    并重点介绍了如何利用解析法计算太阳辐射,包括平地和坡地的理论可照时间,
    天文辐射日总量以及总辐射量。利用改进后的Penman式,模拟了全国的潜在
    蒸散量,与900多个气象站点的水面蒸发观测资料进行了验证,模拟结果很好。
     利用面向对象技术,将土壤水分动力学模型与水分平衡模型相结合,建立
    了土壤水分动态的物理过程模型。模型以1d为步长,可以模拟多种土壤质地
    的水分动态。利用松嫩平原4中典型土壤(碳酸盐草甸黑钙土、栗钙土、碱化
    盐土、草甸碱土)1997年土壤湿度观测资料对模型进行了验证,效果很理想。
     在水盐平衡模型和动力学模型基础上建立了物理过程模型,来模拟土壤盐
    碱化动态。模型以1d为步长,适合于模拟异质性强的多层土壤水盐动态。模
    拟了1997年羊草及碱蓬群落下的土壤盐分、碱化度、pH值动态,并与实验资
    
    
     ③@
    料进行了比较,”模拟给果可以反映土壤盐分和碱化的季节变化规律。
     模型将气候要素、土壤湿度。土壤盐分浓度、碱化度和 pH值作为影响草地
    群落生长最重要的环境因于,在土壤水分动态和盐碱化动态模型基础上,建立
    了过程模型来模拟以羊草(.chin洲、虎尾草( vi刚taX星星草(Puccinelli
    tenuytora砰碱蓬代 glauca)为建群种的 4种植物群落的地上生物量、地下生物
    量以及枯死生物量变化动态。利用吉林省长岭的气候资料和实验资料,模拟了
    1991年土壤湿度动态,1991年 4种群落土壤盐分、碱化度和pH值变化动态,
    以及1991”年4种群落生长动态,井分别利用实验资料进行了验证,模拟效果非
     一
    常理想。
     在此基础上,利用模型对不同放牧强度对土壤水分动态、盐碱化动态的影
    响进行了评价,井探讨了对群落演替和生长的可能影响。模型选择不放牧、轻
    牧、重牧、过牧。极牧5种放牧强度,利用模型每15天将地上生物量分别去除
    00/6、25o、50O、7SO和90O,并且相应改变了土壤导水特性来模拟不同的放
    牧强度。模拟结果表明,重牧、过牧、极牧下土壤湿度显著降低,但在轻牧下
    土壤湿度略有上升。在不放牧时,土壤以脱盐、脱碱过程为主,而轻牧下脱盐。
    脱碱过程则会变缓;重牧、过牧。极牧下则以盐碱化为主。不放牧时羊草群落
    一直古优势,而轻牧下则被羊草一虎尾草群落替代;虎尾草可以忍受轻的盐碱,
    。囱此在重牧下取代羊草群落成为优势种;在过牧和极牧下。上壤盐碱化非常迅
    速,最终只有碱蓬可以忍受强度的盐碱,这时草地变为碱蓬群落或光碱斑。不
    放牧下草地群落生长良好,生物量最大:轻牧下,草地群落生物量保持在中等
    水平;而重牧、过牧、极牧下草地生物量迅速减少。通过将每年收割的生物量
    进行累加,可以发现轻牧卞收获的生物量总量是最大的,随着放牧强度的增加,
    收获的生物量迅速减少,如果同时考虑到适口性的问题,则可以发现轻牧下可
    以收获最多的生物量,而过牧和极牧下只能收获极少的适口性非常差的碱蓬。
     模拟结果表朋,过牧是导致松嫩草地次生盐碱化最重要的.原因,它不仅造
    成草地土壤的退化,而且加速了草地群落的次生演替。适宜的放牧强度对于保
    护草地免受退化,保持较高的草地生产力水平至关重要。而过牧不仅降低了草
    地的生产力,而且严重破坏了草地环境,引起草地的迅速退化。
The vast alkalinized-salinized grasslands in the Songnen Plain, Northeastern
     China, are suffering from degradation resulting from soil alkalization and salinization.
     The topographical features and climatic conditions of the area result in a very slow
     primary soil alkalization and salinization process. Human抯 over-utilization of the
     grasslands, e.g. overgrazing and mowing, results in a secondary soil alkalization and
     salinization process, which is much faster than the primary one. It is a process of
     serious degradation of the grassland, and leads quick regressive successions of the
     meadow steppe ecosystem. A general regressive succession process under
     overgrazing can be separated into some phases in terms of their dominant species, 1)
     Aneurolepidium chinense, 2) Aneurolepidium chinense and Chioris 憊irgata, 3) Chloris
     virgata, and 4) Suaeda glauca.
    
     In this paper, we attempted to build a process-based model, to describe the
     ecological processes in the grassland ecosystems, and to estimate the potential
     impacts of different grazing intensity on the grassland. This model was constituted
     with five submodels, which described the 1) climatic valuables for grassland
     ecosystems, 2) the hydrological pro~esses in the soil, 3) the alkalizationlde-
     alkalization and salinizationlde-salinization processes in the soil, 4) the growth
     processes of the herbaceous communities and 5) the potential impacts of different
     grazing intensities on the grasslands.
    
     Some important climatic variables for grassland ecosystems were described in the
     submodel of climatic valuables, including temperature, precipitation, radiation,
     relative humidity, sunshine fraction and wind velocity. Analytical equations were used
     to calculate the radiation at any topographical situation, which includes the possible
    
    
    
     iii
    
    
    
    
    
    
    
    
    
     - lv -
    
    
    
    
    
     duration of sunshine, exoatmospheric solar radiation, and total solar radiation.
     Amended Penman抯 equation was used to evaluate the potential evapotranspiration of
     China. The simulation results were verified to be effective with the observed pan
     evaporation data from 900 meteorological observation stations.
    
     After combining a numerical integration model and a water balance model, a
     physically-based modelling of hydrological processes in soil was built with the
     Object-oriented design. This model is run at daily-time step, and it can be used for
     different soil texture classes. It was used for simulating dynamics of soil water with
     great vertical spatial heterogeneous. The hydrological processes of four different soils
     in Songnen grasslands were simulated and the results and the results were verified
     with the experimental data from four dots in Songnen Plain in 1997.
    
     A dynamical model was built on the basis of salt and water balanced modelling
     and mechanism modelling. This model is a daily-time step, and suit for the simulation
     the movements of salts in heterogeneous soil. As a case study of the model, the
     dynamics of salt concentration, exchangeable sodium percentage (ESP) and pH were
     simulated on two plots in 1997, with A. chinense and S. corniculata growing on it
     respectively. Comparing with the experimental data, the simulation results can express
     the dynamics of saline and alkaline in different seasons.
    
     Climatic valuables, soil moisture, salt concentration, ESP and pH were regarded
     as the most importan
引文
傅抱璞.山地气候.北京.科学出版社.1983.pp270
    傅抱璞,翁笃鸣.小气候学.北京.气象出版社.1994
    高国栋,陆渝蓉.气候学.北京:气象出版社.1988.
    高亮之,金之庆.水稻栽培计算机模拟优化决策系统.北京:中国农业科技出版社.1992.152.
    高琼,文华.单株树下辐射分布的数值模拟.植物学报.1995,37 (11):870~877
    高琼,张为政.SOINFIL一种从渗水实验中获取土壤持水和导水特性参数的方法生态学报.1993,13:280-282
    高琼,张为政.松嫩平原碱化茸:地植物——环境系统的仿真模拟.植物生态学报.1994,18:56-67
    高玉宝,人工和自然羊草种群的高生长及生物量季节动态的研究.植物生态学与地植物学学报.1987,11 (1):43~49.
    黄策,王天铎.水稻群体物质生产过程的计算机模型.作物学报.1986,12:1-8.
    黄忠良。运用 Century 模型模拟管理对鼎湖山森林生产力的影响.植物生态学报.2000,24:175-179.
    贺达汉,李春光,沈禹颖,朱兴运.河西内陆盐渍化草地植物——环境系统的数值模拟,草业学报,1998,7:34-42.
    金之庆,葛道阔,郑喜莲,陈华.评价全球气候变化对我国玉米生产的可能影响.作物学报.1996,22:513-524.
    柯夫达.盐渍土的发生与演变 (1946).席承藩译.北京:科学出版社.1957
    雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社.1988
    李德光.旱地土壤水的特征阶段、垂直类型与土壤水分预报,农业气象.1987,9 (4).
    李哈滨,伍业钢.景观生态学的数量研究方法.见:刘建国主编.当代生态学博论.中国科学技术出版社,1992,209-233.
    李建东,郑慧莹.松嫩平原南部植被与环境相关性的探讨.植物学报.1988,30:420-429
    李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理.北京:科学出版社,1997.271
    
    
    李韵珠,陆锦文,黄坚.蒸发条件下粘土层与土壤水盐运移.见:石元春,李韵珠,陆锦文 主编.盐渍土的水盐运动.北京:北京农业大学出版社,1986,161-174
    李新,程国栋,陈贤章,卢玲.任意地形条件下太阳辐射模型的改进.科学通报.1999,44 (9):993~998.
    李月树,祝廷成.羊草种群地上生物量形成规律的探讨.植物生态学与地植物学学报.1983,7 (4):289~298,
    李占清,翁笃鸣.坡面散射辐射的分布特征及其计算模式.气象学报.1988,46 (3):349~356
    林而达,王厚煊,王京华.全球气候变化对中国农业影响的模拟.北京:中国农业科技出版社.1997.
    刘昌明,洪嘉琏,金淮.农田蒸散量的计算.见:谢贤群,左大康,唐登银主编.农田蒸发-—测定与计算.北京:气象出版社.1991,34-142
    鹿洁忠.农田水分平衡和干旱的计算与预报.北京农业大学学报.1982,8 (2).
    卢玉邦.土壤水分预报模型的研究.土壤学报.1989,26 (1).
    马步洲,鲁铁相.黄淮海平原土壤盐渍化遥感监测方法的研究.盐渍土的水盐运动.北京:北京农业大学出版社.1986,243~252
    戚秋慧,盛修武,姜恕,金启宏,洪亮.A comparative study of the community photosynthesis of Aneurolepidium Chinense and Stipa Grandis.植物生态学与地植物学学报.1989,13:332-340.
    尚宗波,杨继武,殷红,罗新兰,赵世勇.玉米生长生理生态学模拟模型,植物学报.2000a,42:184-195.
    尚宗波,高琼,王仁忠,松嫩草地土壤水分及盐渍化动态的模拟研究.土壤学报待印.
    尚宗波.全球气候变化对沈阳地区春玉米生长的可能影响,植物学报.2000b,42:300-305.
    石元春,李保国,李韵珠,陆锦文.区域水盐运动监测预报.河北科学技术出版社.1991.
    王仁忠.松嫩平原几种主要禾草植物群落水分生态的研究.草业学报,1998a,7 (2):6-11
    
    
    王仁忠,高琼,李建东.松嫩平原两种碱茅群落水分生态的比较研究.生态学报.1998b,18:107-112
    王季槐.定西半干早地区春小麦农田土壤水分动态的计算机模拟,土壤学报.1987,24 (4).
    王晓燕.松嫩平原南部植被初步研究.中国草地.1989.(3):32~38。
    王遵亲 主编.中国盐渍土.北京:科学出版社,1993.573
    翁笃鸣,罗哲贤.山区地形气候.北京:气象出版社.1991,pp541
    延晓东,赵士洞.长白山森林生长和演替的模拟模型研究.生态学报.1995,15 (Supp.B):11-21.
    杨允菲,张保田,松嫩平原羊草种群营养繁殖的季节动态及其生物量与密度关系的分析.植物学报.1992,34 (6):443-449.
    朱志辉.等日照时间于等日照方位.叫,中国科学.B辑.1987 (12):1340~1347.
    朱志辉.墙面太阳辐射的理论计算与模式估计—以上海为例.地理学报.1987,42 (1):28~41.
    张宇,王馥棠.气候变暖对中国水稻生产可能影响的研究.气象学报.1998,56:369-376.
    张为政,高琼,松嫩平原羊草草地土壤水盐运动规律的研究.植物生态学报,1994,18:132~139
    张新时.植被的 PE (可能蒸散) 指标与植被——气候分类(一)—几种主要方法与 PEP 程序介绍.植物生态学与地植物学学报.1989a,13 (1):1-9
    张新时.植被的 PE (可能蒸散) 指标与植被—气候分类 (二) —几种主要方法与 PEP 程序介绍.植物生态学与地植物学学报.1989b,13 (3):197-207
    郑慧莹,李建东.松嫩平原的草地植被及其利用保护.北京:科学出版社 1993,pp195
    郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复.北京:科学出版社.1999.pp233
    周立,王祖望.高寒草甸生态系统研究的若干数学模拟模型.北京:科学出版社.1991
    Acock B, Thornley J H M,Warren W J. Photosynthesis and energy conversion. In: 6-11
    
     Wareing P F, Cooper J P. Eds. Potential Crop Production. London: Heinemann. 1971. 43-75.
    Baker C H, Horrocks R D. CORMOD. A Dynamic Simulation of Corn Production. U.S. Dept Agri Res Serv Rep. 1975.
    Baker D M. GOSSYM. A Simulation of Cotton Crop Growth and Yield. South Carolina: South Carolia Agriculture Experiment Station. 1983. 125.
    Bazzaz F A. The response of natural ecosystems to the rising global CO_2 levels. Ann Rev Ecol System. 1990,21: 167-196.
    Bear J. Dynamics of Fluids in porous Media. American Elsevier Publishing Company, Inc. New York. 1972. 764.
    Beasley D B, Huggins L F, Monke E J. ANSWERS: A model for watershed planning. TranASAE. 1980, 23: 938-944.
    Bocci M, Coffaro G, Bendoricchio G. Modelling biomass and nutrient dynamics in eelgrass (Zostera marina L.): applications to the Lagoon of Venice (Italy) and resund (Denmark). Ecol Model. 1997, 102: 67-80.
    Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth. J Ecol. 1972, 60: 849-872
    Bracaglia M, Ferrazzoli P, Guerriero L. A Fully Polarimetric Multiple Scattering Model for Crops. Remote Sensing Environ. 1995, 54:170-179.
    Bresker E, Hanks R J. Numerical method for estimating simultaneous flow of water and salt in unsaturated soils. Soil Sci. Soc. of Am. Proc. 1969, 33: 812-832
    Bresler E, McNeal B L, Carter D L. Saline and sodic soils (principles dynamics-modeling). Advanced Series in Agricultural Science. 1982, 10.
    Bresler E. Two-dimersional transport on solutes during nonsteady infiltration from a trickle source. Source. Soil Sci. Soc. Amer. Proc., 1975, 39: 604-612
    Brouwer R, de Wit C T. A simulation model of plant growth with special attention to root growth and its consequences. In: Whittington eds. Root Growth. Proceedings of the 15th easter school in Agri. Science. London: University of Notingham. Butterwords. 1969, 224-244.
    Comins H N. Analysis of nutrient-cycling dynamics, for predicting sustainability and
    
     CO2-response of nutrient-limited forest ecosystems. Ecol Model. 1997, 99: 51-69.
    Cooper K, Huffaker R. The long-term bioeconomic impacts of grazing on plant succession in a rangeland ecosystem. Ecol Model. 1997, 97: 59-73.
    Cowan I R. Stomatal behaviour and environment. Advan Bot Res. 1977, 4:117-228.
    de Wit C. T. Eds. Simulation of Assimilation, Respiration and Transpiration of Crops. Simulation Mongraphs. Wageninger: PUDOC. 1978. 141
    Doorenbos, J., Kassam, A. H., Bentvelder, C., Uittenboogaard, G. Yield response to water. U. N. Economic Commision West Asia, Rome. 1978.
    Dozier J, Frew J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Tran. Geoscience Remote Sensing. 1990, 28(5) : 963-969.
    Dozier J, Outcalt S I. An approach to energy balance simulation over rugged terrain. Geographic Anal. 1979, 11: 65-85.
    Ducan W G. Simulation of growth and yield in cotton: A computer analysis of the nutritional theory. Proc Beltwide Cotton Prod Res Conf. 1971. 78.
    Duosen L, Zhengao L, Zongsheng W, Yinghua P. An unified model for the different phases of growth of microbial populations in a closed system. Ecol Model. 1995,82:193-198.
    Ennola K, Sarvala J, Devai G. Modelling zooplankton population dynamics with the extended Kalman filtering technique. Ecol Model. 1998, 110: 135-149.
    Farquher G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physioi. 1982, 33: 317-345.
    Feddes R A. Modelling and simulation in hydrologic systems related to agricultural development: state of the art. Agric. Water Manage, 1988, 13: 235-248
    Frere M, Pruitt W 0. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, Rome. 1979, 41-45
    Friend A D. PGEN: an integrated model of leaf photosynthesis, transpiration, and conductance. Ecol Model.1995, 77:233-255.
    Gamito S. Growth models and their use in ecological modelling: an application to a
    
    
    Gao Q, Li J, Zheng H. A dynamic landscape simulation model for the alkaline grasslands on Songnen Plain in northeast China. Landscape Ecol. 1996a, 11: 339-349.
    Gao Q, Yang X, Yun R, Li C. MAGE, a dynamic model of alkaline grassland ecosystems with variable soil characteristics. Ecol Model. 1996b, 93:19-32.
    Gao Q, Zhang X. A simulation study of responses of the Northeast China Transect to elevated CO_2 and climate change. Ecol Appl. 1997a, 7: 470-483.
    Gao Q, Yang X. A relationship between spatial processes and a partial patchiness index in a grassland landscape. Landscape Ecol. 1997b, 12: 321-330.
    Gao Q, Liang N, Dong X. A modelling analysis on dynamics of hilly sandy grassland landscapes using spatial simulation. Ecol Model, 1997c, 99: 163-172.
    Gao Q, Yu M, Li C, Yun R. Effects of ground water and harvest intensity on alkaline grassland ecosystem dynamics-a simulation study. Plant Ecol. 1998, 135: 165-176.
    Graeme M J H, David Y H. Simulation New Zealand forest dynamics with a generalized temperate forest gap model. Ecol Appl. 2000,10: 115-130.
    Hillel D. Computer simulation of soil physics. Academic Press. New York. 1977.
    Hillel D. Soil and Water: Physical Principles and Processes. New York: Academmic Press, 1971
    Hodges T, Botner D, Sakamoto C, Hayshang J. Using the CERES-maize model to estimate production for the U.S. Cornbelt. Agric For Meteorol. 1987, 40: 293-303.
    Holly G, Donald L. DeAngelis L J. Gross R S, Moris S. A dynamic landscape model for fish in the Everglades and its application to restoration. Ecol Model. 2000, 127:33-52.
    Hong S He, David J M. Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology. 1999a, 80: 81-99.
    Hong S He, David J M, Mladenoff J B. An object-oriented forest landscape model and its representation of tree species. Ecol Model. 1999b, 119: 1-19.
    
    
    Huang X and Lyons T J. Estimation of surface energy balance from radiant surface and NOAA AVHRR sensor reflectance over agricultural and native vegetation. J Appl Mete. 1993, 32:1441-1449
    IBSNAT, Technical Report 5: Documentation for IBSNAT Crop Model Input and OutFiles, Version 1. 1: for DSSAT2. 1. IBSNAT Project. 1990. 2.
    Jackson L J. A simulation model of PCB dynamics in the Lake Ontario pelagic food web. Ecol Model 1996, 93:43-56.
    Jacoby C, Azmy S, Leonard A B P, Haibin W. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol Model. 1999,123: 207--223.
    Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductanc found in canopies in the field. Phil Trans R Soc Lond, Ser B. 1976, 273:593-610.
    Jensen M E, Burman R D and Allen R G. Evaporation and Irrigation Water Requirement, ASCE Manual No. 70. American Society of Civil Engineers, New York. 1990. pp. 332
    Jiang H, Michael J A, Yanli Z, Changhui P, Paul M W. Modelling the spatial pattern of net primary productivity in Chinese forests. Ecol Model. 1999, 122: 275-288.
    Jingsheng L, Muetzelfeldt R I, Grace J. Hierarchical approach to forest ecosystem simulation. Ecol Model 1996, 86: 37-50.
    John D A, Federer C A. A generalized lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperature and boreal forest ecosystems. Oecologia. 1992,92:463-474.
    Johst K, Brandl R. The effect of dispersal on local population dynamics. Ecol Model. 1997,104:87-101.
    Joon K, Verman S B. Modeling canopy photosynthesis: Scaling up from a leaf to canopy in a temperate grassland ecosystem. Agric For Meteorol. 1991, 57: 187-208.
    
    
    Jury W A, Biggar J W. Field scale water and solute transport through unsaturated soil. in: Shaubberg, Shalhevet J. (Eds). Soil salinity under irrigation: processes and management. Berlin: Springeer-verlag. 1984,
    Kaddah M. T, Rhoades J D. Salt and water balance in imperial valley, California. Soil SciSoc Amer J. 1976, 41:93-100
    Kerstin W, Florian J, David W. Analysis of the population dynamics of Acacia trees in the Negev desert, Israel with a spatially-explicit computer simulation model. Ecolo Model. 1999,117: 203-224.
    Kimmins J P, Mailly D, Seely B. Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Model. 1999, 122: 195-224.
    Kirschbaum M U F, Cen W. A forest growth model with linked carbon, energy, nutrient and water cycles. Ecol Model. 1999,118: 17-59.
    Knapp R. Halophile pflanzengesellschaften... ...von salzstellen in d. wetterau. Oberhess, Naturwiss. Zeitschr, 43: 61-80
    Krambeck H J. Application and abuse of statistical methods in mathematical modelling in limnology. Ecol Model. 1995, 78: 7-15.
    Lane L J, Romney E M, Hakonsom T E. Water balance calculations and net productiion of perennial vegetation in the Northern Mojave Desert. J Range Management. 1984,37(1) .
    Lapidus L, Amundson N R. Mathematics of adsorption in beds. J. Phys. Chem. 1952, 56: 984-988
    Lindeman R L. The trophic-dynamic aspect of ecology. Ecology. 1942, 23:399-418.
    Marin S L, Grant W E, Dronen N O. Simulation of population dynamics of the parasite Haematoloechus coloradensis in its three host species: effects of environmental temperature and precipitation. Ecol Model. 1998, 105: 185-211.
    Matthews R B, Kropff M J, Bachelet D. Modelling the Impact of Climate Change on Rise Production in Asia. Wallingford: Commonwealth Agricultural Bureaux (CAB) International. 1995.
    
    
    Mattikalli N M, Engman E T, Ahuja L R, Jackson T J. Microware remote sensing of soil moisture for estimation of profile soil property. Int. J. Remote Sensing. 1998,19: 1751-1767.
    McCulloch J S G. Tables for the rapid computation of the Penman estimate of evaporation. East Afrian Agri Fore J. 1965, 1: 286-295
    McKinion J M, Baker D M, Hesketh J D, Jones J W. SIMCOT Ⅱ: A Simulation of Cotton Growth and Yield. U.S. Dept Agri Res Serv Rep. ARS-S-52. 1975.
    Melillo J M, McGuire A D, Kicldighter D W, Moore Ⅲ C J, Vorosmarty C J, Schloss A L. Global climate change and terrestrial net primary production. Nature. 1993,363:234-240.
    Michael B C, Dexing C. Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. Ecol Appl 1997, 7: 802-827.
    Monteith J L. Evaporation and environment. Symposium Society Experiment Biology XIX. London: Cambridge University Press. 1965. 205-234
    Monteith J L. Fifty years of potential evaporation. Proc. Conference. Trinity College, Dublin. 1994, 7-9 Sep. 29-45
    Murdie G. Population Models, Mathematical Modelling. London: Butterworths & Co. 1976.
    Nedialko T N, William J M, Anna W S. Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosyntheses model for leaves of C_3 plants. Ecol Model. 1995, 80: 205-235.
    Neuman S P, Feddes R A, Bresler E. Finite element analysis of a two-dimensional flow in soils considering water uptake by roots: 1. Theory, Ⅱ. Field applicatin. Soil Sci. Soc. Am. Proc. 1975, 39(2) : 224-252
    Nielsen D R, Biggar W. Miscible displacement: Ⅱ. Theoretical consideration. Soil Soc. of Am. Proc. 1962, 26:216-221
    Nielsen R R, Biggar J W, Erhk T. Spatial variability of field measured soil water properties. Hilgardia. 1973, 42: 215-259.
    O'Neill R V, DeAngelis D L, Waide J B, Allen T F H. A Hierarchical Concept of Ecosystems. N.J. U.S.A.: Princeton University Press. Princeton, 1986
    
    
    Olandini S, Mancini M, Paniconi C. Local contributions to infiltration excess runoff for a conceptual catchment scale model. Water Resour. Res. 1996, 32: 2003-2012.
    Parton W J. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles. 1993, 7:785-809.
    Peggy F, Peter W G. A regional model to predict coral population dynamics in response to el nino-southern oscillation. Ecol Appl. 2000, 10: 842-854.
    Penman H L. Estimating evaporation. Tran Ame Geo Union. 1956, 37: 43-50
    Penman H L. Evaporation over the British Isles. Quar J Royal Mete Soc. 1950, 76: 372-383
    Penman H L. Natural evaporation from open water, bare soil, and grass proceedings. Royal Soc Series A. 1948,193: 454-465
    Pennig de Vries F W T. Respiration and growth. In: Rees A R, Cockshull K E, Hand D W, Hurd R G. Crop Processes in Controlled Environments. London Academic Press. 1972. 327-356.
    Penning de Vries F W T, van Laar H H. Eds. Simulation of Plant Growth and Crop Production. Simulation Monographs. Wageninger: PUDOC. 1982. 256.
    Peter W, van H, Paul P S, Aat B. A GIS-based plant prediction model for wetland ecosystems. Landscape Ecol. 1999, 14: 253-265.
    Qingcun Z, Xiaodong Z. An analytical dynamic model of grass field ecosystem with two variables. Ecol Model 1996, 85: 187-196.
    Raich J W, Rastetter E B, Melillo J M, Kicklighter D W, Steudler P A, Peterson B J, Grace A L, Moore B Ⅲ, Vorosmarty C J. Potential Net Primary Productivity in South America: Application of a Global Model. Ecol Appl. 1991, 1:399-429.
    Raupach M R, Finnigan J J. Single-layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless: Disscuss, Aust J Plant Physi. 1988, 15: 705-716.
    Reddy S J. A simple method of estimating the soil water balance. Agricultural Meteorology. 1983,28: 1-17
    
    
    
    
    
    Saraf A K, Choudhury P R. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sensing. 1998, 19: 1825-1843.
    Scurlock J M O, Olson R J, Cramer W, Parton W J, Prince S D. Terrestrial NPP: Toward a consistent data set for global model evaluation. Ecol Appl. 1999, 9: 913-919.
    Selhorst T, Muller T. An evaluation of the efficiency of rabies control strategies in fox (Vulpes vulpes) populations using a computer simulation program. Ecol Model. 1998,124:221-232.
    Setlik I. Prediction and Measurement of Photosynthetic Productivity. Wageningen: PUDOC. 1970.
    Shang Z, Gao Q, Yang D. Digital ecological model and case study on China water condition. Ecol Model. 2001a. 139/2-3: 235-252.
    Shang Z, Gao Q. Climate Information System of China. Climate Research. 2001 b, 18(1) : xxx-xxx. (In press)
    Shang Z, Gao Q, Dong M. Impacts of grazing on the alkalinized-salinized meadow steppe ecosystem in the Songnen Plain, China--A simulation study. Plant Soil. Accepted.
    Shang Zongbo, Gao Qiong, Li Jiandong. Simulation study on the alkalinized-salinized grass ecosystem in Songnen plain. Ada Botanica Sinca. 2001c. 43(6) : xxx-xxx. (In press)
    Shugart H H, West D C, Development of an Appalachian deciduous forest succession model and its application to assessment of impact of the chestnut blight. J Envir Manage. 1977,5:161-179
    Soer G J R. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Reomote Sensing of Environment, New York, Elserier. 1980.
    Stroosnijder L. Modelling the effect of grazing on infiltration, runoff and primary production in the Sahel. Ecol Model.1996, 92: 79-88.
    Stroosnijder, Infiltrate en herverdeling van water in ground. Verslagen
    
    Ladbouwkundige Onderzoekingen (Agricultural Research Reports) 847, Wageningen: PUDOC. 1976. 213
    Stroosnijder. Infiltrate en herverdeling van water in ground. Verslagen Ladbouwkundige Onderzoekingen (Agricultural Research Reports) 847, Wageningen: PUDOC. 1976. pp213
    Szabolc I. Review of researches on salt-affected soils. Paris: UNESCO. 1979.
    Thomley J H M. Mathematical models in plant physiology. London, New York, San Francisco: Academic Press, 1976. 295
    Urban D L, O' Neill R V, Shugart H H. Landscape ecology: a heterogeneous perspective can help scientists understand spatial patterns. Bioscience. 1987, 37: 119-127.
    van Keulen H. Simulation of water use and herbage growth in arid regions. Simulation monographs. Wageninger: PUDOC. 1975. 176.
    van Keulen, H, Wolf J. Modelling of agricultural production: weather, soil and crops. Wageningen: PUDOC. 1986, pp479.
    Vertessy R A, Hatton T J, O' Slaughnessy P J. Predicting water yield from a moutain ash forest catchment using a terrain analysis based catchment model. J Hydrol. 1993, 50: 665-700.
    Wang R, Ripley E. A. Effects of grazing on a Leymus chinensis grassland on the Songnen plain on north-eastern China. J Arid Envir. 1997. 36: 307-318.
    Whittaker R H, (王伯荪译.). 植物群落排序. 北京:科学出版社.1978, 50~56
    Williamson R J, Turner A K, The role of soil moisture in catchement hydrology. Canberra, Australian Government Publishing Service. 1980.
    Woods P C. Management of hydrologic systems for water quality control. Water Resources Center Contribution. No. 121. University of Califbrnia. 1967. 121pp
    CNPOTEHKO. 裘碧梧译.农业生态系统的水——热状况和产量的数学模拟.气象出版社.1985.182,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700