北京北部山区不同林龄的油松和侧柏人工林碳库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大气中温室气体浓度的升高引起的全球变暖已成为目前人类面临的严峻挑战。森林作为陆地生态系统的主体,在陆地生态系统与大气碳库之间的碳循环过程中发挥着重要的调节作用,但由于森林生态系统本身的复杂性和人类认知的局限性,目前关于森林碳库的研究中仍存在着诸多不确定性。本文为探讨林龄对森林碳库的影响,以北京山区分布面积最广的两种针叶林(油松和侧柏)为研究对象,比较分析了不同林龄的油松(25a,65a和105a)和侧柏(12a,32a和51a)林乔木层生物量、林下植物生物量以及植被含碳率和碳密度,同时对相应林分中的土壤碳库也进行了比较分析。本文的研究工作,不仅有利于推进北京山区油松和侧柏林碳库的精确估算,同时也为北京山区人工林碳库研究提供了理论和实践依据。本文研究结论如下:
     (1)除侧柏根生物量以外,以胸径(D)为单一变量的Power模型可以较好地预测油松和侧柏人工林乔木层各组分生物量;预测油松叶生物量和侧柏各组分生物量时须考虑林龄的影响。
     (2)随着林龄的增大,油松和侧柏人工林乔木层各组分单位面积生物量均呈增大趋势,油松乔木层总生物量的变化范围在40.284-202.136 t.hm-2,侧柏乔木层生物量的变化范围在10.241~51.679 t.hm-2。
     (3)油松地下与地上部分生物量的比值波动很小,稳定在0.2左右;而51a侧柏的地下部分与地上部分生物量的比值达到了0.319,显著高于其他两个林龄侧柏的相应比值。
     (4)林下植物生物量的大小与森林类型有关,也受森林发展阶段的影响。油松人工林林下植物各层及其总生物量均随林龄的增大呈逐渐减小的趋势,林下植物总生物量的变化范围在8.680~3.533 t·hm-2之间;侧柏人工林林下植物各层生物量及其总生物量随林龄的增大呈逐渐增大的趋势,林下植物总生物量的变化范围在2.399~6.274t·hm-2之间。
     (5)油松各器官含碳率的变化范围在0.485~0.567,数值大小关系表现为,树皮>树叶>树枝>去皮树干>树根,侧柏各器官含碳率的变化范围在0.495~0.577,数值大小关系表现为,树叶>去皮树干>树枝>树皮>树根;不同林龄的油松、侧柏林乔木层地上部分和全树平均含碳率无显著性差异。
     (6)油松和侧柏人工林分植被碳密度随林龄的增大而增大,油松人工林植被碳密度的变化范围是24.470~105.326 t.hm-2,侧柏人工林植被碳密度的变化范围在6.398~30.137 t·hm-2。
     (7)油松和侧柏人工林中地表枯落物含碳率均随林龄的增大而增大;油松人工林土壤有机碳含量在三个土层中,均表现出随林龄增大而增大的趋势,而侧柏人工林土壤有机碳含量只在上层(0-20cm)土壤中表现出了增大的趋势;土壤有机碳含量在土壤剖面中均随土层深度的增加而减小;油松人工林中土壤总有机碳密度的变化范围在59.637~102.195 t·hm-2,侧柏人工林中土壤总有机碳密度的变化范围在49.420~69.663 t·hm-2,且二者均随着林龄和植被生物量的增大而增大。
     (8)油松和侧柏林中的两种土壤活性有机碳含量的变化规律与土壤总有机碳含量的变化规律相似,且三者之间具有极显著相关性。
The rising of greenhouse gas concentration caused global warming, which has become a challenge for human. Forests as the main terrestrial ecosystem, play an important regulatory role in global carbon cycle. However, because of the complexity of forest ecosystems and the limitations of human cognition, now on the study of forest carbon, there are still many uncertainties. In order to explore the effects of stand age on forest carbon pool, Chinese pine (25a,65a and 105a) and Oriental arborvitae (12a,32a and 51a) forests in different ages were studied. This paper facilitated calculation of Chinese pine and Oriental arborvitae plantation carbon pools in Beijing mountainous area and provided a theoretical and technical basis for the study of forest plantation carbon pools. Results showed that:
     (1) Power model with tree diameter as a single input variable is the best biomass prediction equations for the most component biomass of Chinese pine and Oriental arborvitae, but except roots biomass of Oriental arborvitae. When foliage biomass of Chinese pine and all components biomass of Oriental arborvitae are predicted, effects of ages should be considered.
     (2) With age increasing, all of biomass in each tree component of Chinese pine and Oriental arborvitae increased. Total tree biomass of Chinese pine and Oriental arborvitae ranged from 40.284-202.136 t·hm-2 and 10.241~51.679 t-hm-2, respectively.
     (3) For Oriental arborvitae plantation forests, ratio of root to shoot biomass increased from 0.241 in the 12 year old stand to 0.319 in 51 year old stand, however, for Chinese pine, ratio of root to shoot biomass was steadily around 0.2 with increasing stand age.
     (4) Both of the forest type and age affected the biomass of understories. For Chinese pine plantation forests, shrub and herb biomass decreased with stand age increasing, total of them decreased from 8.680 t·hm-2 in 25 year old stand to 3.533 t·hm-2 in 105 year old stand; on the contrary, shrub and herb biomass of Oriental arborvitae increased with stand age increasing, total of them increased from 2.399 t·hm-2 in 12 year old stand to 6.274 t·hm-2 in 51 year old stand.
     (5) The carbon content of different issues of Chinese pine ranged from 0.485 to 0.567, and the carbon content of different issues of Oriental arborvitae ranged from 0.495 to 0.577. Weighted mean of carbon contents for both Chinese pine and Oriental arborvitae biomass were steadily with stand age increasing.
     (6) The total vegetation carbon density of Chinese pine plantation forests increased from 24.470 t·hm-2 in 25 year old stand to 105.326 t·hm-2 in 105 year old stand; similarly, the total vegetation carbon density of Oriental arborvitae plantation forests increased from 6.389 t·hm-2 in 12 year old stand to 30.137 t·hm-2 in 51 year old stand.
     (7) Carbon content of litter fall increased with stand age increasing. Total soil organic carbon content increased with stand age increasing in three soil horizon of Chinese pine plantation forests and 0-20cm soil horizon of Oriental arborvitae plantation forests, however, decreased with soil depth increasing. Total soil carbon organic density of Chinese pine plantation forests increased from 59.637 t·hm-2 to 102.195 t·hm-2 with stand age increasing. Similarly, total organic carbon density of Oriental increased from 49.420 t·hm-2 in 12 year old stand to 69.663 t·hm-2 in 51 year old stand.
     (8) Changing patterns of soil labile organic carbon contents is in agreement with that of total soil organic carbon with stand age increasing. Soil liable organic carbon was significantly related to total soil organic carbon, and the relationship between soil particulate organic carbon and soil dissolve organic carbon was also significant.
引文
1. 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    2. 陈泮勤.地球系统碳循环[M].北京:科学山版社,2004,10.
    3. 陈泮勤,王效科,王礼茂.中国陆地生态系统碳收支与增汇对策[M].北京:科学出版社,2008.
    4. 陈灵芝,任继凯,鲍显诚,等.北京西山(卧佛寺附近)人工油松林群落学特性及生物量的研究[J].植物生态学与地植物学丛刊,1984,(3):173-181.
    5. 陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林(Plltycladus orientalis)及其生物量研究[J].植物生态学与地植物学丛刊.1986,(1):17-25.
    6. 程堂仁.甘肃小陇山森林生物量及碳储量研究[D].北京:北京林业大学,2007.
    7. 陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学,2003.
    8. 陈民生,赵京岚,刘杰,等.人工林林下植物研究进展[J].山东农业大学学报(自然科学版),2008,(2):321-325.
    9. 陈彩虹,田大伦,方晰,等.城郊4种人工林林下植物物种多样性、生物量与十壤养分相关性[J].水土保持学报,2010,(6):213-217.
    10.段劼,马履一,贾黎明,等.抚育间伐对侧柏人工林及林下植物生长的影响[J].生态学报,2010,(6):1431-1441.
    11.段文霞,朱波,刘瑞,等.人工柳杉林生物量及其土壤碳动态分析[J].北京林业大学学报,2007,29(2):55-59.
    12.邓小文,韩十杰.氮沉降对森林生态系统土壤碳库的影响[J].生态学杂志,2007,26(10):1622-1627
    13.方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52.
    14.方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环[J].中国科学D辑地球科学,2006,36(6):533-543.
    15.方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    16.方精云,陈安平.赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320~2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    17.方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,15(5):497-508.
    18.方晰,田大伦,项文化.间伐对杉木人工林生态系统碳贮量及其空间分配格局的影响[J].中南林业科技大学学报,2010,30(11):47-53.
    19.方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517.
    20.冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    21.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    22.冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究,2005,18(3):25-28.
    23.冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    24.房用,于淑军.石灰岩山地中侧柏、油松混交林的生物量[J].南京林业大学学报(自然科学版),2007(3):63-67.
    25.方海波,田大伦,康文星.杉木人工林间伐后林下植物生物量的研究[J].中南林学院学报.1998(1):5-9.
    26.范少辉,马祥庆,傅瑞树,等.不同栽植代数杉木林林下植物发育的比较研究[J].林业科学研究,2001,(1):8-16.
    27.范少辉,刘广路,张群,等.华北沙地小黑杨林生物量及其与树冠关系的研究[J].林业科学研究,2010,(1):71-76.
    28.郭广芬,张称意,徐影.气候变化对陆地生态系统土壤有机碳储量变化的影响.生态学杂志,2006(4):435-442.
    29.郭海强,顾永剑,李博,等.全球碳通量塔东滩野外观测站的建立[J].湿地科学与管理,2007,3(1):30-33.
    30.高人,唐英平,杨玉盛,等.杉木人工林和水稻田十壤呼吸Q10的影响因素初探[J].亚热带资源与环境学报,2007,2(4):9-15.
    31.国家林业局应对气候变化和节能减排工作领导小组办公室.造林项目碳汇计量与监测指南[M].北京:中国林业出版社,2008.
    32.耿森,黄宝灵,吕成群,等.马古相思接种根瘤菌对根际微生物及其林下植物生物量的影响[J].中南林业科技大学学报.2010,(3):41-45.
    33.耿玉清,余新晓,岳永杰,等.北京山地针叶林与阔叶林土壤活性有机碳库的研究[J].北京林业大学学报,2009,(5):19-24.
    34.耿玉清.北京八达岭地区森林土壤理化特征及健康指数的研究[D].北京:北京林业大学,2006.
    35.黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    36.黄玉梓,樊后保,李燕燕,等.氮沉降对杉木人工林生长及林下植物碳库的影响[J].生态环境学报.2009(4):1407-1412.
    37.黄耀,戴万宏.陆地生态系统碳循环的基本过程.见:陈泮勤主编.地球系统碳循环[M].北京:科学出版社,2004.
    38.黄锦学,黄李梅,林智超,等.中国森林凋落物分解速率影响因素分析[J].亚热带资源与环境学报,2010,5(3):56-63.
    39.韩国君,丛国禄,沈海龙.樟子松人工林热值与能量结构分析(Ⅰ)—林木及林下植物生物量、热值和能量的结构与分布[J].东北林业大学学报,2010,(6):21-33.
    40.何艺玲,傅懋毅.人工林林下植物的研究现状[J].林业科学研究,2002,(6):727-733.
    41.韩斐扬,周群英,陈少雄,等.2种桉树不同林龄生物量与能量的研究[J].林业科学研究, 2010,(5):690-696.
    42.胡正华,李涵茂,杨燕萍,等.模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响[J].环境科学,2010,31(8):1726-1732.
    43.韩有志,李玉娥,梁胜发,等.华北落叶松人工林林木生物量的研究[J].山西农业大学学报,1997,(3):278-283.
    44.姜萍,叶吉,吴钢.长白山阔叶红松林大样地木本植物组成及主要树种的生物量[J].北京林业大学学报.2005(S2):112-115.
    45.姜培坤,徐秋芳,周国模,等.石灰岩荒山造林后土壤养分与活性碳含量的变化[J].林业科学,2007,43(增刊1):39-42.
    46.姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,(1):10-13.
    47.李怒云,吕佳(编译).林业碳汇计量[M].北京:中国林业出版社,2009,314-316.
    48.李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学D辑地球科学,2003,33(1):72-80.
    49.李春平,吴斌,张宇清.山东郓城农田防护林杨树器官含碳率分析[J].北京林业大学学报,2010,32(2):74-78.
    50.李国雷,刘勇,于海群,等.油松(Pinus tabulaeformis)人工林林下植物发育对油松生长节律的响应[J].生态学报,2009,(3):1264-1275.
    51.李建强,菊花,张秋良.白桦天然林生物量模型的研究[J].内蒙古农业大学学报(自然科学版),2010,(1):76-82.
    52.李朝,周伟,关庆伟,等.徐州石灰岩山地侧柏人工林生物量及其影响因子分析[J].安徽农业大学学报,2010,(4):669-674.
    53.李合生主编.现代植物生理学[M].北京:高等教育出版社,2002,184-185.
    54.李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境,2002,11(4):422-429.
    55.李正才,傅懋毅,杨校生.经营干扰对森林土壤有机碳的影响研究概述[J].浙江林学院学报,2005,22(4):469-474.
    56.李又芳.亚热带森林转换及火烧措施对土壤有机碳和黑碳的影响[D].福建师范大学,2009.
    57.李仁洪,涂利华,胡庭兴,等.模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响[J].应用生态学报,2010,21(7):1649-1655.
    58.李意德,曾庆波,吴仲民,等.尖峰岭热带山地雨林生物量的初步研究[J].植物生态与地植物学报,1992,16(4):293-300.
    59.李志恒,张一平.陆地生态系统物质交换模型[J].生态学杂志,2008,27(7):1207-1215.
    60.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    61.刘世荣,徐德应,王兵.气候变化对森林生产力的影响[J].1994,7(4):425-430.
    62.刘斌,刘建军,任军辉,等.贺兰山天然油松林单株生物量回归模型的研究[J].西北林学院学报,2010(6):69-74.
    63.刘磊,温远光,卢立华,等.不同林龄杉木人工林林下植物组成及其生物量变化[J].广西科学.2007(2):172-176.
    64.刘春江.北京西山地区人工油松栓皮栎混交林生物量和营养元素循环的研究[J].北京林业大学学报,1987,(1):1-10.
    65.刘畅.长白山北坡森林土壤有机质累积过程及其影响因子[D].东北林业大学,2004.
    66.刘振花,陈立新,王琳琳.红松阔叶混交林不同演替阶段土壤活性有机碳的研究[J].土 壤通报,40(5):1008-1103.
    67.刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    68.柳敏,宇万太,姜子绍.土壤活性有机碳[J].生态学杂志,2006,25(11):1412-1417.
    69.吕成文,崔淑卿,赵来.基于HNSOTER的海南岛土壤有机碳储量及空间分布特征分析[J].应用生态学报,2006,17(6):1014-1018.
    70.马饮彦.华北油松人工林单株林木的生物量[J].北京林学院学报.1983(4):1-16.
    71.马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989(4):1-10.
    72.马饮彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):31-34.
    73.马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].2002,24(5/6):97-100.
    74.马炜,孙玉军,郭孝玉.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667.
    75.莫江明,方运霆,徐国良,等.鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应[J].生态学报,2005,25(4):682-690.
    76.潘维铸,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):12-14.
    77.潘辉,黄石德,洪伟,等.3种相思人工林凋落物量及其碳归还动态[J].福建林学院学报,2010(2):104-108.
    78.漆良华,刘广路,范少辉,等.不同抚育措施对闽西毛竹林碳密度、碳贮量与碳格局的影响[J].生态学杂志2009,28(8):1482-1488.
    79.齐鑫山,周长瑞.侧柏油松林的群落学特征和生物量研究[J].山东林业科技,1991(2):1-5.
    80.史大林.碳汇林经营数表编制的探索[D].北京:北京林业大学,2008.
    81.沈宏,曹志宏,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    82.沙丽清,邓继武,谢克金,等.西双版纳次生林火烧前后土壤养分变化的研究[J].植物生态学报,1998,22(6):513-517.
    83.史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416.
    84.史军,刘纪远,高志强,等.对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
    85.沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    86.宋曰钦,翟明普,贾黎明.不同树龄三倍体毛白杨生物量分布规律[J].东北林业大学学报,2010,(1):1-3.
    87.邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,(3):24-28.
    88.涂育合.杉木不同经营密度的林下植物变化[J].西北林学院学报,2005(4):52-55.
    89.唐坤银,唐代生.杉木生物量优化模型研究[J].林业调查规划,2010,(1):47-49.
    90.王效科,郭然,吴庆标,等.陆地生态系统固碳技术措施.见:陈泮勤主编.地球系统碳循环[M].北京:科学出版社,2004.
    91.吴刚,冯宗炜.中国油松群落特征及生物量的研究[J].生态学报,1994,14(4):415-422.
    92.吴刚,冯宗炜.中国主要五针松群落学特征及其生物量的研究[J].生态学报,1995,15(3):260-267.
    93.吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J]. 应用生态学报,1998,9(4):341-344.
    94.干效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    95.武天云,Schoenau J.J,李凤民,等.十壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(5):717-722.
    96.王希华,黄建军,阎恩荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28(4):457-467.
    97.王丹,王兵,戴伟,等.不同发育阶段杉木林土壤有机碳变化特征及影响因素[J].林业科学研究,2009,22(5):667-671.
    98.王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5):26-29.
    99.王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究,2006,19(3):12-17.
    100.尉海东与马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究[J].西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    101.汪永文,王力,于丽丽,等.马尾松混交林林下植物结构及生物量特征研究[J].安徽农业大学学报.2010(2):312-316.
    102.吴鹏飞,朱波.桤柏混交林林下植物结构及生物量动态[J].水土保持通报,2008,(3): 44-48.
    103.王金英,肖洋,吴龙,等.落叶松人工林单木生物量模型研究[J].林业科技情报,2010, (2): 18-19
    104.王婷.嵩山侧柏人工林群落结构、生物量及物种多样性研究[D].河南农业大学,2000,28-31.
    105.徐德应,刘世荣.温室效应、全球变暖与林业[J].世界林业研究,1992,(1):25-32.
    106.徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,(5):25-32.
    107.肖兴威.中国森林生物量与生产力的研究[D].哈尔滨:东北林业大学,2005.
    108.谢锦升,杨玉盛,杨智杰,等.退化红壤植被恢复后土壤轻组有机质的季节动态[J].应用生态学报,2008,1 9(3):557-563.
    109.肖春波,王海,范凯峰,等.崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J].上海交通大学学报(农业科学版),2010,28(1):30-34.
    110.熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植物发育及生物量研究[J].林业科学研究.1995(4):408-412.
    111.徐郑周,刘广营,王广海,等.燕山山地华北落叶松人工林群落生物多样性及其生物量的研究[J].林业资源管理,2010,(2):43-49.
    112.徐扬,刘勇,李国雷,等.间伐强度对油松中龄人工林林下植物多样性的影响[J].南京林业大学学报(自然科学版),2008,(3):135-138.
    113.徐秋芳,姜培坤,沈泉.灌木林和阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,27(2):18-22.
    114.徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,17(4):15-21.
    115.许俊利,何学凯.林木生物量模型研究概述[J].河北林果研究,2009,(2):141-144.
    116.胥辉.立木生物量模型构建及估计方法的研究[D].北京,北京林业大学,1998.
    117.薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    118.尹艳豹,曾伟生,唐守正.中国东北落叶松立木生物量模型的研建[J].东北林业大学学报.2010(9):23-26.
    119.尹云锋,杨玉盛,高人,等.皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J].十壤学报,2009,46(2):352-355.
    120.杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.
    121.俞元春,何晟,李炳凯,等.杉林十壤溶解有机碳吸附及影响因素分析[J].南京林业大学学报:自然科学版,2005,29(2):15-18.
    122.杨昆,管东生.林下植物的生物量分布特征及其作用[J].生态学杂志.2006(10):1252-1256.
    123.杨昆.管东生.森林林下植物生物量收获的样方选择和模型[J].生态学报.2007(2):705-714.
    124.杨再鸿,杨小波,李跃烈,等.海南岛桉树林林下植物物种组成及生物量[J].东北林业大学学报.2008(5):25-27.
    125.杨丽韫,罗天祥,吴松涛.长自山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报,2005,16(7):1195-1199.
    126.于贵瑞,孙晓敏,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    127.于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2008:4-5.
    128.姚茂和,盛炜彤,熊有强.杉木林林下植物及其生物量的研究[J].林业科学.1991(6):644-648.
    129.姚延梼.京西山区油松侧柏人工混交林生物量及营养元素循环的研究[J].北京林业大学学报,1989,(2):38-46.
    130.严成,尹林克,朱金星.干旱沙漠区侧柏苗木生物量的研究[J].干旱区研究,1998,(2):22-26.
    131.周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006,28(6):5 1-55.
    132.周国模,刘恩斌,于光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216.
    133.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    134.周德明,王宗永.南方不同林龄杉木人工林林下物种多样性比较[J].林业资源管理.2010(6):65-70.
    135.周焱,徐宪根,阮宏华,等.武夷山不同海拔土壤水溶性有机碳的含量特征[J].南京林业大学学报(自然科学版),2009,(4):48-52.
    136.赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    137.赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    138.赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报,2004,15(8):1468-1472.
    139.赵月彩,杨玉盛,陈光水,等.福建万木林自然保护区米槠和杉木凋落叶混合分解研究[J].亚热带资源与环境学报,2009,4(2):53-59.
    140.赵玉涛,韩十杰,李雪峰,等.模拟氮沉降增加对土壤微生物量的影响[J].东北林业大学学报,2009,37(1):49-51.
    141.曾伟生,唐守正.国外立木生物量模型研究现状与展望[J].世界林业研究.2010(4): 30-35.
    142.朱丽梅,胥辉.思茅松单木生物量模型研究[J].林业科技,2009,(3):19-23.
    143.张萍.北京森林碳储量研究[D].北京,北京林业大学,2009.
    144.张修玉.广州三种主要森林生物量与碳储量分配特征[D].广州,中山大学,2009.
    145.张城,王绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,(2):97-103.
    146.张炜,莫江明,方运霆,等.氮沉降对森林土壤主要温室气体通量的影响[J].生态学报,2008,28(5):2309-2319.
    147.政府间应对气候变化专门委员会(IPCC).气候变化2007:综合报告[M].瑞士,日内瓦,2007,82.
    148.政府间应对气候变化专门委员会(IPCC).2006国家温室气体清单指南中的农业、林业和其他土地利用.见:国家林业局应对气候变化和节能减排工作领导小组办公室.造林项目碳汇计量与监测指南[M].北京:中国林业出版社,2008.
    149. Aber J. D., McDowell W., Nadelhoffer K. J., et al. Nitrogen saturation in Northern forest ecosystems, hypotheses revisited[J]. Bioscience,1998,48:921-934.
    150. Anderson T. H. andDomsch K. H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry,1990,22(2):251-255.
    151. Alexeyev V, Birdsey R, Stakannov V, et al. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution [J]. Water, Air and Soil Pollution,1995,82: 271-282.
    152. Brown, S. Measuring carbon in forests:current status and future challenges [J]. Environmental Pollution,2002,116(3):363-372.
    153.Boone R.D. Light fraction soil organic matter:Origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry,1994,26:1459-1468.
    154. Barrios E., Kwesiga F., Buresh R.J., et al. Light fraction soil organic matter and available nitrogen following trees and maize[J]. Soil Science Society of America Journal,1997,61: 826-831
    155. Blair G., Lefroy R. D. B., Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agriculture systems[J], Australian Journal of Agriculture Research,1995,46(7):1459-1466.
    156.Bashikin M.A. and Binkley M.A. Change in soil carbon following afforestation in Hawaii[J]. Ecology,1998,79(3):828-833.
    157. Brown S., Lugo A. E. Biomass of tropical forests: a new estimate based on forest volumes[J]. Science,1984,223:1290-1293.
    158. Brown S., Lugo A. E Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon [J]. Interciencia,1992,17:8-18.
    159. Burt R. Soil survey laboratory methods manual, Soil survey investigations report No.42 version 4.0[M]. Lincoln, NE:Natural Resources Conservation Service, U.S. Department of Agriculture,2004.
    160. Ciais P, Tans P, Trolier M, et al. A large Northern Hemisphere terrestrial CO2 sink indicated by 13C/12C of atmospheric CO2[J]. Science,1995,269:1098-1102.
    161.Cui X. Y., Wang Y. F., Niu H. S., et al. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia[J], Ecology Research,2005, (5):519-527.
    162.Christensen B.T., Sorensen L.H. The distribution of native and labelled carbon between soil particle size fractions isolated from long-term incubation experiments [J]. Journal of Soil Science,1985,36(2):219-229.
    163. Chang S.C., Tseng K.H., Hsia Y.J., et al. Soil respiration in a subtropical montane cloud forest in Taiwan[J]. Agricultural and Forest Meteorology,2008,148:788-798.
    164. Cavelier J., Penzuela M.C. Soil respiration in the cloud forest and dry deciduous forest of Cerrania de Macuira, Colombia[J]. Biotropica,1990,22:346-352.
    165. Cao J. X., Tian Y., Wang X. P. et al. Labile organic carbon pool of forest soil in the Badaling mountainous area of Beijing.3rd International Conference on Environmental and Computer Science,2010, (4):323-326.
    166.Dixon R.K., Brown S., Houghton R.A., et al. Carbon pools and flux of global forest ecosystem [J]. Science,1994,263:185-190.
    167. Dieter M., Elsasser P. Carbon Stocks and Carbon Stock Changes in the Tree Biomass of Germany's Forests[J]. Forstwissenschaftliches Centralblatt,2002,121(4):195-210.
    168.Dickson, R.E. Carbon and nitrogen allocation in trees. Annales des Sciences Forestieres, 1989,46(Suppl.):631-647.
    169. Doran J W, Jones A J, Arshad M A, et al. Determinants of Soil quality and Health, Soil Quality and Soil Erosion [M]. Boca Raton:CRC Press 1999,17-36.
    170. Davidson E A, Trumbore S E, Amundson R. Soil warming and organic carbon content[J]. Nature,2000,408:789-790.
    171. Fang J.Y., Chen A.P., Peng C.H., et al. Changes in forest biomass carbon storage in China Between 1949 and 1998[J]. Science,2001,292:2320-2322.
    172. Fang J. Y., Guo Z. D., Piao S. L., et al. Terrestrial vegetation carbon sinks in China, 1981—2000[J]. Science in China series D:Earth Science,2007,50(7):1341-1250.
    173. Fang J.Y., Liu G.H., Zhu B., et al. Carbon budgets of three temperate forest ecosystems in Dongling Mt, Beijing, China[J]. Science in China series D:Earth Science,2007,50(1): 92-101.
    174. Fang J. Y., Wang G. G., Liu G. H., et al. Forest biomass of China: an estimation based on the biomass-volume relationship[J]. Ecological Application,1998,8:1084-1091.
    175.Gregorich E.G. andEllet B. H., Light fraction and macroorganic matter in mineral soils, In: Soil sampling and methods of analysis, Cater, M R (ed), CRC Press, Boca Raton, Florida, USA,1993,397-407.
    176.Grigal D F, Berguson W E Soil carbon changes associated with short-rotation systems [J]. Biomass and Bioenergy,1998,14(4):371-377.
    177.Hadas A.., Kautky L., Goek M. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover[J]. Soil Biology and Biochemistry,2004,36(2):255-266.
    178. Houghton R. A., Skole D. L., Nobre C. A., et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature,2000,403:301-304.
    179.Hagedorn F., Spinnler D., and Siegwolf R. Increased N deposition retards mineralization of old soil organic matter[J]. Soil Biology and Biochemistry,2003,35(12):1683-1692.
    180. Janzen H.H., Campbell C.A., Brandt S.A., et al. Light fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of Aerica Journal,1992,56:1799-1806.
    181. Johnson D. W., and Driscoll C. T. Effects of forest management on soil C and N storage: Meta analysis[J]. Forest Ecology and Management,140(2-3):227-238.
    182. Johnson D. W. Effects of forest management on soil carbon storage[J]. Water, Air and Soil Pollution,1992,64(1-2):83-120
    183. Knoepp J. D. and Swank W. T. Forest management effects on surface soil carbon and nitrogen[J]. Soil Science Society of American Journal,1997,61(3):928-953.
    184.Kalbitz, K., Solinger, S., Park, J.-H., et al Controls on the dynamics of dissolved organic matter in soils:A review. Soil Science,2000,165(4):277-304.
    185.IPCC. Climate Change 2007:Impacts, Adaptation and Vulnerability[M]. Cambridge: Cambridge University Press, UK,2007,878.
    186. IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage[M]. Cambridge: Cambridge University Press, UK,2005,53-74.
    187. IPCC. IPCC special report: land use, land-use change and forestry[M], Cambridge University Press, Cambridge, UK,2000,4.
    188.Imai N., Samejima H., Langner A., et al. Co-Benefits of Sustainable Forest Management in Biodiversity Conservation and Carbon Sequestration[J]. PLoS ONE,2009,4(12):e8267, 1-7.
    189. Isdo S.B., Kimball B.A. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees[J].1992,99(1):341-343.
    190. Jowkin, V. Impact of tillage management and landscape on nitrogen availability in cereal-fallow cropping system[M]. University of Saskatchewan, Saskatoon, Canada, 1997.
    191.Kucharik C. J., Foley J. A., Delire C., et al. Testing the performance of a dynamic global ecosystem model:Water balance,carbon balance and vegetation structure[J]. Global Biochemical Cycles,2000,14(3):795-825.
    192.Kauppi P. E., Miedlikinen K., Kunsela A. K. Biomass and carbon budget of European forests, 1971 to 1990[J]. Science,1992,256:70-74.
    193. Liang W. J., Hu H. Q., Liu F. J., et al. Research advance of biomass and carbon storage of poplar in China[J]. Journal of Forestry Research,2006,17(1):75-79
    194. Laiho R. and Laine J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland[J]. Forest Ecology and Management,1997,93(1/2):161-169.
    195.Lamlon S.H. and Savidge R.A. A reassessment of carbon content in wood: variation within and between 41 north American species[J]. Biomass and Bioenergy,2003,25(4):381-388.
    196. Lin D.L., Xia J.Y., Wan S.Q. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis[J]. New Phytologist,2010,188(1):187-198.
    197.Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia[J]. Forest Ecology and management,2003,180(1-3): 317-333.
    198. Lefroy R. D. B., Blair G. J., Strong W. M., Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J], Plant and Soil,1993, 155/156(1):399-402.
    199. Luo T.X., Shi P.L., Luo J., et al. Distribution patterns of aboveground biomass in Tibetan alpine vegetation transects[J]. Acta Phytoecologica Sinica,2002,26(6):668-676.
    200. Monserud R.A., Huang S.M., and Yang Y.Q. Biomass and biomass change in lodgepole pine stands in Alberta[J]. Tree Physiology,2006,26:819-831.
    201. Magill A. H., Aber J. D., Berntson G. M., et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems,2000,3:238-253.
    202.Mirsky, S. B., Lanyon L. E., Needelman B. A., Evaluating soil management using particulate and chemically labile soil organic matter fractions[J]. Soil Science Society of American Journal,2008,72:180-185.
    203. Melillo J.M., Steudler P.A., Aber J.D., et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science,2002,298:2173-2176.
    204.Mckee W H. Changes in soil fertility following prescribed burning on costal plain pine sites, southeastern forest experiment station. Wahington:USDA Forest Service,1982
    205.Nakaji T., Fukami M., Dokiya Y., et al. Effects of high nitrogen load on growth, photo synthesis and nutritrient status of Cryp tomeria japonica and Pinus densiflra seedlings[J]. Trees,2001,15:453-461.
    206.Nakaji T, Takenaga S, Kuroha M., et al. Photosynthetic response of Pinus densiflora seedlings to high nitrogen load[J]. Environmental Sciences,2002,9 (4):269-282.
    207. Noh N.J., Son Y.H., Lee S.K., et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China (Life Sciences),2010,53(7):822-830.
    208.Neff J. C., Townsend A. R., Gleixner G., et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J], Nature,2002,419(6910):915-917.
    209. Orchard V. A., Cook F.J. Relationship between soil respiration and soil moisture[J]. Soil Biology and Biochemistry,1983,15(4):447-453.
    210. Peichl M. and Arain M.A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests[J]. Agriculture and Forest Meteorology, 2006,140:51-63.
    211. Peichl M. and Arain A.M. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management,2007, 253(1-3):68-80.
    212.Pettersen, R.C. The chemical composition of wood. In:Rowel, R.M. (Ed.), The Chemistry of Wood, Advances in Chemistry Series 207, American Chemical Society, Washington, DC, U.S.A.,1984.57-126.
    213. Post W M, Emanuel W R, et al. Soil carbon pools and world life zones[J]. Nature,1982,298: 185-190.
    214. Post.W.M., Kwon K.C. Soil carbon sequestration and Ian-use change: processes and potential[J]. Global Change Biology,2000,6:317-328
    215.Parton, W.J., Schimel, D.S., Cole, C.V., et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America journal,1987, 51(5):1173-1179.
    216.Paul K. I., Polglase P. J., Richards G.P. Sensitivity analysis of predicted change in soil carbon Following afforestation[J].Ecological Modelling,2003,164(2-3):137-152.
    217. Paul K. I., Polglase P. J., Nyakuengama J. G., et al. Change in soil carbon Following afforestation [J]. Forest Ecology and Management.2002,168 (1-3):241-257.
    218.Rustad L.E., Campbell J.L., Marion G.M., et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126(4):543-562.
    219. Saint-Andre L., M'Bou A. T., Mabiala A., et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo[J]. Forest Ecology and Management, 2005,205:199-214
    220. Schimel D. S. Terrestrial ecosystem s and the carbon cycle[J]. Global Change Biology,1995, 1:77-91.
    221. Solberg S., Andreassen K., Clarke N., et al. The possible influence of nitrogen and acid deposition on forest growth in Norway[J]. Forest Ecology and Management,2004,192: 241-249.
    222. Sleutel, S., Vandenbruwane J., Schrijver A. D., et al. Patterns of dissolved organic carbon and nitrogen fluxes in deciduous and coniferous forests under historic high nitrogen deposition[J]. Biogeosciences,2009,6:2743-2758.
    223. Smethurst, P.J.and Nambiar E.K.S. Distribution of carbon and nutrients and fluxes of mineral nitrogen after clear-felling a Pinus radiata plantation[J]. Canadian Journal of Forest Research. 1990,20(9):1490-1497.
    224. Sanginga N. and Swift M.J. Nutritional effects of Eucalyptus litter on the growth of maize(Zea mays)[J]. Agriculture, Ecosystems and Environment,1992,41(1):55-65.
    225. Steudler P A, Melillo J M, Bowden R D, et al. The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in Puerto Rican wet forest[J]. Biotropica,1991, 23 (4a):356-363.
    226. Tans P. P., Fung I. Y., Takahashi T. Observational Constraints on the Global Atmospheric Budge [J]. Science.1990.247:1431-1438.
    227.Tobin, B. and Nieuwenhuis, M. Biomass expansion factor for Sitka spruce(Picea sitchensis(Bong).Carr) in Ireland. European Journal of Forest Research,2007,126(2): 189-196.
    228.Townsend, A., Sykes, M.T., Apps, M.J., et al. Natural and Anthropogenically-induced variations in terrestrial carbon balance, in:Forest Ecosystems, Forest Management and the Global Carbon Cycle[M]. Springer-Verlag Berlin,1996,111-115.
    229. Turner J. and Lambert M. Change in organic carbon in forest plantation soils in eastern Australia[J]. Forest Ecology and Management,2000,133(3):231-247.
    230. Turner D. P., Koepper G. J., Harmon M. E., et al. A carbon budget for forests of the conterminous United States[J]. Ecological Applications,1995,5:421-436.
    231. Vanninen, P., Ylitao, H., Sievaenen, R, et al. Effects of age and site quality on the distribution of biomass in Scots pine(Pinus sylvestris L.)[J].1996,10(4):231-238.
    232. Van Soet P. J. Methods for dietary fiber, neutral detergent fiver and non starch polysaccharides in relation to animal nutrition [J]. Journal of Dairy Science,1991,74(10): 3583-3597
    233.Yadvinder M., Grace J. Tropical forests and atmospheric carbon dioxide[J]. Tree,2000,15: 332-337.
    234. Yang Y. S., Guo J. F., Chen G. S., et al. Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China[J]. Forest Ecology and Management,2005,216(1-3):216-226.
    235.Zinn Y. L., Resck D. V. S., Silva J. E. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil[J].2002,166(1-3):285-294.
    236. Zhu Z. L., Sun X. M., Wen X. F., et al. Study on the progressing method of nighttime CO2 eddy covariance flux data in Chinaflux[J]. Science in China series D:Earth Science,2006, 49(S2):36-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700