亚热带森林植被生物量与碳贮量特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类工业化发展,以CO2等温室气体过度排放引起的全球气候变化,已经威胁到人类的生存和发展。气候变化的预测要求准确地估计陆地生态系统碳吸收量及其变化。森林是陆地生态系统的主体,森林生态系统在全球碳循环中扮演着重要角色。森林生态系统的碳贮量不仅是反映森林生态系统基本特征的重要指标,也是评价森林生态系统生产潜力和森林结构与功能的理论基础。我国幅员辽阔,植被类型多样,森林生态系统复杂,区域性生物量和碳贮量估测是一个难点。根据区域的自然环境选择适合的研究方法,得出不同区域不同森林类型的碳贮量和碳密度,以估测全国或全球森林生态系统碳汇功能显得极为重要。寻找和森林资源二类清查兼容的生物量估测方法,利用森林资源二类调查资料进行区域性森林植被生物量和碳贮量估测,具有重要的实践意义。
     本文采用生态学原理、数理统计学方法和地理信息系统空间分析技术,利用广西八步区最新森林资源二类调查资料,应用相对比较成熟的生物量扩展因子法估算了研究区森林植被生物量和碳贮量,并对森林结构碳贮量特征和空间分布特征进行了分析,采用方差分析方法对森林植被碳贮量的生态环境影响进行了分析。研究过程中,针对森林资源二类调查技术规程中的土地类型结合生物量估算要求和生物量估测模型特点,进行了生物量估测森林植被类型划分,对所有植被类型生物量计算方法做了准确而全面的阐述,在森林资源调查小班数据库基础上建立了森林植被生物量和碳贮量小班数据库,并使用地理信息系统软件编制了森林植被生物量和碳密度分布图,采用矢量图形数据格网化方法编制了森林植被生物量和碳密度空间变化图,对1999年和2009年调查期间的碳贮量时空变化进行了研究。主要研究结果为:
     1、八步区森林植被生物量总量为11712180.2t,其中乔木层及灌木层合计为8283011.3t,林下层为1282786.8t,凋落物生物量为2146382.1t。
     2、全区森林植被总碳贮量为5942324.2t,其中林地总碳贮量为5849565.3t,而非林地的四旁树总的碳贮量为92758.9 t。林地中的乔木林的碳贮量所占比重最大,其碳贮量占八步区总碳贮量的88.07%。全区总平均碳密度为17.65323t/hm2,林地碳密度为22.05t/hm2,森林碳密度为23.69t/hm2。
     3、森林植被碳贮量的分布格局和特征:在地域上森林植被碳贮量随人口密度减少而增加;碳贮量与土地利用类型有关,各土地类型中,有林地碳贮量最高,其中乔木林碳贮量占比重最大;森林植被碳贮量与树种和龄组密切相关,阔叶树林面积最大,因而碳贮量最多,杉木林碳密度最高,为45.04 t/hm2。乔木林碳密度随林龄增加而增加。不同林种中,特用林林种碳密度最高,为33.87t/hm2。人工林高于天然林;生态公益林中,省级保护等级的碳密度最高;在垂直空间分布上,海拔<500m的森林碳贮量最多,海拔500-1500m森林碳密度最高,反映出不同树种具有不同生物学特性;水平分布上,碳密度30 t/hm2-100t/hm2的面积比例最高,分布在八步区东部的南乡、黄洞林场,大宁镇,西南部的铺门、北部的桂岭、里松和中部的步头等镇。碳密度>150t/hm2主要分布在交通不方便的中部滑水冲保护区、贺街镇东部和黄洞林场。
     4、利用碳密度分布图和空间变化图分析碳贮量分布规律为:八步区森林植被碳贮量在两次调查期间大幅度增加,主要原因为有林地面积增加,无林地、疏林地面积减少,平均碳密度增加,使碳贮量得以增加;乔木林中除了阔叶树外,杉木、马尾松和桉树的碳密度均增加;幼龄林、中龄林和近熟林的碳密度下降,成熟林和过熟林的碳密度上升。与1999年相比,2009年对应地理位置碳贮量下降的面积为104074.01 hm2,主要分布在黄洞林场和贺街,主要原因是成过熟林采伐更新造成;碳贮量增加0 t/hm2-5t/hm2的面积最大,分布在平原乡镇和人口密集区,源于四旁植树和城镇绿化;碳贮量增加75 t/hm2以上的面积只有122.19hm2,为退耕还林地。针对八步区森林碳贮量分析结果,提出了一列增加碳贮量的森林经营措施和对策。
     5、采用森林资源二类调查数据估算中小尺度区域森林生物量和碳贮量有以下优点:森林资源二类调查数据具有地域覆盖范围全,林分信息丰富,以及空间分布信息详细,可以建立基于小班的森林植被生物量和碳贮量数据库等优势,可以较全面和较准确地对中尺度的县域范围进行生物量估测;对森林资源二类调查土地类型进行合理的森林植被类型划分,增强了生物量和碳密度估测与森林资源二类调查的兼容性,对不兼容部分提出合理的处理方案,提高了森林植被生物量和碳贮量的估算精度;利用地理信息系统进行矢量数据格网化,便于进行对应地理位置森林植被的碳贮量空间分布的时相变化分析。
     6、采用方差分析方法对乔木林生物量和碳贮量生态环境定性因子分析,发现地貌类型对杉木、马尾松、桉树和软阔叶树都影响显著,为最重要的影响因子土壤类型、坡向、坡度三个因子分别对其中不同四个树种有显著影响,坡位仅对其它松类和硬阔叶树影响显著,土壤厚度对几个主要树种影响均不显著。其分析结果可用于指导地方森林生产经营。
     文章指出:利用森林资源二类调查资料还存在诸如缺乏兼容的灌木林等森林类型的生物量估测模型等问题,并提出研制更多的和森林资源二类调查兼容的模型,充分利用生态环境、气象、土壤等多源数据,集成森林生态系统整体估测模型,以便全面估测乔木林、灌木林和竹林的地上和地下的生物量和碳贮量。本文采用的基于森林资源二类调查小班数据,进行县级森林植被生物量和碳贮量估测和特征分析,以及碳密度时空变化分析的方法和技术具有实用价值,可供中小尺度区域进行森林植被生物量和碳贮量的监测和评价借鉴。
As the human industrialization and global climate change caused by excessive emissions of CO2 and other gases have threatened the human existence and development. The forecasting of climate change requires accurate estimation of carbon uptake's amounts and changes in terrestrial ecosystems. Forests are the main part of terrestrial ecosystems and forest ecosystems play an important role in the global carbon cycle. Carbon storage in forest ecosystems is not only the important index reflecting the basic characteristics of forest ecosystems, but also the theoretical basis of the evaluation of the production potential of forest ecosystems and forest structure and function. As a result of a vast terroritory, diverse vegetation types and the complexity of forest ecosystems in China, regional estimates of biomass and carbon storage is a difficulty. According to the region's natural environment, it is extremely important to select the appropriate research methods and get the statistics of the carbon storage and density of different forest types and in different regions so as to estimate the national or global carbon sink of forest ecosystem. It is of practical significance to find the biomass estimation method being compatible to Forest Resource Inventory and use forest resource survey data for regional estimates of biomass and carbon stocks.
     In this paper, ecological principles, mathematical statistical methods and GIS spatial analysis techniques are adopted, with the use of the latest data of Forest Management Inventory in Babu County, Guangxi, application of the biomass expansion factor (BEF) which is relatively more mature source to studying the forest biomass and carbon storage in the area, and the analysis of characteristics and spatial distribution of carbon storage, and variance analysis of environment factors to carbon storage. In the study, combining land types of the technical specification of Forest Inventory with the requirements of biomass estimation and the characteristics of the biomass estimation model, the forest vegetation types are divided, the calculation methods of all vegetation types are described accurately, the database of forest biomass and carbon storage is established based on the sub-compart database of forest resources, with producing the maps of forest biomass and carbon storage by the use of geographic information system software, and establishing the biomass and carbon density spatial variation map by the use of vector graphics data gridding method. A study on temporal and spatial changes of carbon storage during 1999 and 2009 has been implemented. The primary results are:
     (1) 1172180.2t the total amount of forest vegetation biomass, among it, 8283011.3t the tree and shrub layer,1282786.8t under storey carbon storage, and 2146382.lt litter layer carbon storage, in Babu County.
     (2) 5942324.2t the total carbon storage of forest vegetation,5849565.3t the forest land, only 92758.9t the non forest land, in the whole county. The tree forest belong to forest land is the highest rate with an occupation 88.07% of the total. There are an average of 17.65t/hm2 of total,22.05t/hm2 of woodland, and 23.69t/hm2 of forest of carbon density.
     (3) The distribution and features are, that the carbon stock of forest vegetation is on the increase with the decrease in population density, and the carbon stock of forest vegetation is related to the land use, the carbon storage amount of forest is the biggest, closed forest is the biggest in which, and the carbon density of timber tree species is the biggest in which. It is shown that the forest carbon storage is closely related to the forest dominant species; the carbon storage of broad-leaved trees in timber forest is the biggest with the largest area, and Chinese fir take the first place of carbon density with 45.04t/hm2. The forest carbon storage is also related to the forest category and age group, the carbon density of special-forest is the highest with 33.87t/hm2, and forest carbon storage is increased with age group. The carbon density of artificial forest is higher than that of natural forest in Babu County. In the ecological public welfare forest, the carbon density of the provincial level of protection is ranked as the highest. In the vertical spatial distribution, the carbon storage is highest in an elevation of less than 500m, but the density of forest carbon is highest in an elevation of from 500m to 1500m, these just reflect that the different species have different biological characteristics. In the horizontal distribution, the carbon density with 15-50t/hm2 is the highest area, which is located in the eastern county of Nanxiang, forest farm of Huangdong Forest Farm, Daning town, the southwest of Pumeng, the north of Guiing, Lisong and the central of Butou town, etc. The area with Carbon density of more than 75t/hm2 is mainly distributed in the middle of inconvenient Huashui protection zone, the east of Hejie town, forest farm of Huangdong.
     (4) Applied the map of biomass and carbon density to analyzing the temporal and spatial changes uncovers the regulation of that:the carbon storage of forest vegetation increase greatly during 1999 and 2009 for the area of closed forest increased while non stocked land and sparse forest decreased, the mean carbon density increased, results increase of carbon storage. Except the broad-leaved forest, the carbon density of Chinese fir, Chinese red pine and eucalyptus is increased, the carbon density of age group of yang forest, middle age forest and near mature forest are decreased, and mature forest and over mature forest are increased. There is acreage of 103463.07hm2 in which the carbon storage decreased, it scattered over Huangdong Forest Farm and east of Hejie Town for the cutting and regeneration of mature forest and over mature forest, the change class of 0-10t/hm2 has the biggest acreage which distributed the plain towns and district with high density of population for the projects of "plantation of four sides" and "town and city greening ", the change class of over 75t/hm2 is fewer which is land of "return the grain plots to forestry". The paper put forward a series of forest management measures to increase the carbon storage contra posed the analysis result.
     (5) The advantages of estimating biomass and carbon storage in middle and small scale region with the Forest Management Inventory data are:A geographical coverage of the whole area, the detailed spatial distribution of information, abundant tree information, being able to establish biomass and carbon storage databases based on Sub-compartment, more comprehensive and accurate estimation of biomass in county scope. With reasonable forest vegetation type division according to the land use types of Forest Resource Inventory, we increase the compatibility of biomass and carbon density estimation and Forest Resource Inventory, put up with the reasonable solutions to incompatible parts and improve the estimation accuracy biomass and carbon stock of forest vegetation. Converting vector data into grid with geographical information systems is beneficial to the temporal and spatial variation analysis on carbon storage spatial distribution of matched grids.
     (6) It has been found with the variance analysis of qualitative ecological environment factors to biomass and carbon storage of forest vegetation:The terrain is the most important factor for it has significant effect on annual carbon density of Chinese fir, Chinese red pine, eucalyptus, and fast grow hard wood. Type of soil, aspects, and slopes affect significantly the annual carbon density of respective four spices, while the slope positions has significant effect only on other pine and hard wood. The Soil thickness has no significant effect on primary tree spices. The results of the analysis can guide local forest management.
     It point out in the paper, that there are some problems that the estimation biomass model of the bushes and other forest types is incompatible by making use of forest inventory data, and more model being compatible to Forest Inventory should be set up, to fully use multi data resources such as the environment, meteorology, and soil, to integrate the ensemble model to estimate the biomass and the carbon storage above and below ground of the timber forest, shrub forest, and bamboo forest.
     The methods and techniques of estimation of biomass and carbon storage, its feature analysis, and the temporal and spatial changes of carbon storage with GIS in the county level based the sub-compartments of Forest Inventory have been made by the paper have practical value and making reference of monitoring and evaluating forest vegetation biomass and carbon storage in the small and middle scale region.
引文
1. IPCC, Climate Change 2001:Synthesis Report. C.U. Press, Editor Cambridge,2001.
    2. 李克让,陈育峰,全球气候变化影响下中国森林的脆弱性分析.地理学报,1996.S1:p.4049.
    3. IPCC, Climate Change-IPPC Response Strategies. Washington,DC,1991(Island press.).
    4. IPCC, The Regional Impacts of Climate Change:An Assessment of Vulnerability, ed. R.T.Watson,M.C.Zinyowera, R.H.Moss.1997. Cambridge, England:(Cambridge University Press.).
    5. E., Lovelock J, Hands up for the Gaia hypothesis. Nature,1990.344(6262):p.100-102.
    6. Imhoff M L, Bounoua L, Ricketts T, et al, Global patterns in human consumption of net primary production. Nature,2004.429(6994):p.870-873.
    7. Costanza R, d'Arge R, de Groot R, et al, The value of the world's ecosystem services and natural capital. Nature,1997.387:p.253-260.
    8. Tian H, Melillo J M, Kicklighter D W, et al., Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature,1998.396(6712):p.664-667.
    9. Melillo J M, Field C B, Moldan B., Interactions of the Major Biogeochemical Cycles:Global Change and Human Impacts, ed.. I. Press.,2003,. Washington,D.CUSA. 320.
    10. Chapin Iii F S, Zavaleta E S, Eviner V T, et al., Consequences of changing biodiversity. Nature,2000.405(6783):p.234-242.
    11. 田汉勤,万师强,马克平,全球变化生态学:全球变化与陆地生态系统.植物生态学报,2007.31(2):p.173-174.
    12. 杨洪晓,吴波,张金屯等,森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报(自然科学版),2005.41(2):p.172-177.
    13. 杨万勤,张健,胡庭兴等,森林土壤生态学.四川:四川科学出版社,2006:p.1-2.
    14. Dixon R K, Brown S, Houghton R A,etal., Carbon pools and flux of global forest ecosystems. Science,1994.263:p.185-190.
    15. 于贵瑞,李海涛,王绍强,全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社,,2003:p.1-146.
    16. Schimel D, Melillo J, Tian H, et al., Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science,2000.287(5460):p.2004-2006.
    17. IGBP T, Carbon, Working,group, The terrestrial carbon cycle:implications for the Kyoto protocol. Science,1998.280:p.1393-1394.
    18. 张小全,侯振宏,森林、造林、再造林和毁林的定义与碳计量问题.林业科学,2003.39(2):p.145-152.
    19. 曹明奎,于贵瑞,刘纪远,等,陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学D辑地球科学,2004.34(增刊Ⅱ):p.1-14.
    20. Malhi Y, Baldocchi D D, Jarvis P G., The carbon balance of tropical, temperate and boreal forests.. Plant, Cell and Environment,1999.22(6):p.715-740.
    21. 光增云,河南森林植被的碳储量研究.地域研究与开发,2007.26(1):p.76-79.
    22. IPCC, Land use, land-use change, and forestry-A special report of the IPCC. New York: Cambriage University press.,2000.
    23. R., Lal, Forest soils and carbon sequestration. Forest Ecology and Management,2005. 220:p.242-258.
    24. FAO, Key issues in the forest sector today//State of the World,s Forests 2001.Rome,Italy:FAO,2001:p.60-73.
    25. SilverW L, Ostertang R, Lugo A E., The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Rest. Eco.1.2000(8): p.394-407.
    26. WalkerB H, SteffenW L, Canadell J eds., TheTerrestrial Biosphere and Global Change, IGBP book series4. Cambridge University Press,1999:p.1-18.
    27. S., Brown, Measuring carbon in forests:current status and future challenges. Environmental Pollution,2002.116:p.363-372.
    28. Christine L G, Apps M J, Birdsey R A, et al., Forest carbon sinks in the northern hemisphere. Ecological Applications,2002.12(3):p.891-899.
    29. Turner D P, Koerper G J, Harmon M E, et al., A carbon budget for forests of the conterminous United States. Ecological Application,1995,.5(2):p.421-436.
    30. T., Kira, Primary productivity and carbon cycling in a primeval lowland rainforest of Peninsular Malaysia. In:Tree Crop Physiology,1987. Amsterdam:Elsevier Science.:p. 99-119.
    31. Chave J, Condit R, Lao S, et al., Spatial and temporal variation of biomass in a tropical forest:results from a large census plot in Panama. Journal of Ecology,2003.91:p. 240-252.
    32. R.H著,王业蓬等译.,Lieth.H, Whittaker,生物圈第一性生产力.科学出版社,1985:p.350—354.
    33. 李景文主编,森林生态学.中国林业出版社,1992.
    34. 李文华,森林生物生产量的概念及其研究的基本途径.自然资源,1980.1:p.71-92.
    35. 赵雪,张小由,李启森等,额济纳绿洲沙漠化对怪柳群落影响的研究.中国沙漠,2004.24(4):p.467-472.
    36. 朱志诚,贾东林,岳明,艾篙群落生物量初步研究.中国草地,1997.5:p.6-13.
    37. 冯学武,王弋,吴丽萍,内蒙古西部生态环境综合评价研究.中国沙漠,2003.23(3):p.322-327.
    38. Keeling H C, Phillips O L., The global relationship between forest productivity and biomass. Global Ecology and Biogeography,2007.16:p.618-631.
    39. R.Virdee著,孙儒泳、李庆芬、牛翠娟、娄安,Aluay Mackenzie Andy S.Ball.&.Sonia and如译,生态学.科学出版社,2000:p.155-163.
    40. 胡会峰,刘国华,森林管理在全球CO2减排中的作用.应用生态学报,2006.17(4):p.709-714.
    41. S., Schimel D, Terrestrial ecosystem and the carbon cycle. Global Change Biology,1995. 1(1):p.77-91.
    42. 吕超群,孙书存,陆地生态系统碳密度格局研究概述.植物生态学报,2004.28(5):p.692-703.
    43. JY, Fang, Forest biomass carbon pool of the middle and high latitudes in North Hemisphere is probably much smaller than present stimates.. Acta Phytoecol Sin.,2000. 24(5):p.635-638.
    44. Tans P P, Fung IY, Takahashi T., Observational constraints on the global atmospheric CO2 budget. Science,1990.247:p.1431-1438.
    45. Siegenthaler U, Sarmiento JL., Atmospheric dioxide and the ocean. Nature,1993.365:p. 119-125.
    46. IPCC., Spacial Report for theUN Framwork Convention on Climate Change on Radiative Forcing of Climate Change.1994:p.1-13.
    47. Keeling R F, Piper S C, Heimann M., Global and hemispheric CO2 sinks deduced from changes in atmospheric CO2 concentration. Nature,1996.381(218-221).
    48. 邓先瑞,中国的亚热带.http://www.zixjzx.cn/ebook/90/glix/ts090043.pdf,1996.
    49. 徐德应,中国森林与全球气候变化的关系.林业科技管理,2002.4:p.19-24.
    50. Etheridge D M, Steele L P, Francey R J, et al., Atmospheric methane between 1000 AD and present:Evidence of anthropogenic emissions and climatic variability Journal of Geophysical Research,1998.103(D13):p.15979.
    51. Augustin L, Barbante C, Barnes P R F, et al, Eight glacial cycles from an Antarctic ice core. Nature,2004.429(6992):p.623-628.
    52. Soegaard H, Thorgeirsson H., Carbon dioxide exchange at leaf and canopy scale for agricultural crops in the boreal environment. Journal of Hydrology,1998:p.212-213: 51-61.
    53. Watson R T, Verardo D J., Land-use change and forestry. Cambridge University Press, 2000.
    54. Canadell J G, Mooney H A., Ecosystem metabolism and the global carbon cycle. Tree, 1999.14(6):p.249.
    55. Fan S, Gloor M, Mahlman J, et al., A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models.. Science,1998.282: p.442-446.
    56. Cao M K, Prince S D, Li K R, et al., Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology,2003.9(4):p.536-546.
    57. Canadell J G, Mooney H A, Baldocchi D D, et al., Commentary:Carbon Metabolism of the Terrestrial Biosphere:A Multitechnique Approach for Improved Understanding. Ecosystems,2000.3(2):p.115-130.
    58. 张新时,周广胜,高琼,等.,中国全球变化与陆地生态系统关系研究.地学前缘1997.4(z1):p.137-144.
    59. 耿元波,董云社,孟维奇,陆地碳循环研究进展.地理科学进展,2000.19(4):p.297-306.
    60. Cao M K, Woodward F L., Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998.393:p.249-252.
    61. 陶波,葛全胜,李克让,等.,陆地生态系统碳循环研究进展.地理研究,2001.20(5):p.564-575.
    62. Kerr S, Liu S, Pfaff A S P, et al., Carbon dynamics and land-use choices:building a regional-scale multidisciplinary model. Journal of Environmental Management,2003. 69(1):p.25-37.
    63. Goulden M L, Munger J W, Fan S-M, et al., Exchange of carbon dioxide by a deciduous forest:response to Interannual climate variability. Science,1996.271(5255):p. 1576-1578.
    64. 于贵瑞,张雷明,孙晓敏,等,亚洲区域陆地生态系统碳通量观测研究进展.中国科学D辑地球科学,2004.34(增刊Ⅱ):p.15-29.
    65. Schimel D S, House J I, Hibbard K A, et al., Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature,2001.414(6860):p.169-172.
    66. Grace J, Lloyd J, McIntyre J, et al., Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia,1992 to 1993. Science,1995.270(5237):p.778-780.
    67. Phillips D L, Brown S L, Schroeder P E, et al., Toward error analysis of large-scale forest carbon budgets. Global Ecology and Biogeography,2000.9:p.305-313.
    68. Goodale C L, Apps M J, Birdsey R A, et al., Forest carbon sinks in the Northern Hemisphere. Ecological Applications,2002.12(3):p.891-899.
    69. Phillips O L, Malhi Y, Higuchi N, et al., Changes in the carbon balance of tropical forests: evidence from long-term plots. Science,1998.282(5388):p.439-442.
    70. 方精云,刘国华,徐嵩龄,我国森林植被的生物量和净生产量.生态学报,1996.16(4):p.497-508.
    71. J., Ni, Carbon Storage in Terrestrial Ecosystems of China:Estimates at Different Spatial Resolutions and Their Responses to Climate Change. Climatic Change,2001.49(3):p. 339-358.
    72. 汪业勖,赵士洞,陆地碳循环研究中的模型方法.应用生态学报,1998.9(6):p.658-664.
    73. 毛子军,森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002.26(6):p.731-738.
    74. Detwiler R P, Hall C A S., Tropical forests and the global carbon cycle. Science,1988. 239(4835):p.42-47.
    75. 刘世荣,柴一新,兴安落叶松人工林群落生物量及净初级生产力的研究.东北林业大学学报,1990.18(2):p.40-46.
    76. 李意德,方精云,尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报,1998(2):p.127-134.
    77. 任海,彭少麟,向言词,鹤山马占相思人工林的生物量和净初级生产力.植物生态学报,2000.24(1):p.18-21.
    78. 杨玉盛,陈光水,王义祥,等,格氏栲人工林和杉木人工林碳吸存与碳平衡.林业科学,2007.43(3):p.113-117.
    79. 尉海东,马祥庆,不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报(自然科学版),2007.35(1):p.171-174.
    80. 孙玉军,张俊,韩爱惠,等,兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能.生态学报,2007.27(5):p.1756-1763.
    81. WBGU, The accounting of biological sinks and sources under the Kyoto Protocol Special Report,1998. Bremerhaven, Germany.
    82. A., Houghton R, Land-use change and the carbon cycle. Global Change Biology,1995. 1(4):p.275-287.
    83. 蒋有绪,世界森林生态系统结构与功能的研究综述.林业科学研究,1995.8(3):p.314-321.
    84. 刘华,雷瑞德,我国森林生态系统碳贮量和碳平衡的研究方法及进展.西北植物学报,,2005.25(4):p.835-843.
    85. 徐新良,曹明奎,李克让,中国森林生态系统植被碳储量时空动态变化研究.地理科 学进展,2007.26(6):p.1-10.
    86. 沈文清,马钦彦,刘允芬,森林生态系统收支状况研究进展.江西农业大学学报,2006.28(2):p.312-317.
    87. Gurney K R, Law R M, Denning A S, et al., Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature,2002.415(6872):p. 626-630.
    88. 方精云,郭兆迪,寻找失去的陆地碳汇.自然杂志,2007.29(1):p.1-6.
    89. Ryunosuke T, Takuo H, Hiroshi T., Above and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecology and Management,,2004(193):p.297-306.
    90. 李文华,邓坤枚,李飞,长白山主要生态系统生物量生产量的研究.森林生态系统研究(试刊)1981:p.34-50.
    91. 段爱国,张建国,何彩云,等.,杉木人工林生物量变化规律研究.林业科学研究,2005.18(2):p.125-132.
    92. 冯宗炜,陈楚莹,张家武,湖南会同地区马尾松林生物量的测定.林业科学,1982.18(2):p.127-134.
    93. 张祝平,丁明懋,鼎湖山亚热带季风常绿阔叶林的生物量和光能利用效率.生态学报,1996.16(5):p.158-167.
    94. A., Houghton R, Aboveground forest biomass and the global carbon balance. Global Change Biology,2005.11(6):p.945-958.
    95. 王效科,冯宗炜,欧阳志云,中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001.12(1):p.13-16.
    96. Schroeder P, Brown S L, Mo J, et al., Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science,1997.43:p.424-434.
    97. E., Kauppi P, New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica,2003.37(4):p.451-457.
    98. Liski J, Korotkov A V, Prins C F L, et al., Increased carbon sink in temperate and boreal forests. Climatic Change,2003.61:p.89-99.
    99. 杨昆,管东生,珠江三角洲森林的生物量和生产力研究.生态环境,2006.15(1):p.84-88.
    100. Piao S L, Fang J Y, Zhu B, et al., Forest biomass carbon stocks in China over the past 2 decades estimation based on integrated inventory and satellite data. Journal of Geophysical Research,2005.110(G01006, doi:10.1029/2005JG000014).
    101. J., Grace, Understanding and managing the global carbon cycle. Journal of Ecology 2004. 92:p.189-202.
    102. A., Houghton R, Why are estimates of the terrestrial carbon balance so different?. Global Change Biology,2003.9(4):p.500-509.
    103. Brumme R, Butterbach-Bahl K, Grace J, et al., Specific Study on Forest Greenhouse Gas Budget,. Lindner, Lucht W., Bouriaud O., et al., Editors.,2004.
    104. D., Ovington J, The form, weights and productivity of tree species grown in close stands New Phytologist,1956.55(3):p.289-304.
    105. Baskerville, G L., Estimation of dry weight of tree components and total standing crop in conifer stands. Ecology,1965.46(6):p.867-869.
    106. Ketterings Q M, Coe R, van Noordwijk M, et al., Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management,2001.146(1-3):p.199-209.
    107. Segura M, Kanninen M., Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropical,2005.37(1):p.2-8.
    108. Hoshizaki K, Niiyama K, Kimura K, et al., Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecological Research,2004.19:p.357-363.
    109.罗天祥,中国主要森林类型生物生产力格局及其数学模型.中国科学院研究生院博士学位论文,1996.北京.
    110. Fang J Y, Wang G G, Liu G H, et al., Forest biomass of China:an estimate based on the biomass-volume relationship Ecological Applications,1998.8(4):p.1084-1091.
    111. 刘国华,傅伯杰,方精云,中国森林碳动态及其对全球碳平衡的贡献..生态学报,2000.20(5):p.733-740.
    112. Woodbury P B, Smith J E, Heath L S., Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecology and Management,2007.241:p.14-27.
    113. A., Lehtonen, Carbon stocks and flows in forest ecosystems based on forest inventory data. Department of Forest Ecology, University of Helsinki, Finland,2005,.
    114. Ruimy A, Saugier B, Dedieu G., Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research,1994.99(D3):p. 5263-5284.
    115. Lieth H, Whittaker R H., Primary productivity of the biosphere. New York:Spinger Verlag,1975:p.237-263.
    116. 周广胜,张新时,自然植被净第一性生产力模型初探.植物生态学报,1995.19(3).
    117. Potter C S, Randerson J T, Field C B, et al., Terrestrial ecosystem production:A process model based on global satellite and surface data. Global Biogeochemical Cycles,1993. 7(4):p.811-842.
    118. 朴世龙,方精云,郭庆华,利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001.25(5):p.603-608.
    119. Prince S D, Goward S N., Global primary production:a remote sensing approach Journal of Biogeography,1995.22(4/5):p.815-835.
    120. Goetz S J, Prince S D, Goward S N, et al., Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecological Modelling,1999. 122(3):p.239-255.
    121. 卢玲,李新,Frank V.,黑河流域植被净初级生产力的遥感估算.中国沙漠,2005.25(6):p.823-830.
    122. Melillo J M, McGuire A D, Kicklighter D W, et al., Global climate change and terrestrial net primary production. Nature,1993.363(6426):p.234-240.
    123. Parton W J, Ojima D S, Kirchner T, et al., Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 1993.7(4):p.785-809.
    124. Liu J, Chen J M, Cihlar J, et al., Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography,2002.11(2):p.115-129.
    125. Kramer K, Leinonen I, Bartelink H H, et al., Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology,2002.8(3):p.213-230.
    126. IPCC., Good Practice Guidance for Land Use, Land-Use Change and Forestry. www.ipcc-nggip.iges.or.jp/lulucf/gpglulucf unedit.html,2003.
    127. D., Baldocchi D, Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biology,2003. 9(4):p.479-492.
    128. Hutley L B, Leuning R, Beringer J, et al., The utility of the eddy covariance techniques as a tool in carbon accounting:tropical savanna as a case study. Australian Journal of Botany,2005.53(7):p.663-675.
    129. Williams M, Schwarz P A, Law B E, et al., An improved analysis of forest carbon dynamics using data assimilation.. Global Change Biology,2005.11:p.89-105.
    130. M., Fearnside P, Are climate change impacts already affecting tropical forest biomass? Global Environmental Change Part A,2004.14(4):p.299-302.
    131. Curtis P S, Hanson P J, Bolstad P, et al., Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology,2002.113(1-4):p.3-19.
    132. Carswell F E, Costa A L, Palheta M, et al., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest Journal of Geophysical Research,2002.107(D20):p.8076.
    133. Carey E V, Sala A, Keane R, et al., Are old forests underestimated as global carbon sinks?. Global Change Biology,2001.7(4):p.339-344.
    134. Malhi Y, Wood D, Baker T R, et al., The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology,2006.12:p.1107-1138.
    135. Zhou G Y, Liu S G, Li Z A, et al., Old-growth forests can accumulate carbon in soils. Science,2006.314:p.1417.
    136. Myneni R B, Dong J, Tucker C J, et al., A large carbon sink in the woody biomass of Northern forests. Proceeding of the National Academy of Sciences of the United States of America(PANS),2001.98(26):p.14784-14789.
    137. Nemani R R, Keeling C D, Hashimoto H, et al., Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science,2003.300(5625):p. 1560-1563.
    138. 陈利军,刘高焕,冯险峰,运用遥感估算中国陆地植被净第一性生产力.植物学报,200143(11):p.1191-1198.
    139. 赵德华,李建龙,齐家国等,陆地生态系统碳平衡主要研究方法评述.生态学报,2006.26(8):86):p.2655-2662.
    140. 亢新刚,森林资源经营管理.北京:中国林业出版社,2006.
    141. 全国人民代表大会常务委员会,中华人民共和国森林法.1998.
    142. Fang J Y, Wang Z M., Forest biomass estimation at regional and global levels, with special reference to China's forest biomass. Ecological Research,2001.16:p.587-592.
    143. Brown S, Lugo A E., Biomass of tropical forests:a new estimate based on forest volumes. Science,1984.223(4642):p.1290-1293.
    144. Kauppi P E, Mielik?inen K, Kuusela K., Biomass and carbon budget of European forests,1971 to 1990. Science,1992.256:p.70-74.
    145. 杨昆,管东生,周春华,珠江三角洲地区森林生物量及其动态.应用生态学报,2007. 18(4):p.705-712.
    146. Liski J, Lehtonen A, Palosuo T, et al., Carbon accumulation in Finland's forests 1922-2004-an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil.. Annals of Forest Science 2006.63:p.687-697.
    147. Fang J Y, Chen A P, Peng C H, et al., Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001.292:p.2320-2322.
    148. 桑卫国,马克平,陈灵芝,暖温带落叶阔叶林碳循环的初步估算.植物生态学报,2002.26(5):p.543-548.
    149. 曹军,张镱锂,刘燕华,近20年海南岛森林生态系统碳储量变化.地理研究,2002.21(5):p.551-560.
    150. 张德全,桑卫国,李日峰等,山东省森林有机碳储量及其动态的研究.植物生态学报,2002.26(增刊):p.93-97.
    151. 张娜,于贵瑞,赵士洞,等,长白山自然保护区生态系统碳平衡研究.环境科学,2003.24(1):p.24-32.
    152. 袁正科,田大伦,吴春英,等,森林碳固定能力计算方法及长株潭区域碳年固定量估算.湖南林业科技,2004.31(4):p.1-5.
    153. 焦秀梅,项文化,田大伦,湖南省森林植被的碳贮量及其地理分布规律.中南林学院学报,2005.25(1):p.4-8.
    154. 曾伟生,云南省森林生物量与生产力研究.中南林业调查规划,2005.24(4):p.1-3.
    155. 焦燕,胡海清,黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005.16(12):p.2248-2252.
    156. 杨昆,管东生,周春华,潭江流域森林碳储量及其动态变化.应用生态学报,2006.17(9):p.1579-1582.
    157. 光增云,河南省森林碳储量及动态变化研究.林业资源管理,2006(4):p.56-60,48.
    158. 李海涛,王姗娜,高鲁鹏,等,赣中亚热带森林植被碳储量.生态学报,,2007.27(2):p.693-704.
    159. 黄从德,张健,杨万勤等,四川省及重庆地区森林植被碳储量动态.生态学报,2008,.28(3):p.966-975.
    160. 何海,乔永康,刘庆,等,亚高山针叶林人工恢复过程中生物量和材积动态研究.应用生态学报,2004.15(5):p.748-752.
    161. 李文华,罗天祥,中国云冷杉林生物生产力格局及其数学模型.生态学报,1997.17(5):p.511-518.
    162. 刘兴良,马钦彦,杨冬生,等,川西山地主要人工林种群根系生物量与生产力.生态学报,2006.26(2):p.542-551.
    163. 马明东,江洪,罗承德,等,四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究.植物生态学报,2007.31(2):p.305-312.
    164. 江洪,紫果云杉天然中龄林分生物量和生产力的研究.植物生态学与地植物学学报,1986.10(2):p.146-152.
    165. 方精云,陈安平,中国森林植被碳库的动态变化及其意义.植物学报,2001.43(9):p.967-973.
    166. Pan Y D, Luo T X, Blirdsey R, et al., New estimates of carbon storage and sequestration in China's forests:effects of age-class and method on inventory-based carbon estimation. Climatic Change,2004.67:p.211-236.
    167. 赵敏,周广胜,中国森林生态系统的植物碳贮量及其影响因子分析.地理科学,2004,. 24(1):p.50-54.
    168. 周玉荣,于振良,赵士洞:我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000.24(5):p.518-522.
    169. 王绍强,周成虎,罗承文,中国陆地自然植被碳量空间分布特征探讨.地理科学进展,1999.18(3):p.238-244.
    170. 叶金盛,汪求来,广东省森林植被碳储量及其地理分布规律.第二届中国林业学术大会:S3分会场论文集.
    171. A., Houghton R, Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences,2007.35(1):p.313-347.
    172. BIRDSEY R A, PLANTINGA A J, HEATH L S., Past and prospective carbon storage in United States forests. Forest Ecology and Management,1993.58:p.33-40.
    173. GRIGAL D F, OHMANN L F., Carbon storage in upland forests of the lake states. Soil Science Society of America Journal,1992.56:p.935-943.
    174. 管东生,陈玉娟,黄芬芳,广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用.中国环境科学,1998.18(5):p.437-441.
    175. 赵敏,周广‘胜,基于森林资源连续清查资料的生物量估算模式及其发展趋势.应用生态学报,2004.15(8):p.1468-1472.
    176. 陈辉等,楠木人工林生物产量模型的研究.福建林学院学报,1989.9(4):p.411-417.
    177. 金爱武,雷竹各器官生物量模型研究.浙江林业科技,1999.19(2):p.7-9,66.
    178. 李坚等,非采伐性的收获预侧模型.浙江林学院学报,1995.12(4):p.353-359.
    179. 曾伟生等,与材积兼容的生物且模型的建立及其应用研究.生态学杂志,1999.18(4):p.19-24.
    180. 叶金盛,汪求来,广东省森林植被碳储量及其地理分布规律.第二届林业中国林业学术大会:S3会场论文集,2009.2009.11南宁.
    181. Valentini R, Matteucci G, Dolman A J, et al, Respiration as themain determinant of carbon balance in European forests. Nature,2000.404:p.861-865.
    182. Haxeltine A, Prentice IC, Greswell ID., A coupled carbon and water fiux model to predict vegetation structure. Journal of Vegetation Science,1996(7):p.651-656.
    183. 薛春泉,叶金盛,杨加志,陈北光,广东省阔叶林生物量的分布规律研究.华南农业大学学报,2008.29(1):p.48-52.
    184. 焦秀梅,湖南省森林植被碳储量及地理分布规律.中南林业科技大学硕士论文,2005.
    185. 黄从德,四川森林生态系统碳储量及其空间分异特征.四川农业大学博士学位论文,2008.
    186. 阮宏华,姜志林,高苏铭,苏南丘陵主要森林类型碳循环研究—含量与分布规律.生态学杂志,1997.16(6):p.17-21.
    187. PJ., Rennie, The up take of nutrients by mature forest growth. Plant Soil,1955.7:p. 49-95.
    188. Rosenqvist A, Imhoff M, Milne A, Remote Sensing and the Kyoto Protocol:A Review of Available and Future Technology for Monitoring Treaty Compliance. Report of a workshop,Ann Arbor, Michigan,USA,October.20-22,1999.
    189. Clark D A, Brown S, Kicklighter D W, et al., Measuring net primary production in forests:oncepts and field methods. Ecological Applications,2001.11(2):p.356-370.
    190. 中华人民共和国国务院,中华人民共和国森林法实施条例.2000.
    191. 广‘西省林业勘察设计院,广西森林资源规划设计调查技术方法.2008.
    192. 方精云,陈安平,赵淑清,慈龙骏.,中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明.植物生态学报,2002.26(2):p.243-249.
    193. 樊登星,余新晓,岳永杰等,北京市森林碳储量及其动态变化.北京林业大学学报,2008.30(S2):p.117-120.
    194. 王义祥,福建省主要森林类型碳库与杉木林碳吸存.福州:福建农林大学,2004.
    195. 杨昆,管东生,森林林下植被生物量收获的样方选择和模型.生态学报,2007.27(2):p.705-714.
    196. 温达志,魏平,张倩媚,等,鼎湖山南亚热带常绿阔叶林生物量的研究.植物生态学报,1999.23(增刊):p.11-21.
    197. 方运霆,莫江明,鼎湖山马尾松林生态系统碳素分配和贮量的研究.广‘西植物,2002.22(4):p.305-310.
    198. 方运霆,莫江明,黄忠良等,鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征.热带亚热带植物学报,2003.11(1):p.47-52.
    199. 朱万泽,毛竹生物产量及养分循环的研究.株州:中南林学院,1990.
    200. 林益明,李惠聪,林鹏,肖贤坦,马占兴,麻竹种群生物量结构和能量分布.竹子研究汇刊,2000.19(4):p.36-41.
    201. Wang S, Chen J M, Ju W M, et al., Carbon sinks and sources in China's forests during 1901-2001. Journal of Environmental Management,2007.85:p.524-537.
    202. 堪小勇,彭元英,郭照光等,油茶林分生物量及生产力的研究.经济林研究,1996.14(1):p.4-6.
    203. Brown S L, Schroeder P, Kern J S., Spatial distribution of biomass in forests of the eastern USA.. Forest Ecology and Management,1999.123(1):p.81-90.
    204. 姜凤歧,卢风勇,小叶锦鸡儿灌从地上生物量的预测模型.生态学报,1982.2(2):p.103-110.
    205. 李钢铁,秦富仓,贾守义,等,旱生灌木生物量预测模型的研究.内蒙古林学院学报(自然科学版),1998.20(2):p.25-31.
    206. 唐霄,四川森林植被碳储量估算及其空间分布特征.四川农业大学硕士论文,2007.
    207. 王磊,丁品晶,季永华,梁珍海,李荣锦,阮宏华,江苏省森林碳储量动态变化及其经济价值评价.南京林业大学学报(自然科学版),2010.34(2):p.1-5.
    208. 唐守正,郎奎建,李海奎,统计和生物学模型计算(ForStat).科学出版社,北京,2009:p.136-139.
    209. 方精云,刘国华,徐嵩龄,我国森林植被的生物量和净生产量.生态学报,1996.16(4):p.497-508.
    210. 周广胜,张新时,全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报,1996.20(1):p.11-19.
    211. 刘世荣,郭泉水,王兵,中国森林生产力对气候变化响应的预测研究.生态学报,1 998.18(5):p.478-483.
    212. 罗辑,杨忠,杨清伟,贡嘎山森林生物量和生产力的研究.植物生态学报,2000.24(2):p.191-196.
    213. 冯仲科,罗旭,石丽萍,森林生物量研究的若干问题及完善途径.世界林业研究,2005.18(3):p.25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700