用户名: 密码: 验证码:
雷州半岛桉树人工林3PG模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生长模型科学高效地指导林业生产一直是林业经营者采用的主要方式,但这些模型大部分是经验模型。随着林业生产集约化的提高,随着植物生理生态学、计算机技术等学科的飞速发展,随着人类对环境意识的日益增强,森林生长和收获的机理模型越来越受到森林研究和森林资源管理者的重视。
     本文介绍了3PG模型,这是一个同时结合了天气、立地、经营水平和树种来预测林分生产力的基于生理过程的林分生长模型,它已广泛应用于世界上许多国家和地区。
     模型用一系列方程动态模拟太阳辐射的逐级递减及碳量守衡和水量平衡来模拟林分系统和外界环境每月的动态变化。用Beer—Lambert日光消减规律来模拟林分冠层吸收的光合有效辐射:受养分、土壤含水量、林龄、水汽压差、土壤盐度、霜冻和温度等限制因子的共同影响,只有少量光合有效辐射用于树木的光合作用,这部分光合有效辐射按一定的量子效率同化CO_2合成有机物质;林分冠层所固定的碳按碳量守衡和一定比例分配给树叶、树干和树根;树干所吸收的碳量转化为木材产量,进一步来计算材积、树高和胸径。同时模型根据土壤水贮量变化来模拟月森林水量平衡,它详细模拟了大气降水,地下水、人工灌溉、林分蒸腾量、渗透水量和土壤水之间的动态变化。
     对广东省西部的雷州半岛上的三种商业桉树人工林:尾叶桉、ABLw5和CloneU6进行了长期的林分树高、胸径和生物量的测量,土壤含水量、水分利用的观测和地下水位、土壤性质的调查,这些数据都用来估计和校正模型参数。同时在林地建立了自动气象观测系统对桉树人工林主要气象因子进行定位观测,包括太阳辐射、降雨量、风速、最高温度、最低温度和相对湿度。
     通过分析比较林分材积、胸径、树高、叶量、干量、叶面积和水分利用的观测值与模型值,表明:3PG模型是预测桉树人工林生产力的一种有效工具,其模拟精度和可靠性是令人满意的,它的应用将为林业经营者制定合理的营林、抚育管理和采伐决策方案提供可靠全面的科学依据:尾叶桉的最佳轮伐期为7a,而ABLw5和CloneU6为6a:该地区年总蒸腾量不足600mm,远远低于这一地区的降雨量,证明“桉树是抽水机,消耗过多地下水”的说法是没有道理的。同时本文还模拟了桉树人工林的直径分布,预测了它们10a内的生长量并绘制了整个雷州半岛桉树林分第5a材积分布图。随着3PG模型的不断发展,并结合其它模型(如地理信息系统),它必将发挥越来越重要的作用。
It's used to be mainly management means for forest managers to scientifically, effectively plan and manage forest production by forest growth and yield models, but most among these are empirical models instead of mechanistic models or processed models. With the great improvement of forest production intensivism and increasing attention of environmental protection, processed-based forest growth models can be more and more attached importance to by forest researchers and its resource managers, as a great number of subjects such as physiological plant ecology, computers agrology, meteorology, etc, make an immense progress.
    3PG model is introduced on the papers, which can predict stand productivity with combinations of climate, site condition, management and species and is widely applied as a planning tool by forest managers in many countries and regions throughout the world. It uses a series of equations to simulate the carbon balance, water balance and diminishing solar radiation in order to simulate dynamically monthly change of forest and its environment. The model calculates total carbon fixed from canopy quantum efficiency and utilizable, absorbed photosynthetically active radiation, obtained by correcting photosynthetically active radiation by a forest canopy, simulated by Beer-Lambert law relating the absorption of light, for the effects of temperature, nutrition, atmospheric vapor press deficit, stand age and soil water availability. The carbon fixed by forest canopy is partitioned into leaves, stems and roots respectively as to some allocation proportions. At the end, the volume is got from amount of carbon in stems.
    At the same time, in view of the change of soil water storage, it simulates dynamitic change among atmospheric rainfall, groundwater, irrigation, forest transpiration, deep drainage and soil water.
    Measure of tree and stand growth, biomass relationships , soil available water content and its depth , groundwater depth and water use from plantations on the Leizhou Peninsula of western Guangdong province have used to estimate model parameters values for major commercial eucalyptus genotypes: E.urophylla, ABLw5, and CloneU6. Climate data for modeling may be satisfactorily estimated from routine daily meteorological observation including temperature, rainfall, and solar radiation etc.
    
    
    
    The comparison between modeled and observed values of stand volume, DBH, height, LAI, leaf weight, stem weight of above three Eucalyptus plantations and water use of E.Europhylla showed that 3PG model is a convenient and efficient means of predicting the productivity of Eucalyptus plantations with the satisfactory accuracy and reliability of modeled predictions and could provide a successful and versatile basis for decisions on stand establishment, tending and harvesting for forest managers in relation to planting location, climate, soil conditions and forest management; it's advisable to make 7-year rotation for Urophylla and 6 year for other species; the total yearly transpiration with not more than 600 mm that is far less than rainfall in the area ,which proves that the opinion of Eucalyptus plantaions depleting too much groundwater can't hold water. At the same time, growth of Eculyptus plantations in 10 years, their weibull diameter distributions can be predicted and volume distribution map in the whole
     Leizhou Peninsula can be demonstrated. As the development of the model, it will play more and more important role in the future if it can be integrated into other systems like GIS.
引文
[1] Amateis RL. An approach to developing process-oriented growth and yield models[J]. For Ecol Manage, 1994, 69: 7~20.
    [2] Sievanen R, Bark TE. Fitting process-based models with stand growth data: problems and experiences[J]. For Ecol Manage, 1994, 69: 145~156.
    [3] Desanker P V, Reed D D, Jones EA. Evaluating forest stress factors using various forest growth modelling approaches[J]. For Ecol Manage, 1994, 69: 269~282.
    [4] Korol RL, Milner KS, Running SW. Testing a mechanistic model for predicting stand and tree growth [J]. For Sci, 1996, 42(2): 139~153.
    [5] 肖文发等.森林能量利用与产量形成的生理生态基础[M].1996,中国林业出版社.
    [6] 唐守正等.林分生长模型研究的进展.林业科学研究[J],1993,6(6):672-679.
    [7] Pretxsch H. Konaeption and Konstruktion yon Wuchsmodellen fuer Rein and Minchbestaende. Forstliche Forschhungberichte Muenchen, 1991, No. 115.
    [8] Clutter J L, Fortsons J C, Pienaer G B et al. Timber management[M]. a quantitative approach. New York: Wiley, 1983.
    [9] 冯丰隆,杨荣启.使用贝尔陀兰斐模型研究台湾七种树种生长之适应性的探讨[J].中华林学季刊,1988,21(1):47-64.
    [10] Clutter J L. Compatible growth and yield model for loblolly pine [J]. For. Sci, 1983, 9: 354~371.
    [11] Wykoff W R, Grookston N L and Stage A R. User's Guide to the stand prognosis model [J]. USDA For. Serv. , Gem, Tech. Rep. 1982, INT 133: 1-112.
    [12] Heep T E. Using microcomputers to narrow the gap between research and practitioner: A case history of the TVA yield program [J]. USDA For. Serv., Gen. , Tech. Rep. 1987, NC-120, 976-983.
    [13] Lemm R. Ein Dynamisches Forstbetriebs-Simulation models[J]. Professur fuer Forsteiinrichtung and Waldwachstum der ETH Zuerich, 1991, 1-18.
    [14] Wang YP, Jarvis PG. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO)[J]. Tree Physiology. 1990, 7: 297-316.
    [15] Wang YP, Jarvis PG, Taylor CMA. PAR absorption and its relationto aboveground dry-matter production of Sitka spruce[J]. Applied Ecology. 1991, 28: 547-560.
    [16] Grace JC, Jarvis PG, Norman JM. Modeling the interception of solar radiant energy in intensively managed stands. New Zealand Journal of Forestry Science 1987, 17: 193-209.
    [17] Grace, JC, Cook, DA, and Lane, PM. Modeling canopy photosynthesis in Pinus radiata stands. New Zealand Journal of Forestry Science 1987. 17: 210-228.
    [18] McMurtrie R E, Landsberg J J. Using a simulation model to evaluate the effect of water and nutrients on the growth and carbon partitioning of Pinus radiata[J]. Forestry Ecology Management. 1992, 52: 243-260.
    [19] Aber. JD. and CA Federer. A generalized, lumped parameter model of photosynthesis, evapotranspiration, and net primary production [J]. Oecologia. 1992, 92: 463-474.
    [20] Reed, DD, Cattelino, PJ, Balster, NJ, Yunfeng, Zhangetl.. Above-and below-ground biomass of pre-competitive red pine in northern Michigan [J]. For. Res. 1994, 25: 1064-1069.
    [21] Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of
    
    radiation-use efficiency, carbon balance and partitioning [J]. Forest Ecology and Management, 1997, 95: 209-228.
    [22] Battaglia M and Sands P. Process-based productivity model and their application in forest management [J]. Forest Ecology and Management, 1998, 102: 13-32.
    [23] Dye P. Modeling growth and water use in four Pinus patula stands with the 3-PG model [J]. South African Forestry Journal,, 2001, 191: 53-64.
    [24] Landsberg J, Johnsen K, Albaugh T, Allen H and McKeand S. Applying 3-PG, a simple process-based model designed to produce practical results, to data from Loblolly Pine experiments [J]. For. Sci., 2001, 47: 43-51.
    [25] 林业部林业科学研究所森林经理室.杉木人工林生长过程及立木材积表.研究报告,1956,9:1-46.
    [26] 尹泰龙.林分密度控制图的编制与应用[J].林业科学研究,1978,3,1-11.
    [27] 刘景芳等.编制杉木林分密度管理图研究报告[J],林业科学,1980,16(4):241-251.
    [28] 张少昂.兴安落叶松天然林林分生长模型和可变密度收获表的研究[J].东北林业大学学报,1986,14(3),17~26.
    [29] 唐守正.广西大青山马尾松全林整体生长模型及其应用.林业科学研究,1991,4:(增)8~13.
    [30] 许业洲等.湖北省湿地松人工林整体生长模型的研究.湖北林业科技,2001,3:10-13.
    [31] 邵国凡等.森林动态模拟[M].中国林业出版社,1995.
    [32] 陈育峰,李克让.地理信息系统支持下全球气候变化对中国植物分布的可能影响研究[J].地理学报,51(增刊):26~39,1996.
    [33] 邵国凡,赵士洞,舒噶特.森林动态模拟[M].中国林业出版社,1995.
    [34] 吴正方,邓慧平.东北阔叶红松林全球气候变化响应研究[J].地理学报,1996,51(增刊):81~91.
    [35] 项斌,林舜华,高雷明.紫花苜蓿对CO2倍增的反应:生态生理研究和模型拟合[J].植物学报,1996,38(1):63-71.
    [36] 肖向明.王义风,陈佐中.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J].植物学报.1996,38(1):45~52.
    [37] 高琼.李建东,郑慧莹.碱化草地景观动态及其对气候变化的响应与多样性和空间格局的关系[J].植物学报,1996,38(1):18~30.
    [38] 潘学标等.COTGROW:棉花生长发育模拟模型.棉花学报,1996,8(4):180~188.
    [39] 季劲钧.陆地表面物理和生物学过程年变程的模拟[M].气象出版社,1996.
    [40] 花利忠等.桉树人工林3PG模型的研究[J].福建林学院学报.2004,24(2):140-143.
    [41] Ewers B E, Oren R, Johnsen K H, Landsberg J J. Estimating maximum mean canopy stomatal conductance for use in models [J]. Can. J. For. Res. 2001, 31: 198-207.
    [42] Coops N C, Waring R H, Brown S, Running S. Predictions of Net Primary Production and Seasonal Patterns in Water Use with Forest Growth Models using Daily and Monthly Time-steps in southwestern Oregon [J]. Ecological Modelling. 2001,142(1): 61-81.
    [43] Law B E, Waring R H, Anthoni P M, Aber J D. Measurement of gross and net ecosystem productivity and water vapor exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models[J]. Global Change Biology. 2002, 6: 155-168.
    [44] Waring, R H. A process model analysis of environmental limitations on the growth of Sitka spruce plantations in Great Britain[J]. Forestry. 2000, 73: 65-79.
    [45] Waring R H, Landsberg J J, Williams M. Net primary production of forests: a constant fraction of
    
    gross primary, production[J]. Tree Physiology. 1998, 18: 129-134.
    [46] Latchet W. Physiological Plant Ecology. Springer-Verlag, Berlin, Heidlberg and New York. 1980.
    [47] Dilley A C. On the computer calculation of vapor pressure and specific humidity gradients from psychometric data [J]. Application Meteorology. 1968, 7: 717-719.
    [48] 熊文愈主编.森林学.1959,中国林业出版社.
    [49] Peter Sands. 3PGpjs-a User-Friendly Interthce to 3-PG, the Landsberg and Waring Model of Forest Productivity. Technical Report No. 29, Edition 2. 2001, 1~24.
    [50] 龚垒.树木的光合作用与物质生产.1987,北京科学出版社.
    [51] 沈允钢,施教耐,许大全.动态光合作用.1998,科学出版社
    [52] 王炳忠.太阳辐射能的测量与标准.1988,科学出版社
    [53] 北京林业大学.土壤学.1981,中国林业出版社.
    [54] Raschke, K. Movements of stomata[J]. Encyclopedia of Plant Physiology Springer-Verlag, Berlin 1979. 7:15-29.
    [55] Schulze, E. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil[J]. Annual Review of Plant Physiology 1986, 37: 247-274.
    [56] Thomas, DS, Eamus, D. The influence of pre-dawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations[J]. Journal of Experimental Botany 1999, 50: 243-251.
    [57] Thomas D S, Eamus, D, Bell, D. Optimization theory of stomatal behaviour Ⅱ. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature[J]. Journal of Experimental Botany 1999, 50: 393-400.
    [58] 方奇.杉木连栽对土壤肥力及杉木生长的影响.林业科学,1987,23(4):389~397.
    [59] 余雪标等.不同连栽代次桉树人工林的养分循环[J].热带作物学报.1999,20(3):60~66.
    [60] Zimmermann M H. Xylem structure and the ascent of sap[M]. Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1983. Olibrich, Bw. The verification of the heat pulse velocity technique for estimating sap flow in Eucalyptus grandis[J]. Can. For. Res. 1991, 21: 836-841.
    [61] Peter J D. Modeling growth and water use in four Pinus patulastands with the 3-PG model[J]. Southern African Forestry. Journal. 2001, 191: 53~62.
    [62] Morris J D. Validating Plantation Water Use Predications from the 3PG Forest Growth Model. International congress on modeling and simulation. Canberra ACT, 2001, 10~13.
    [63] Monteith J L. Solar radiation and productivity in tropical ecosystems. In Productivity in tropical ecosystems. 1970. Opening paper read at IBPLUNESCE Meeting on Productivity of Tropical Ecosystems. Makerce University. Uganda.
    [64] Landsberg JJ. Physiological Ecology of Forest Production. 1986, Academic press.
    [65] McMurtrie R, Wolf L. A model of competition between trees and grass for radiation water and nutrients[J]. Ann. Bot, 1983, 52, 449-458.
    [66] Mckenney D W, Davis J, Turnbull J W, etal. The Impact of Australian Tree Species Research in China. Caaanberra: ACIAR Economic Assessment Series, 1991. 12.
    [67] Yoda K et al. Self-thinging in overcrowded pure stands under cultivated and natural conditions[J]. J Biol Osaya City Univ, 1963, 14:107~129.
    [68] 李日凤.林分密度研究评述——关于3/2法则理论[J].林业科学研究,1995,8(1):25-32.
    
    
    [69] 唐守正.同龄纯林自然稀疏规律的研究[J].林业科学,1993,29(3):235~241.
    [70] 方精云等.日本落叶松模拟种群的生长与密度的关系[J].植物学报,1991,33(12):949~957.
    [71] 吴承祯,洪伟.杉木人工林自然稀疏规律的研究[J].林业科学,2000,36(4):97~101.
    [72] 孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1986(1):40~48.
    [73] 惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127~131.
    [74] Coops N C etc. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite derived estimates of canopy photosynthetic capacity. For. Eco. 1998, 104: 113~127.
    [75] Edwards, W. R. N. and Warwaick, N. W. M., 1984. Transpiration from a kiwifruit vine as estimated by the heat pulse technique and the Penman-Monteith equation. New Zealand J. Agric. Res. 27: 537-543.
    [76] Olibrich, B. w., 1991. The verification of the heat pulse velocity technique for estimating sap flow in Eucalvptus grandis. Can. J. For. Res. 21: 836-841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700