会同杉木人工林连栽生物量动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木是我国南方亚热带地区特有的优良速生乡土用材树种,已有近千年的栽培历史,杉木林是我国南方集体林区主要经营的森林类型之一。目前,我国南方人工林生态系统的脆弱性、不稳定性和失衡性、地力衰退,生产力下降等问题十分突出。长期定位监测杉木林的生物产量,对于维持杉木林持续的林地生产力,实现杉木林的可持续经营具有重要的理论和实践意义。
     本文利用湖南会同杉木林生态系统国家野外科学观测研究站20年长期定位观测数据,对两个世代杉木人工林速生阶段(7-11年生)和杆材阶段(14~18年生)和近成熟阶段(20a生)的生物量和生产力进行了比较研究,探讨杉木林生物量和生产力的连栽代马尔效应。主要研究结果如下:
     1.杉木不同器官生物量分配结构特征。两代不同林龄杉木各器官生物量分配都有明显差异,立地条件对不同林龄第一代杉木各器官生物量分配影响较大,对第二代杉木影响不大。随着林龄的增大,第一代杉木树干在7a-18a间其生物量比例呈上升趋势,从20 a生开始下降。树叶的在7a-20a阶段呈下降趋势。树根的在7a~18a阶段总体上呈下降趋势,20 a时开始上升。树枝的在7a-20a阶段呈下降趋势,但下降幅度不大,除7a生杉木外,其它林龄段生物量所占比例在7%左右。树皮的生物量比例在速生期维持在8%左右,在干材阶段维持为12%。第二代杉木树干生物量在7a-20a生长比率呈上升趋势,但上升速率逐渐降低;树叶在7a-20a阶段呈下降趋势,但下降速率逐渐降低;杉木树根生物量在7a-14a间递增,在14a-20a间生物量递减;树皮在7a~18a上升幅度逐渐减少,到20a时开始下降。树枝在7a-20a阶段的变化没有规律性。两代杉木单株生物量在近成熟阶段差异缩小
     2.杉木人工林地被物与凋落物生物量。1-5a杉木林内,草本植物生物量为0.75~6.929 t hm-2;灌木层总生物量为1.048~7.773 t hm-2,各组分生物量的分配规律为根>茎>叶。凋落物量(1987年12月造林)13年间(1995-2007),年平均为1109.86(±117.27)kg·hm-2。凋落物中针叶、小枝、落果和碎屑所占比例不同,针叶占54.39%~75.06%,小枝占17.55%~31.52%,落果占的3.15%-13.5%,平均碎屑占2.19%。凋落物量具有明显的凋落节律,并表现为不规则型,凋落峰值有3个,分别出现在2月(90.42 kg·hm-2)、6月(111.42 kg·hm-2)、8月(108.84 kg·hm-2)。凋落物随林龄呈显著的二次曲线关系:y=-10.06x2+361.1x-1747,R2=0.920,P<0.001。凋落物中小枝、针叶、落果与林龄呈显著相关,而碎屑与林龄相关性不显著。
     3.杉木人工林生态系统生物量比较。随着林龄的增大,连栽杉木林间林分生物量差异逐渐减小。7a生第二代杉木人工林生物量37.90 t hm-2,较第一代(45.38 t hm-2)下降16.48%;11a生为第二代为90.31 t hm-2,较第一代(108.73 t hm-2)下降16.94%;14a生第二代为97.18thm-2,较第一代(104.45 thm-2)下降6.96%;18a生和20a生时,两代连栽杉木人工林系统生物量差异不大,18a生二者在系统生物量总量上的差异仅为1.74 t hm-2,差异值不足其生物量的1.20%,20 a生二者生物量之差占系统生物量的不足5%左右。从杉木不同生长级(Ⅰ级到V级)看出,第一代林分各生长级的生物量均大于第二代林分。
     4.杉木人工林生态系统生物生产力比较。与第一代杉木人工林年均生产力相比,7a生第二代林年均生产力下降16.38%,11a生年均生产力下降17.29%,14a生年均生产力下降6.96%,18a生年均生产力上升12.95%,20a生年均生产力降幅为8.93%。不同林龄下林分生产力均是以树干生产力为最大,是林分生产力的主要贡献者。
     5.杉木人工林不同立地类型对生物生产力的影响。7a生杉木林的生物量大小排序为山麓>山坡下部>山坡中部>山洼中部>山洼中上部;11a生为山谷型(33.6 kg/株)>山麓型(30.3 kg/株)>山坡型(16.4 kg/株)。11a生杉木林的生产力大小排序为山谷型(9.89 thm-2 a-1)>山麓型2 (8.35 thm-2 a-1)>山麓型1 (8.33 thm-2 a1)>山坡型(6.43 thm-2 a-1)。山谷型和山麓型林分生产力分别是山坡型的1.54倍1.30倍。
     6.不同密度和经营措施对杉木人工林生物生产力的影响。林分密度从1501-2000株hm-2到2001~2500株hm-2,从2501~3000株hm-2到3001~3500株hm-2生物量随林分密度增大而增加。当密度从2001~2500株hm-2到2501-3000株hm-2时,林分生物量有所下降。同一立地类型4个不同密度的11a生杉木林单株生物量是不同的,其中以3690株hm-2密度的林分单株生物量最高。11a生林分在密度为2750株hm-2、3120株hm-2、3550株hm-2时,树干生物量所占比例依次为61.08%、59.05%、55.10%,是依次下降的。其余14a生、16a生时树干生物量所占比例也是随着密度增大而依次下降的,甚至下降幅度有所增加。在林分密度相近的条件下,山谷型林分生物量大于山麓型的,山坡型的林分生物量最小
     在50%和30%两种间伐强度处理下树干生物量所占比例较为接近,分别为55.37%、54.82%、55.38%;在16a生时,在3种间伐强度处理下树干生物量所占比例分别为62.21%、64.24%、65.03%。11a生时50%和30%间伐强度下单株生物量分别是对照处理的130.11%和89.25%;而16a生时间伐处理分别是对照处理的167.48%和120.28%。
     山麓立地条件下,11a生时40%、30%和20%间伐强度下单株生物量分别是对照处理下生物量的122.27%、125.39%和119.53%;而16a生时间伐处理较对照处理下生物量分别是145.39%、153.40%和142.23%。
     在山麓型立地条件下,11a生时相对生物量排序为125.4(30%间伐)>122.3%(40%间伐)>119.5%(20%间伐)>100.0%(对照),而16a生的排序为153.4%(30%间伐)>145.4%(40%间伐)>142.2%(20%间伐)>100.0%(对照)。
     不同间伐强度杉木林生态系统生物量的影响。在三种立地条件下,林分的生物量均是以树干生物量最大。在山坡型立地条件下,11a生杉木林树干生物量占林分生物量的比例在54.99%~55.22%之间,树根生物量占林分生物量比例在22.51%-23.43%之间。表明间伐强度对树干生物量与树根生物所占林分总生物量比例几乎没有影响。但在山谷型立地条件下,11a生时树干生物量与树根生物量占林分生物量的比例分别是59.23%~59.31%与23.82%~23.97%内;在山麓型条件下,二者的比例变化在60.08%~64.54%和19.89%~21.59%范围内变化。
     在林分速生阶段(11a生时),较高强度的间伐(40%和50%)导致林分乔木层生物量有一定的减少,减少的程度因立地条件不同而异。16a生时,山坡型立地50%与30%间伐后二者林分生物量较为接近,山谷型立地40%与20%间伐二者林分生物量较接近,且均较对照低。在山麓型立地条件下16a生林分采取不同间伐强度措施后林分生物量变化情况较为多样化。在40%间伐强度下,林分生物量较对照区林分生物量稍低;在30%间伐强度下,林分生物量为对照区的112.3%;在20%间伐强度下,林分生物量为对照区的116.8%;30%和20%间伐处理下林分生物量是相当的,说明这两种处理对林分生物量的影响效果是近似的。
Chinese fir (Cunninghamia lanceolata (lamb.) hook) has been cultured for more than 1000 years in China, which is the special and native and fast growing tree of southern subtropical region. In the past three decades, more than nine million hectares of Chinese fir plantations have been established in Southern China. However, major concerns have been raised about the sustainability of the plantations in terms of site productivity and soil nutrients. Since 1970s, a long term research project has been conducting to monitor the changes in structure, function and productivity of Chinese fir plantations at the Huitong Ecosystem Research Station, Central South University of Forestry and Technology, Hunan Province, China. Long term research of biomass was a key role in maintaining stand productivity and sustainable management of Chinese fir plantations.
     Here about 20 years of continuous data from the Huitiong research station was employed to compare standing biomass and net primary productivity (NPP) of the two successive rotations on the same sites, and to discuss the malter effect in biomass and productivity. The standing biomass and NPP were measured and compared from four different-aged stands (7,11,14 and 18 year-old) in two successive rotations on the same sites. The main results were as the follows:
     a) The characteristics of biomass distribution in organs. There was significant difference between the two rotations in biomass distribution in organs varing with stand age and rotations. Distribution of biomass in organs of the first rotation was main influence by site conditions, whileas it was not the same to the second rotation. The percentage of biomass in stem to the whole individual tree of the first rotation (abbreviation as R1) was on the increase with age from 7a to 18a, and on the decrease from 20 years old. Whileas the percentage of biomass in leaves to the whole individual tree was slowly decreased with age from 7a to 20a, maintaining the percentage of about 7 percent except the age of 7 year old. The percentage of biomass in bark to the whole individual tree kept at 8 percent during the fast growing stage and 12 percent during stem growing stage. In the second rotation (abbreviation as R2), the percentage of stem biomass to the total tree was on the increase during the period of 7a to 20a, with a slow decreasing with age. The percentage of leaf biomass to the total tree downtrended from 7a to 20a with a decreasing desendance. Biomass in root increased with age of 7a to 14a, and decreased with age of 14a to 20a. The extent in increase of tree bark biomass downtrended from 7a to 18 a, and began to decrease from 20a. Change in biomass of branches showed irregularity during the period from 7a to 20a. The difference in biomass between the two rotations reduced from the near to maturity stage.
     b) Biomass in the herbs was about amount of 0.75 to 6.929t hm-2, biomass in shrubs of 1.048 to 7.773 t hm-2 during the period of 1a to 5a, with regular distribution ranking as root > stem> leaves. The amount of litterfall was annual average of 1109.86 (±117.27) kg·hm-2 during the period from 1995 to 2007. The percentage of biomass in litterfall varied with organs, for the needle leaves of 54.39%~75.06%, for branchlets of 17.55%~31.52%, for fruit drops of 3.15%~13.5%, for scraps of 2.19%. Seasonal change in litterfall was observed irregularly with three peaks, the first occurred in February of 90.42 kg·hm-2, the second in June of 111.42 kg·hm-2, and the third in August of 108.84 kg·hm-2. Litterfall production (y) was significantly correlated with stand age (x), which can be quantitatively expressed by the regression equation:y=-10.06x2+361.1x-1747, R2=0.920, p< 0.001. There was also a conic relationship (p< 0.05) between the production of branches, leaves and fruits litterfall and forest age, while the relationships of scraps and forest age were not significant.
     c) The difference in stand biomass between the two rotations decreased with stand age. The stand biomass in the second rotation were reduced by 16.48%,16.94%,6.46%,1.19%, and 1.20% in 7,11,14,18 and 20 year-old stands, respectively when compared to the first rotation. The stand biomass was measured for R1 of 45.38 t·hm-2,108.73 t·hm-2,104.45 t·hm-2,146.70 t·hm-2 and 209.50 t·hm-2, for R2 of 37.90 t·hm-2,90.31 t·hm-2,97.18 t·hm-2, 144.96 t·hm-2, and 199.95 t·hm-2 in 7,11,14,18 and 20 year-old stands, respectively. There was only small difference in stand biomass between 18 year-old and 20 year-old stand, with amount of 1.74 t hm-2 and 9.55 t hm-2 for 18a and 20a, respectively. The percentage of difference to total stand biomass was 1.20% and less than 5.0% for 18a and 20a, respectively. The biomass in the second rotation varied with growth grade from grade I to gradeⅤ, and was less than biomass in the first rotation according to the same growth grade.
     d) The stand productivity in the second rotation were reduced by 16.38%,17.29%, 6.96%, and 8.93% in 7,11,14, and 20 year-old stands, respectively when compared to the first rotation, with an exception of increase by 12.95% in 18 year-old stand. In all the stand age-classes, the stand productivity was main contributed by stem productivity, which indicats that the stem productivity was a key component of the whole stand productivity.
     e) The biomass was ranked as mountain foot> side-hill cut> middle hillside> middle bottomland> upper part of hillside for 7 year-old plantations, whileas vally type (33.6 kg per tree)> mountain foot (30.3 kg per tree)> hillside (16.4 kg per tree) for 11 year-old plantations. The productivity of 11 year-old plantations was sorted by vally type (9.89 t hm-2a-1)> mountain foot 2(8.35 t hm-2a-1)>mountain foot 1 (8.33 t hm-2a-1)> hillside (6.43 t hm-2a-1). The stand productivity at the valley and the pediment were 1.54 and 1.30 times higher than those at the hillside.
     f) Biological productivity of Chinese fir plantation was affected by different densities and management measures. Biomass increased with stand densities increasing which were from 1501~2000 individual hm-2 to 2001~2500 individual hm-2, and from 2501~3000 individual hm-2 to 3001~3500 individual hm-2. Stand biomass were decreased when the densities were from 2001~2500 individual hm-2 to 2501~3000 individual hm-2. Individual biomass of 11 a stands with 4 different densities was different in the same site type, in which individual tree biomass was the highest in the stand densities 3690 trees hm-2. The proportion of stem biomass were 61.08%,59.05%,55.10%, respectively, when the densities were 2750 individual hm-2,3120 individual hm-2,3550 individual hm-2 in 11a stands. And the proportion of stem biomass of 14a and 16a stands were decreased with decreasing densities. In similar stand densities, stand biomass in valley stand was higher than those in the pediments, stand biomass in slope type stand was lowest.
     The proportion of stem biomass to individual tree at 50% and 30% thinning treatments were close to the contrast, with values of 55.37%,54.82%,55.38%, respectively. The proportion of stem biomass in 16a stands were 62.21%,64.24%,65.03%, respectively, under 3 thinning treatments. Stem biomass of 11a stands under 50% and 30% thinning treatments were higher 130.11% and 89.25% to the control, and Stem biomass of 11a stands under 50% and 30% thinning treatments were higher 167.48% and 120.28% to the control.
     In the pediment site condition, individual biomass of 11a stands under 40%,30% and 20% thinning treatments were higher 122.27%、125.39% and 119.53% to the control, and individual biomass of 16a stands under 40%,30% and 20% thinning treatments were higher 145.39%、153.40% and142.23% to the control, respectively.
     In the pediment site condition, relative biomasses of 11a stands were increased as follows, 125.4 (30% thinning treatment)> 122.3%(40% thinning treatment)> 119.5%(20% thinning treatment)> 100.0%(the control). relative biomasses of 11a stands were increased as follows,153.4%(30% thinning treatment)> 145.4%(40% thinning treatment)>142.2%(20% thinning treatment)>100.0%(the control)
     The biomass of Chinese fir ecosystem was affected by different thinning treatments. In three site conditions, the stem biomass of all the stands were highest. In the mountain slope conditions, stem biomasses of 11a fir stands accounted for 54.99%-55.22% of the stand biomasses, root biomasses of 11a fir stands accounted for 22.51%-23.43% of the stand biomasses, this suggested that the proportion of stem and root biomasses of stand biomasses were no affected by different thinning treatments. However, in the valley conditions, stem and root biomasses of 11a fir stands accounted for 54.99%-55.22% and 23.82%-23.97% of the stand biomasses, respectively, and in the pediment conditions, stem and root biomasses of 11a fir stands accounted for 60.08%-64.54% and 19.89%-21.59% of the stand biomasses, respectively.
     In the fast-growth stages (11a stand), higher thinning treatments, such as 40% and 50%, caused to the decreasing of the tree layer biomass of the Chinese fir. In the mountain slope conditions, stand biomass of 16a stand were closed under 50% and 30% thinning treatments. In the valley conditions, stand biomass of 16a stand were closed under 40% and 20% thinning treatments. In the pediment conditions, stand biomass of 16a stands were diversity under different thinning treatments, the stand biomasses was lower than the control under 40% thinning treatments, the stand biomasses was 1.123 times and 1.168 times higher to the control, under 30% and 20% thinning treatments, respectively, which obviously indicated that the stand biomass were affected similarly by the 30% and 20% thinning treatments.
引文
[1]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981(2):1-12.
    [2]刘世荣,温远光等著.杉木生产力生态学[M].北京:气象出版社.2005,1-5.
    [3]IPCC.2003. Good practice guidance for land use, land-use change and forestry. [EB/OL]. [2004-05-01]. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html.
    [4]IPCC.2006.2006. IPCC guidelines for national greenhouse gas inventory. [EB/OL]. [2006-12-15]. http://www.ipcc-ggip.iges.or.jp/public/2006gl/index.html.
    [5]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263(14):185-191.
    [6]Shilong Piao, Jingyun Fang, Philippe Ciais, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1015.
    [7]Dixon, R K, Brown S, Delcourt, R A. Carbon pools and flux of global forest ecosystems [J]. Science,1994,263:185-190.
    [8]Houghton R A. Balancing the global carbon budget[J]. Annu. Rev. Earth Planet. Sci.,2007,35: 313-347.
    [9]Helmut Lieth. Primary Production:Terrestrial Ecosystems[J]. Human Ecology,1973,1(4): 303-332.
    [10]Schimel D S, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature,2001,414:169-172.
    [11]Rodgers W. A. Patterns of loss of forestry biodiversity-a global perspective[J].
    [12]Baskin Y. Ecosystem function of biodiversity [J]. Bioscience,1994,44(10):657-660.
    [13]FAO. The state of food and agriculture:Forest policy dilemmas. FAO, Rome.1994.
    [14]FAO. State of the world's forests. FAO, Rome.1995.
    [15]田大伦著.杉木林生态系统定位研究方法[M].北京:科学出版社.2004.
    [16]田大伦,项文化,闫文德,康文星.速生阶段杉木人工林产量结构及生产力的代际效应[J].林业科学,2002,38(4):14-18.
    [17]俞新妥.中国杉木研究[J].福建林学院学报,1988,8(3):203-220.
    [18]范广阔,邹双全,林开敏,等.不同更新方式对杉木林土壤肥力的影响[J].福建林学院学报,2009,29(3):210-214.
    [19]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    [20]潘维俦.杉木人工林生态系统中的生物产量及其生产力研究[J].中南林科技,1978,(2):2-14.
    [21]朱守谦,杨世逸.杉木生产结构及生物量的初步研究[C].贵州农学院农业科技资料,林业研究报告专辑(一).1978,(5):1-9.
    [22]徐凤翔.杉木地上部分产量结构变化规律的研究[J].南林科技,1978(1):8-15.
    [23]冯宗炜.我国亚热带湖南桃源杉木人工林生态系统生物量的研究(摘要).中国科学院林业土壤研究所,1978.
    [24]温远光.杉木人工林生物量和生产量的研究综述[J].广西农学院林学分院科技资料,1987(1):14-24.
    [25]惠刚盈.杉木人工林生态系统中的生物量及其分配规律[J].林业科技通讯,1988(7):18-20.
    [26]田大伦.杉木人工林生态系统产量结构特征[J].森林生态系统定位研究,北京:中国林业出版社,1993.
    [27]张家武.杉木人工林生物量测定方法的比较[C].杉木人工林生态学研究论文集,中国科学院林业土壤研究所,1980:209-217.
    [28]张家武,等.估测杉木林现存量的数学比较[J].东北林学院学报,1984,(4):13-19.
    [29]李炳铁.杉木人工林生物量调查方法的初步探讨[J].林业资源管理,1988,(6):5,7-60.
    [30]钱能志.杉木枝叶生物量估测方法研究[J].林业科技通讯,1991(3):12-15.
    [31]谌小勇.杉木单株生物量测定中转换参数的研究[J].森林生态系统定位研究,北京:中国林业出版社,1993.
    [32]温远光等.用蓄积量估测森林生物量的初步尝试[J].林业科技通讯,1989,(7):7-10.
    [33]彭元英.杉木材积与生物量之间关系的探讨[J].森林生态系统定位研究,北京:中国林业出版社,1993.
    [34][34]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [35]潘维俦.森林生物量调查[C].70-80年代初国外林业技术水平文集(营林部分),1993:128-135.
    [36]Brown S., Lugo A E. Biomass of tropical forests:A new estimate based on forest volumes [J]. Science,1984,223:1290-1293.
    [37]杨文姬,王秀茹.国内立地质量评价研究浅析[J].水土保持研究,2004,11(3):289-292.
    [38]南方十四省(区)杉木栽培科研协作组.杉木产区立地类型划分的研究[J].林业科学,1981,(1):37-45.
    [39]何昭珩,黄金龙,刘有美,等.广东杉木立地指数与环境及土壤因子的关系[J].热带林业科技,1983,(3):1-5.
    [40]俞新妥等.福建杉木人工林生态系生物产量的初步研究[C].福建林学院:林业科技资料,1979:46-68.
    [41]古炎坤等.广东西江地区杉木人工林地上部分生物量和生产力的研究[J].华南农业大学学报,1987,8(1):41-50.
    [42]许春霞.北界杉木人工林生物量及生产力的调查[C].河南农学院:论文选编.1982:79-95.
    [43]潘维俦等.杉木人工林养分循环的研究(一):不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981,1(1):1-21.
    [44]陈修官.20年生杉木人工林干物质积累及相对生长模型研究[J].防护林科技,2007,4(79): 28-29,40.
    [45]佟金权.不同地位指数不同密度杉木人工林生产力的比较[J].福建农林大学学报(自然科学版),2008,37(4):369-373.
    [46]盛炜彤,惠刚盈,罗云伍.大岗山杉木人工林主伐年龄的研究[J].林业科学研究,1991,4(2):113-121.
    [47]马祥庆,范少辉,刘爱琴,等.不同栽植代数杉木人工林土壤肥力的比较研究[J].林业科学研究,2000,13(6):577-582.
    [48]温远光,罗天祥.广西杉木林生产力与环境因素的多元分析[J].广西农业大学学报,1997,16(4):295-301.
    [49]叶培忠,陈岳武.杉木自然类型的研究[J].林业科学,1964,9(4):297-310.
    [50]广西林科所等.杉木地理种源和类型造林对比试验初报[J].广西林业科学,1977,(3):52-59.
    [51]盛炜彤,王岚,张洪英.杉木生长区气候区划的初步研究[J].林业科学,1981,(1):50-57.
    [52]李晓储.杉木种源间树高生长节律的变异及其分析[J].江苏林业科技,1982,(2):1-7.
    [53]冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊,1984,8(2):93-100.
    [54]俞新妥,林思祖,洪伟.杉木种源地理位置的数学模型[J].福建林学院学报,1985,5(2):1-6.
    [55]全国杉木种源试验协作组.杉木造林区种源选择[J].林业科学研究,1988,1(1):1-13.
    [56]温远光,梁乐荣,黎洁娟,等.广西不同生态地理区域杉木人工林的生物生产力[J].广西农学院学报,1988,7(2):55-66.
    [57]李晓储,吴玉斌,李阳春,等.杉木不同种源地上干材与生物量的地理变异[J].华东森林经理,1990,4(3):11-17.
    [58]李晓储,黄利斌,李志琪,等.苏南低山丘陵杉木优良种源选择的研究[J].江苏林业科技,1988,(1):6-14.
    [59]张运根.杉木不同优良品种早期生长对比试验[J].福建林业科技:2009,36(4):22-25.
    [60]彭元英.杉木人工林最佳林分产量结构的探讨[J].中南林学院学报,1989,9(增刊):149-153.
    [61]罗云裳.广东西江地区杉木人工林生物量与立地因子相关的研究[J].林业科学,1989,25(2):147-150.
    [62]孔秀荣,刘志刚.杉木人工林乔木层的生物量和生产力的研究[J].广西农学院学报,1983(2):29-40.
    [63]浙江省杉木科研协作组.第一次杉木种源试验幼林阶段初报[J].浙江林业科技,1983,(3):3-8.
    [64]黄惜河.西江地区杉木人工林生物量和营养元素含量及其分配的研究[J].中南林业调查规划,1988(1):13-21.
    [65]叶镜中,姜志林.苏南丘陵区杉木林地上部分生物量的研究[J].南京林产化工学院学报,1982(3):109-115.
    [66]温远光,梁乐荣,韦炳二,黎洁娟,熊长德.广西不同生态地理区域杉木人工林的生物生产力 [J].广西农学院学报,1988,7(2):55-66.
    [67]高智慧.不同栽培管理水平杉木人工林生物产量的初步研究[J].浙江林业科技,1986(2):25-30.
    [68]冯宗炜等.我国亚热带湖南桃源杉木人工林生态系统生物量的研究[C].杉木人工林生态学研究论文集.中国科学院林业土壤研究所,1980:173-188.
    [69]冯宗炜等.不同自然地带杉木林的生物生产力[C].植物生态学与地植物学丛刊,1984,8(2):93-100.
    [70]潘维俦等.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林科技,1979,(4):1-14.
    [71]李敦法,陈惠启.两个不同年龄杉木人工林生物产量的初步研究[J].黄冈林业科技,1980,(2):7-12.
    [72]叶镜中等.福建省洋口林场杉木林生物量的年变化动态[J].南京林学院学报,1984(4):1-9.
    [73]谢祚剑.宜昌地区杉木人工林生物量及其生产力的调查研究[J].湖北林勘,1985(2):1-18.
    [74]邓士坚等.杉木老龄人工林生物产量和营养元素含量的分布[J],生态学杂志,1988,7(1):13-18.
    [75]林生明等.杉木人工林生物量的研究[J].浙江林学院学报,1981,8(3):288-294.
    [76]荣薏,何斌,黄恒川,等.桂西北第二代杉木人工林的生物生产力[J].广西农业生物科学,2008,27(4):451-455.
    [77]方海波,田大伦.杉木人工林间伐后林下植被生物量的研究[J].中南林学院学报,1998,18(1):5-9.
    [78]方海波,田大伦.杉木人工林间伐后林下植被养分动态的研究[J].中南林学院学报,1998,18(2):1-5.
    [79]吕勇.马尾松林下植被及其生物量的研究[J].中南林业调查规划,1997,16(1):53-56.
    [80]刘磊,温远光,卢立华,等.不同林龄杉木人工林林下植物组成及其生物量变化[J].广‘西科学,2007,14(2):172-176.
    [81]田大伦,盘宏华,康文星,等.第二代杉木林养分动态研究[J].中南林学院学报,2001,21(3):6-12.
    [82]张家武,冯宗炜.桃源县丘陵地区杉木造林密度与生物量的关系[J].杉木人工林生态学研究论文集.中国科学院林业土壤研究所,1980:201-208.
    [83]惠刚盈等.杉木造林密度试验研究Ⅰ.密度对幼林生物量的影响[J].林业科学研究,1988,1(4):413-416.
    [84]应金花,何宗明,范少辉,等.一代杉木人工林(29年生)林分生物量结构[J].福建林学院学报,2001,21(4):339-342.
    [85]陈辉,何宗明,洪伟.衫木人工林密度效应模型研究[J].福建林学院学报,1992,12(3):277-282.
    [86]何宗明,林思祖,洪伟,等.不间伐栽培模式杉木人工林成熟规律研究[J].福建林学院学报, 1997,17(4):309-312.
    [87]陈清山,张海燕,吴庆敏,等.前茬林分密度对2代4年生杉木林生长的影响[J].福建林学院学报,2004,24(3):202-205.
    [88]连华森.经营因素对2代3年生杉木林生长的影响[J].东北林业大学学报,2005,33(2):4-5,17.
    [89]陈柳英.大径杉木人工复层林的经营模式[J].亚热带农业研究,2007,3(2):87-90.
    [90]涂育合.杉木不同经营密度的林下植被变化[J].西北林学院学报,2005,20(4):52-55.
    [91]盛炜彤.不同密度杉木人工林林下植被发育与演替的定位研究[J].林业科学研究,2001,14(5):463-471.
    [92]童书振,盛炜彤,张建国.杉木林分密度效应研究[J].林业科学研究,2002,15(1):66-75.
    [93]熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植被发育及生物量研究[J].林业科学研究,1995,8(4):408-412.
    [94]李肇锋.不同抚育措施对杉木人工林生长量的影响[J].林业科技开发,2007,21(5):55-57.
    [95]方晰,田大伦,项文化.不同经营方式对杉木林采伐迹地土壤C储量的影响[J].中南林学院学报,2004,24(1):1-5.
    [96]何宗明,陈清山,范少辉,等.立地管理措施对2代4年生杉木林生长的影响[J].林业科学,2003,39(4):
    [97]马祥庆,何智英,俞新妥.不同林地清理方式对杉木人工林地力的影响[J].林业科学,1995,31(6):485-490.
    [98]林思祖,何宗明,吴擢溪,等.炼山对五年生杉木幼林生长的效应[J].福建林学院学报,1989,9(3):315-320.
    [99]陈国瑞.炼山对二代5年生杉木幼林生长的影响[J].福建林业科技,2005,32(4):56-59.
    [100]黄云玲.炼山对不同立地5年生杉木幼林生长的影响[J].江西林业科技,2006,(1):7-10.
    [101]黄跃延.立地管理措施对7年生2代杉木林生长的影响[J].福建林业科技,2009,36(4):26-29.
    [102]马祥庆,刘爱琴,杨玉盛,等.炼山对杉木人工林生态系统影响的计量与评价[J].福建林学院学报,1996,16(3):247-250.
    [103]马祥庆,杨玉盛,林开敏,等.不同林地清理方式对杉木人工林生态系统的影响[J].生态学报,1997,17(2):
    [104]叶镜中,姜志林.苏南丘陵杉木人工林的生物量结构[J].生态学报,1983,3(1):7-13.
    [105]叶镜中,姜志林.苏南丘陵区杉木根系的生态特性[J].南京林产工业学院学报,1980(1):43-52.
    [106]温远光.不同立地杉木人工林根系的研究[J].广西农学院学报,1986(1):70-81.
    [107]龚垒.杉木幼树冠层结构与生物量关系的初步研究[J].生态学报,1984,4(3):248-257.
    [108]冯宗炜,陈楚莹.杉木幼林群落生产量的研究[J].生态学报,1983,3(2):119-129.
    [109]姚茂和等.杉木林林下植被及春生物量的研究[J].林业科学,1991,27(6):644-647.
    [110]闫文德,田大伦,何功秀.湖南会同第2代杉木人工林乔木层生物量的分布格局[J].林业资 源管理,2003,(2):5-7.
    [111]侯振宏,张小全,徐德应,于澎涛.杉木人工林生物量和生产力研究[J].中国农学通报,2009,25(5):97-103.
    [112]林生明,徐土根,周国模.杉木人工林生物量的研究[J].浙江林学院学报,1991,8(3):288-294.
    [113]温远光,梁宏温,蒋海平.广西杉木人工林生物量及分配规律的研究[J].广西农业大学学报,1995,14(1):55-64.
    [114]陈代喜,莫泽莲.人工林地力衰退研究进展[J].广西林业科学,2000,29(3):115-118.
    [115]张昌顺,李昆.人工林地力的衰退与维护研究综述[J].世界林业研究,2005,18(1):17-21.
    [116]Julian Evans. Long-term productivity of forest plantation-status in 1990. IUFRO,19th World Congress,1990,(1):165-180.
    [117]Webb L J, Tracey J G, Haydock K P. A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta. Journal of appled Ecology,1967, (4):13-25.
    [118]Keeves. A Some evidence of loss of productivity with successive rotations of Pinus radiata in southeast of Australia. Australian Forestry,1966, (30):51-63.
    [119]Boardman R. Productivity under successive rotations pine. Australian Forestry,1978,41 (3):177-179.
    [120]Chu Chou D S. Effects of root residues on growth on Pinus radiate seedlings and a mycorrhizal fungus[J]. Annals of Applied Biology,1978, (90):407-416.
    [121]McColl J. Symbotic nitrogen fixation by Daviesia mimoisedes under Eucalyptus. IUFRO, Symposium on Forest Site and Continuous Productivity, USDA, Foe. Rep. PNW-163,1983. 122-129.
    [122]冯宗炜,陈楚莹,李昌华,等.湖南会同杉木人工林生长发育与环境的相互关系[J].南京林产工业学院学报,1983,(3):19-23.
    [123]张其水,俞新妥.连栽杉木林生长状况的调查研究[J].福建林学院学报,1992,12(3):334-338.
    [124]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397.
    [125]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报,1992,12(3):264-275.
    [126]杨玉盛,叶德生,俞新妥,陈光水.不同栽杉代数林分生物量的研究[J].东北林业大学学报,1999,27(4):9-12.
    [127]马祥庆,刘爱琴,马壮,范少辉.不同代数杉木林养分积累和分布的比较研究[J].应用生态学报,2000,11(4):501-506.
    [128]杜国坚,洪利兴,陈福祥,等.杉木连栽地力衰退效应研究[J].林业科技开发,2001,15(4):11-13.
    [129]杨玉盛,张任好,何宗明,等.不同栽杉代数29年生林分生产力变化[J].福建林学院学报,1998,18(3):202-206.
    [130]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397.
    [131]张其水,俞新妥.杉木连栽林地土壤酶的分布特征研究[J].福建林学院学报,1990,10(4):377-381.
    [132]范少辉,马祥庆,陈绍栓,等.多代杉木人工林生长发育效应的研究[J].林业科学,2000,36(4):9-15.
    [133]杨玉盛,叶德生,俞新妥,等.不同栽杉代数林分生物量的研究[J].东北林业大学学报,1999,27(4):9-12.
    [134]杨玉盛,邱仁辉,何宗明,等.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究[J].林业科学,1998,34(6):2-11.
    [135]田大伦,盘宏华,康文星,等.第二代杉木人工林生物量的研究[J].中南林学院学报,1998,18(、3):11-16.
    [136]赵萌,方晰,田大伦.第2代杉木人工林地土壤微生物数量与土壤因子的关系[J].林业科学,2007,43(6):7-12.
    [137]秦国宣,方晰,田大伦,等.湖南会同第2代杉木人工林地土壤酶活性[J].中南林业科技大学学报,2008,28(2):1-7.
    [138]Deborah S. Page-Dumroese, Martin Jurgensen, Thomas Terry. Maintaining Soil Productivity during Forest or Biomass-to-Energy Thinning Harvests in the Western United States[J]. WEST. J. APPL. FOR.2010,25(1):5-11.
    [139]Grigal D F. Effects of extensive forest management on soil productivity. Forest Ecology and Management,2000,.138:167-185.
    [140]Brix H. Effects of thinning and nitrogen fertilization on growth of Douglas-fir:Relative contribution of foliage quantity and efficiency [J]. Can. J. For. Res.1983,13:167-175.
    [141]Binkley D, P Reid. Long-term responses of stem growth and leaf area to thinning and fertilization in a Douglas-fir plantation. Can. J. For. Res.1984,14:656-660.
    [142]Binkley D, H Burnham, H L Allen. Water quality impacts of forest fertilization with nitrogen and phosphorus[J]. For. Ecol. and Manag.1999,121:191-213.
    [143]Blackburn W H, R W Knight, J C Wood, et al. Stormflow and sediment loss from intensively managed forest watersheds in east Texas[J]. Water Res. Bull.1990,26:465-476.
    [144]Block R, K C J van Rees, D J Pennock.. Quantifying harvesting impacts using soil compaction and disturbance regimes at a landscape scale[J]. Soil Sci. Soc. Am. J.2002,66:1669-1676.
    [145]Bock M D, K C J van Rees. Forest harvesting impacts on soil properties and vegetation communities in the Northwest Territories. Can. J. For. Res.2002,32:713-724.
    [146]Bruce D, Wensel L C. Modelling forest growth:approaches, definitions and problems. In proceeding of IUFRO conference:Forest growth modelling and prediction,1987,(1):1-8.
    [147]Gower J C. A comparison of some methods of cluster analysis [J]. Biometrics,1967,23:626-637.
    [148]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究,1993,6(6):672-679.
    [149]姚晓红.林分生长数据的时序分析探讨[J].北京林业大学学报,1990,12(4):10-16.
    [150]吴承祯,洪伟.林木生长的多维时间序列分析[J].应用生态学报,1999,10(4):395-398.
    [151]Gregoire T G, Reynolds M R. Accuracy testing and estimation alternatives[J]. For. Sci.1988,34: 302-320.
    [152]王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63.
    [153]Battaglia M., Sands, P. J. "Application of sensitivity analysis to model of Eucalyptus globulus plantation productivity", Ecological Modeling.1998,111:237-259.
    [154]Almeida A C, P J Sands, J Bruce, et al. Use of a spatial process-based model to quantify forest plantation productivity and water use efficiency under climate change scenarios[C].18th World MACS/MODSIM Congress, Cairns, Australia 13-17 July 2009. http
    [155]罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129-134.
    [156]Almeida A C, Landsberg J J, Sands P J, et al. Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations [J]. Forest Ecology and Management,2004,193:167-177.
    [157]Constable J V H, Friend A L. Suitability of process-based tree growth models for addressing tree response to climate changes[J]. Environmental Pollution,2000,110:47-59.
    [158]Landsberg J J. Modelling forest ecosystems:state-of-the-art, challenges and future directions[J]. Canadian Journal of Forest Research.2003,33:385-397.
    [159]Mitchell T D, Carter T R, Jones P D, et al. A comprehensive set of climate scenarios for Europe and the globe:the observed record (1900-2000) and 16 scenarios (2000-2100). University of East Anglia.2004.
    [160]刘雯雯,项文化,田大伦,等.区域尺度杉木生物量通用相对生长方程整合分析[J].中南林业科技大学学报,2010,30(4):7-14.
    [161]杜纪山,唐守正.林分断面积生长模型研究评述[J].林业科学研究,1997,10(6):599-606.
    [162]Landsberg J J, R H Waring. "A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning"[J]. Forest Ecology and Management.1997,95:209-228.
    [163]L. J. Espray, P. J. Sands, C. W. Smith. "Understanding 3-PG using a sensitivity analysis"[J]. Forest Ecology and Management.2004,193:235-250.
    [164]Sands, P. J.,2004, "3 PGpjs vsn 2.4-a User-Friendly Interface to 3-PG, the Landsberg and Waring Model of Forest Productivity. Technical Report. No.140", CRC Sustainable Production Forestry, Hobart.
    [165]Sands P J, Landsberg J J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus[J]. Forest Ecology and Management.2002,163:273-292.
    [166]Almeida A C, Landsberg J J, Sands P J, et al. Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations [J]. Forest Ecology and Management,2004,193:167-177.
    [167]Shinozaki K, Yoda K, Hozumi K, et al. A Quantitative Analysis of Plant Form-the Pipe Model Theory. I Basic Analyses[J]. Japanese Journal of Ecology,1964a,14(3):97-105.
    [168]Waring R H, P E Schroeder, R Oren. Application of the pipe model theory to canopy leaf area[J]. Journal of Forestry Research,1982,12:556-560.
    [169]惠刚盈.杉木出材量预测方法[J].林业科技通讯,1989,228(5):32-33.
    [170]胥辉.两种生物量模型的比较[J].西南林学院学报,2003,23(2):36-39.
    [171]吕勇.杉木人工林生长率模型的研究[J].林业科学,2002,38(1):146-149.
    [172]Hafley, W.L. and Schreuder, H.T., Statistical distributions for fitting diameter and height data in even-aged stands[J]. Can. J. For. Res.1977,7:481-487.
    [173]吴载璋,吴锡麟.福建杉木人工林生长模型的研究[J].福建林业科技,2004,31(4):11-14.
    [174]何宗明,林思祖,俞新妥,等.杉木人工林自然生长模型的研究[J].福建林学院学报,1997,17(3):231-234.
    [175]马祥庆.杉木人工林连栽生产力下降研究进展[J].福建林学院学报,2001,21(4):380-384.
    [176]Joe Landsberg, Nicholas C. Coops. Modeling forest productivity across large areas and long periods[J]. Natural Resource Modeling,1999,12(4):383-410.
    [177]Landsberg J J, R H Waring, N C Coops. Performance of the forest producivity model 3-PG applied to a wide range of forest types[J]. Forest Ecology and Management,2003,172:199-214.
    [178]Jackson R B, H A Mooney, E.-D. Schulze. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proc. Natl. Acad. Sci. USA.1997,94:7362-7366.
    [179]Peterson David L, Rolfe Gary LL. Litter dynamics of a bottomland Harwood Forest in Southern Illionis.
    [180]林开敏,马祥庆,范少辉,等.杉木人工林林下植物的消长规律[J].福建林学院学报,2000,20(3):231-234.
    [181]F H鲍尔曼.森林生态系统的格局与过程[M].李景文等译.北京:科学出版社.1985,122-144.
    [182]马祥庆,刘爱琴,何智英,等.杉木免耕萌芽更新生态效果研究[J].中南林学院学报,2000,20(1):14-18.
    [183]官丽莉,周围逸,张德强,等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J].植物生态学报,2004,28:449-456.
    [184]张德强,叶万辉,余清发.鼎湖山演替系列中代表性森林凋落物研究[J].生态学报,2000.20:938-944.
    [185]王凤友.森林凋落物的研究概况[J].生态学进展.1989,15:82-89.
    [186]Sykes J M, Bunce R O H. Fluctuations in litterfall in a mixed deciduous woodland over a three year period 1966 to 1968[J]. Oikos,1970,21:326-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700